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ABSTRACT. In this report, we review some existence results on traveling
wave solutions for hyperbolic systems of balance laws satisfying a struc-
tural stability condition. As an application, we show the existence of
smooth shock profiles for discrete-ordinate systems of equations for radi-
ation hydrodynamics.

1. INTRODUCTION
The goal of this report is to review some existence results on smooth shock

profiles for general hyperbolic systems of balance laws:

(1.1) $U_{t}+ \sum_{j=1}^{d}F_{j}(U)_{x_{j}}=Q(U)$ .

Here $U$ is the unknown $n$-vector valued function of $(x, t)\equiv(x_{1}, x_{2}, \cdots, x_{d}, t)\in$

$\mathrm{R}^{d}\cross[0, +\infty)$ , taking values in an open subset $\mathcal{G}$ of $\mathrm{R}^{n}$ (called state $sp$ace);
$Q(U)$ and $F_{j}(U)(j=1,2, \cdots, d)$ are given $n$-vector valued smooth functions
of $U\in \mathcal{G}$ .

Balance laws of the form (1.1) describe various non-equilibrium phenomena
in physics. Important examples occur in inviscid gas dynamics with relax-
ation, kinetic theories (moment closure systems and discrete-velocity models),
radiation hydrodynamics, chemically reactive flows, traffic flows, nonlinear
optics, the numerical solution of conservation laws with relaxation schemes,
and so on. See [18] and references cited therein.

In the aforementioned applications, the source term $Q(U)$ has, or can be
transformed with a linear transformation into, the form

$Q(U)=$

with $q(U)\in \mathrm{R}^{f}$ consisting of $r$ linearly independent functions of $U\in \mathcal{G}$ .
Accordingly, we often write

$U=,$ $F_{j}(U)=,$ $Q(U)=$ .
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Then (1.1) can be rewritten as

$u_{t}+ \sum_{j=1}^{d}f_{j}(u, v)_{x_{j}}=0$,

(1.2)

$v_{t}+ \sum_{j=1}^{d}g_{i}(u, v)_{x_{j}}=q(u,v)$ .

Throughout this paper, we assume that $q(u, v)=0$ uniquely determines $v$ in
terms of $u$ , say $v=h(u)$ .

For the above equations, our interest here is traveling wave solutions of the
form

$U(x, t)=\phi(\omega\cdot x-s_{*}t)$

with $\omega=(\omega_{1}, \cdots,\omega_{d})\in \mathrm{R}^{d}\backslash \{0\},\omega\cdot x=\sum_{j=1}^{d}\omega_{j}x_{j},$ $s_{*}\in \mathrm{R}$ and $\phi(\pm\infty)=U_{\pm}$

appropriately given. As a solution to (1.1), $\phi=\phi(\sigma)$ solves

(1.3) $\sum_{j=1}^{d}\omega_{j}F_{\mathrm{j}}(\phi)_{\sigma}-s_{*}\phi_{\sigma}=Q(\phi)$ .

Therefore, our task is to show the existence of a trajectory $\phi=\phi(\sigma)$ connect-
ing $U_{-}$ on the left to $U_{+}$ on the right.

Note that system (1.3) together with $\phi(\pm\infty)=U_{\pm}$ suggests $Q(U\pm)=0$ .
According to our assumption following (1.2), such $U_{\pm}$ can be written as

$U_{\pm}=$

with $u_{\pm}\in \mathrm{R}^{n-f}$ . Since the first $(n-r)$ components of $Q(U)$ vanish identically,
it is easy to see from the first $(n-r)$ equations in (1.3) that the quantities
$u_{\pm},$ $s_{*}$ and $\omega$ satisfy the following relation

(1.4) $s_{*}(u_{+}-u_{-})= \sum_{j=1}^{d}\omega_{j}[f_{i}(u_{+}, h(u_{+}))-f_{j}(u_{-}, h(u-))]$ .

This relation particularly determines $s_{*}$ as a function of $(u_{-}, u_{+},\omega)$ . Note
that as $u_{+}$ tends to $u_{-},$ $s_{*}=s_{*}(u_{-}, u_{+}, \omega)$ converges to an eigenvalue, say
$\lambda_{k}(u_{-},\omega)$ , of $(n-r)\cross(n-r)$-matrix $\sum_{j}\omega_{j}\partial_{u}(f_{j}(u, h(u)))|_{u=u-}$ .

Because of (1.4), it is well known that piecewise-constant function

(1.5) $u(x, t)=\{$
$u_{-}$ , $\omega\cdot x<s_{*}t$

$u_{+}$ , $\omega\cdot x>s_{*}t$

is a weak solution of the following conservation laws

(1.6) $u_{t}+ \sum_{j=1}^{d}f_{j}(u, h(u))_{x_{j}}=0$.
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This is the so-called equilibrium system corresponding to the balance laws
(1.2). It governs the dynamics of (1.2) in the zero relaxation limit ( $\dot{\mathrm{s}}\mathrm{e}\mathrm{e}$, e.g.
[18] $)$ . The piecewise-constant solution (1.5) is called a shock front if (1.6) is
(strictly) hyperbolic and the solution satisfies the entropy condition [6].

The above discussion relates the traveling wave solutions to shock waves
(1.5). Therefore, the former are often called shock profiles and their existence
is of physical interest [1, 10, 14, 16]. The analogous existence problem was first
posed by Gelfand [4] for viscosity approximations of hyperbolic conservation
laws and was solved by Majda and Pego [8].

On the other hand, it was observed in $[17, 18]$ that many equations of
the form (1.1) from mathematical physics satisfy a structural stability condi-
tion proposed in [17]. Under the stability condition, the existence of smooth
shock profiles was established in [19] under the additional assumption that
the matrix $A(U_{-})$ is invertible, where

(1.7) $A(U):= \sum_{j=1}^{d}\omega_{j}F_{jU}(U)-\lambda_{k}(u_{-}, \omega)\mathcal{I}_{n}$

with $\mathcal{I}_{n}$ the unit matrix of order $n$ . The result is stated as Theorem 2.1 in
Section 2.

When $A(U_{-})$ is not invertible, it was speculated that smooth shock profiles
might not exist, that is, the profiles might contain subshocks. The speculation
was denied in [16] with numerical evidences for a number of specific systems
of the form (1.1) from extended thermodynamics [10].

In [3], we singled out a set of sufficient conditions which ensure the existence
of smooth shock profiles, even if $A(U_{-})$ is not invertible. One of the conditions
is of Kawashima-like [15] and another one is that the matrix $A(U)$ has only
one eigenvalue tending to $0$ as $U$ goes to $U_{-}$ . We notice that for $2\cross 2$ systems
(1.2) with $r=1$ , the stability condition and the Kawashima-like condition
together guarantee the invertibility of $A(U-)$ . Let us mention that for $2\cross 2$

systems with $r=1$ , the above existence problem was satisfactorily solved by
Liu [7].

Recently in [13], the above existence results are applied successfully to
discrete-ordinate systems of equations for radiation hydrodynamics $[9, 12]$ .
In particular, we show that for the discrete-ordinate systems, the matrix
$A(U)$ has only one eigenvalue tending to $0$ as $U$ goes to $U_{-}$ .

This paper is organized as follows. In Section 2 we review two existence
results from $[19, 3]$ . The application to radiation hydrodynamics is sketched
in Section 3.

2. EXISTENCE RESULTS

In this section we present two existence theorems. To begin with, we refer
to (1.2) and recall the assumption that $q(u, v)=0$ if and only if $v=h(u)$ .
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$\forall u\in \mathrm{R}^{n-r}\}$ .

Then we have
$\mathcal{E}:=\{U\in \mathcal{G}|Q(U)=0\}$

(2.1)
$=\{U=\in \mathcal{G}$

With $\mathcal{E}$ (the so-called equilibrium manifold) defined thus, we fix

$U_{-}\equiv\in \mathcal{E}$

throughout this paper. Moreover, we fix $\omega=(\omega_{1},\omega_{2}, \cdots,\omega_{d})\in \mathrm{R}^{d}\backslash \{0\}$ .
Our next assumption on the balance laws (1.1) is the structural stability

condition previously proposed in [17]. Referring to the Appendix of [3], we
only need the following three consequences of the condition:

(h1). $Q_{U}(U_{-})=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(0, S)$ with $S\in \mathrm{R}^{\tau \mathrm{x}r}$ ,

(h2). $\sum_{j=1}^{d}\omega_{j}F_{jU}(U_{-})$ is a symmetric matrix,

(h3). $S+S^{*}\leq-\mathcal{I}_{r}$ .

Here the subscript $U$ refers to the usual partial derivatives with respect to
$U$ , the superscript *denotes the transpose operator acting on matrices or
vectors, an$\mathrm{d}$

$\mathcal{I}_{f}$ is the unit matrix of order $r$ .
The structural stability condition and thereby $(\mathrm{h}\mathrm{l})-(\mathrm{h}3)$ was shown in [17,

18] to be fulfilled by many systems of balance laws (1.1) from mathematical
physics. On the other hand, it was proved in [17] that the stability condition
implies the (strong) hyperbolicity of the equilibrium system (1.6): for each
di $=(\tilde{\omega}_{1}, \cdots,\tilde{\omega}_{d})\in \mathrm{R}^{d}$, the characteristic matrix

(2.2) $a( \tilde{\omega}):=\sum_{j=1}^{d}\tilde{\omega}_{j}\partial_{\mathrm{u}}(f_{j}(u, h(u)))|_{u=\mathrm{u}-}$

has only real eigenvalues with a complete set of eigenvectors.
As in [19], we further assume that the matrix $a(\omega)$ has an isolated eigen-

value $\lambda_{k}$ . Then we know from [6] that the Rankine-Hugoniot relation

(2.3) $s(u-u_{-})= \sum_{j=1}^{d}\omega_{j}(f_{j}(u, h(u))-f_{j}(u_{-}, h(u-)))$

defines a smooth curve $(u(\delta), s(\delta))$ , for $\delta\in(-\overline{\delta},\overline{\delta})$ with $\overline{\delta}>0$ sufficiently
small, satisfying

$u(\mathrm{O})=u_{-}$ and $s(\mathrm{O})=\lambda_{k}$ .
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According to Liu [6], the piecewise-constant solution (1.5) is called a shock-
front if there is a $\delta_{*}\in(-\overline{\delta},\overline{\delta})$ such that $(u_{+}, s_{*})=(u(\delta_{*}), s(\delta_{*}))$ and

$s_{*}\leq s(\delta)$

for all $\delta$ between $0$ and $\delta_{*}$ .
Now we are in a position to state the first existence theorem established in

[19].

Theorem 2.1. ([19]) Suppose $Q$ and $F_{j}$ are smooth functions of $U$ , the sys-
$tem(\mathit{1}.\mathit{1})$ admits the structural conditions $(hl)-(h\mathit{3}),$ $\lambda_{k}$ is an isolated eigen-
value of the characteristic matrix $a(\omega)$ defined in (2.2), and the matrix $A(U_{-})$

defined in (1.7) is invertible.
Then there exists $\overline{\delta}>0$ such that for any $\delta_{*}$ satisfying I $\delta_{*}|<\overline{\delta}$ and $s_{*}$ $:=$

$s(\delta_{*})<\lambda_{k}$ , the connection problem (1.3) has a unique smooth solution $\phi=$

$\phi(\sigma)$ with $\phi(+\infty)=U_{+}:=(_{h(u(\delta_{*}))}^{u(\delta_{*})})f$ which decays exponentially to $U_{\pm}$ as
$\sigma$ goes $to\pm\infty$ .

The proof of this theorem was motivated by the work of Majda and Pego
[8]. Indeed, when $r>1,$ $(1.3)$ is a genuinely multidimensional connection
problem for which we do not know a general existence theorem. As in [8]
for viscosity problems, our strategy is to use the classical center manifold
theorem [5] to reduce (1.3) to a one-dimensional problem, which is possible
under the assumptions of Theorem 2.1.

Theorem 2.1 requires that $A(U_{-})$ be invertible. In [3], we try to weaken
the requirement and obtain the following result.

Theorem 2.2. ([3]) Assume $A(U_{-})$ is not invertible. If
$(h\mathit{4})$ . $Ker(Q_{U}(U_{-}))\cap Ker(A(U_{-}))=\{0\}$

and $A(U)$ has only one eigenvalue tending to $\mathit{0}$ as $U$ goes to $U_{-}$ , then the
conclusion of Theorem 2.1 still holds. In $(h\mathit{4}),$ $Ker(M)$ denotes the null space
of matrix $M$ .

About this theorem, we make two remarks.

Remark 2.1. If $A(U_{-})$ is invertible, then $\mathrm{K}\mathrm{e}\mathrm{r}(A(U-))$ $=\{0\}$ and therefore
(h4) is implied by the assumptions of Theorem 2.1. Moreover, we notice that
(h4) appears necessary for the existence of the smooth profiles. To see this,
we consider the decoupled system

$u_{t}+f(u)_{x}=0$ ,
$v_{t}=-v$ .

This system violates (h4) and has no smooth shock profiles.
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In addition, (h4) is very similar to but much weaker than the Kawashima
condition [15]:

$\mathrm{K}\mathrm{e}\mathrm{r}(Q_{U}(U_{-}))\cap \mathrm{K}\mathrm{e}\mathrm{r}(\sum_{j=1}^{d}\tilde{\omega}_{j}F_{jU}(U_{-})-\lambda \mathcal{I}_{n})=\{0\}$

for any $\lambda\in \mathrm{R}$ and any di $=(\tilde{\omega}_{1},\tilde{\omega}_{2}, \cdots,\tilde{\omega}_{d})\in \mathrm{R}^{d}\backslash \{0\}$ .

Remark 2.2. For $n=2$ and $r=1,$ $(\mathrm{h}4)$ implies that $A(U_{-})$ is invertible. In
fact, it follows from (h1) that

$\mathrm{K}\mathrm{e}\mathrm{r}(Q_{U}(U_{-}))=\mathrm{R}^{n-\tau}\cross\{0\}\subset \mathrm{R}^{n}$ .

On the other hand, it is obvious for $n-r=1$ that the upper-left corner of
$A(U_{-})$ is zero. Thus, if (h4) holds true, then the $2\cross 2$ symmetric matrix
$A(U_{-})$ is not diagonal. Therefore, $A(U_{-})$ is invertible.

For the proof of Theorem 2.2, we notice that the equations (1.3) have a sin-
gularity when $(\phi, s_{*})$ is close to $(U_{-}, \lambda_{k}(u_{-}, \omega))$ . To deal with the singularity,
the underlying idea is to view it as an extremely large scale in the equations
(1.3). With this understanding, we first reduce the existence problem to a
parametrized one without singularity by using the center manifold theorem
[5]. The main technical issue in [3] is to show that the structural conditions
ensure the effectiveness of the reduction. Then, we modify the argument in
[19] to show the existence of solutions for the parametrized problem. In this
way, we get the existence of a trajectory for the multidimensional connection
problem (1.3) when $u_{+}$ is close to $u_{-}$ and $s_{*}<\lambda_{k}(u_{-},\omega)$ . See [3] for details.

Let us also remark that the Jacobian matrix of the left-hand side of the
traveling wave equations (1.3) does not necessarily have a null space of con-
stant dimension. So our singularity is more general than that treated by Pego
[11] for physical viscosity problems.

3. AN APPLICATION

In this section, we apply the existence theory developed in $[19, 3]$ to radi-
ation hydrodynamics. The motion of a radiating fluid is governed by com-
pressible Euler equations coupled via an integral-type source term to a family
of radiation transport equations $[9, 12]$ :

$\rho_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(\rho \mathrm{v})=0$ ,
$(\rho \mathrm{v})_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(\rho \mathrm{v}\otimes \mathrm{v}+p\mathcal{I}_{3})=0$,

(3.1)
$E_{t}+ \mathrm{d}\mathrm{i}\mathrm{v}(E\mathrm{v}+p\mathrm{v})=\rho\oint_{S^{2}}(I-B(\theta))d\xi$,

$I_{t}+c\mathrm{d}\mathrm{i}\mathrm{v}(\xi I)=c\rho(B(\theta)-I)$ .

Here the unknowns are the density $\rho=\rho(x, t)$ of the fluid, the velocity $\mathrm{v}=$

$\mathrm{v}(x, t)\in \mathrm{R}^{3}$ , the temperature $\theta=\theta(x, t)$ , and the radiation intensity $I=$

$I(x,t, \xi)$ for $(x,t)\in \mathrm{R}^{3}\cross[0, \infty)$ and $\xi\in S^{2}$ (the 2-sphere). In (3.1), $\mathrm{d}\mathrm{i}\mathrm{v}$ is
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the usual divergence operator with respect to the spatial variable, $\otimes \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{s}$

for the tensor product, $p=p(\rho, \theta)$ is a given function denoting the pressure,

$E= \rho\epsilon+\frac{\rho}{2}|\mathrm{v}|^{2}$

with $\epsilon=\epsilon(\rho, \theta)$ a given function denoting the specific energy, $B(\theta)$ is the
Planck function, and $c$ is the speed of light.

Since the $\mathrm{b}\mathrm{a}s$ic assumptions of radiation hydrodynamics are not valid at low
. temperatures, we restrict the temperature domain to $[\theta_{0}, \infty)$ with $\theta_{0}>0$ a
constant. In this domain, the standard Planck function $B(\theta)=\theta^{4}$ is positive
and strictly increasing. Thus, we assume that

(3.2) $B(\theta)>0$ , $B’(\theta)>0$

for $\theta\geq\theta_{0}$ .
In (3.1), the energy equation has an integral-type source term. In practice

(computation) [2], the integral is often replaced with a finite sum of the form

$\sum_{l=1}^{L}c_{1}(I(x, t, \xi_{l})-B(\theta))$

with $c_{l}>0$ and $\xi\iota\in S^{2}$ for each $l$ . By setting

(3.3) $I_{l}=c_{\iota}I(x, t, \xi_{l})$ and $B_{1}(\theta)=c_{\iota}B(\theta)$ ,

we obtain the following discrete-ordinate system of $(5+L)$ equations:

$\rho_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(\rho \mathrm{v})=0$,
$(\rho \mathrm{v})_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(\rho \mathrm{v}\otimes \mathrm{v}+p\mathcal{I}_{3})=0$,

(34)
$E_{t}+ \mathrm{d}\mathrm{i}\mathrm{v}(E\mathrm{v}+p\mathrm{v})=\rho\sum_{l=1}^{L}(I_{l}-B_{\iota}(\theta))$ ,

$I_{lt}+c\mathrm{d}\mathrm{i}\mathrm{v}(\xi_{\iota}I_{l})=c\rho(B_{l}(\theta)-I_{l})$ .
This system can be rewritten as (1.1) with

$U=$ , $F_{j}(U)=$ , $Q(U)=$ .

Here $v_{j}$ is the $j^{th}$ component of velocity $\mathrm{v},$ $\xi_{l}=(\xi_{11}, \xi_{l2},\xi_{\mathrm{t}3})$ , and $\delta_{ij}$ is the
standard Kronecker delta. The state space $\mathcal{G}$ is $(0, \infty)\cross \mathrm{R}^{3}\cross(0, \infty)^{L+1}$ .
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In [13], it was shown that system (3.4) admits the structural stability con-
dition proposed in [17], under the standard thermodynamic assumption

(3.5) $p_{\rho}>0$ , $\epsilon_{\theta}>0$ .
Note that $B_{l}(\theta)$ defined in (3.3) preserves the monotonicity of $B(\theta)$ in (3.2).

Regarding the dissipative structure of (3.4), we proved in [13]:

Proposition 3.1. Assume
(3.6) $Rank[\xi_{2}-\xi_{1}, \xi_{3}-\xi_{1}, \cdots,\xi_{L}-\xi_{1}]=3$ .

If there is $a$ di $\in S^{2}$ such that $Ker(Q_{U}(U_{-}))$ contains an eigenvector of the
characteristic matrix $\sum_{j=1}^{3}\tilde{\omega}_{j}F_{jU}(U_{-})$ associated with eigenvalue $\lambda_{f}$ then $\lambda=$

$\mathrm{v}_{-}\cdot\tilde{\omega}$ .

To prove the existence of smooth shock profiles for the discrete-ordinate
system (3.4), we refer to (3.3) and assume

(3.7) $\sum_{l=1}^{L}\xi_{l}c_{l}=0$

for simplicity. Recall that

$\sum c_{l}=|S^{2}|\equiv c\kappa L$

$l=1$

with $\kappa=O(c^{-1})$ a constant. Under the assumption (3.7), the equilibrium
system is

$\rho_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(\rho \mathrm{v})$ $=0$ ,
(3.8) $(\rho \mathrm{v})_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(\rho \mathrm{v}\otimes \mathrm{v})+\nabla p=0$ ,

$(E+\kappa B(\theta))_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(E\mathrm{v}+p\mathrm{v})$ $=0$ .
This system is different from the classical Euler equations, which are (3.8)
with $\kappa=0$ .

In order to analyse its characteristic fields, we rewrite (3.8) in terms of
$(\rho, \mathrm{v}, \theta)$ :

$\rho_{t}+\mathrm{v}\cdot\nabla\rho+\rho \mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v}=0$ ,
(3.9) $\mathrm{v}_{t}+\mathrm{v}\cdot\nabla \mathrm{v}+\nabla p/\rho=0$,

$\theta_{t}+(1+\alpha)\mathrm{v}\cdot\nabla\theta+\beta(\kappa)\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v}=0$ .

Here $\alpha=-\frac{\kappa B’(\theta)}{\rho e_{\theta}+\kappa B(\theta)}$, and $\beta(\kappa)=\frac{\theta p_{\theta}}{\rho\epsilon_{\theta}+\kappa B(\theta)},$. Thus, the characteristic matrix
is

$( \mathrm{v}\cdot\tilde{\omega})\mathcal{I}_{5}+\frac{1}{\rho}(_{0}^{0}p_{\rho}\tilde{\omega}$ $\beta(\kappa)\tilde{\mu}^{T}\rho^{2}\tilde{\omega}^{T}0\alpha\rho \mathrm{v}\cdot\tilde{\omega}p_{\theta}\tilde{\omega})0$ ,

which is symmetrizable since $p_{\theta}\beta(\kappa)>0$ and has $\mathrm{v}$ . di as its eigenvalue of
multiplicity two. The rest three eigenvalues are $\mathrm{v}\cdot\tilde{\omega}+\lambda$ where $\lambda$ solves

(3.10) $\rho(p_{\rho}-\lambda^{2})(\lambda-\alpha \mathrm{v}\cdot\tilde{\omega})+p_{\theta}\beta(\kappa)\lambda=0$.
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In case $\mathrm{v}$ . $\tilde{\omega}=0,$ $\lambda=0$ is a solution (eigenvalue) to (3.10) and the
characteristic equation for the other two eigenvalues becomes

$\rho\lambda^{2}=\rho p_{\rho}+p_{\theta}\beta(\kappa)$ .

Thus these two non-zero eigenvalues are isolated for the system of conser-
vation laws (3.8). In addition, by using (3.10) it is easy to verify that the
corresponding characteristic fields are both genuinely nonlinear near $\mathrm{v}=0$ .
We write the two isolated eigenvalues as $\lambda_{k}(U)$ with $k\in\{1,5\}$ , which are
well defined in a neighborhood of $\mathrm{v}=0$ .

Now we solve the Rankine-Hugoniot relation (2.3) for the system of con-
servation laws (3.8). In doing so, we obtain two shock curves $(s_{k}(\delta), u_{k}(\delta))$

defined for $\delta$ close to zero. Moreover, $s_{k}(\delta)$ is strictly increasing (entropy
inequality). Thus, for $\delta<0$ , the system of conservation laws (3.8) has two
families of shock wave solutions of the form:

$u(x, t)=\{_{u_{k}(\delta)}^{u_{-}}’$

,

$\omega:x<s_{k}(\delta)t\omega x>s_{k}(\delta)t’$

.

If $(\mathrm{v}_{-}\cdot\omega+\lambda_{k}(U_{-}))$ is not an eigenvalue of the discrete-ordinate system (3.4),
we know from Theorem 2.1 that the structural stability condition ensures the
existence of a smooth profile for all $\delta$ close to and less than zero.

Next we assume that $\mathrm{v}_{-}=0$ and $\lambda_{k}=\lambda_{k}(U_{-})$ is an eigenvalue of the
discrete-ordinate system (3.4). Then it follows from $\lambda_{k}\neq 0$ and Proposition
3.1 that

$\mathrm{K}\mathrm{e}\mathrm{r}(Q_{U}(U_{-}))\cap \mathrm{K}\mathrm{e}\mathrm{r}(\sum_{j=1}^{3}\omega_{j}F_{jU}(U_{-})-\lambda_{k}\mathcal{I}_{5})=\{0\}$.

Moreover, since
$\rho\lambda_{k}^{2}=\rho p_{\rho}+p_{\theta}\beta(\kappa)\neq\rho p_{\rho}+p_{\theta}\beta(0)$,

$\lambda_{k}$ can only be some of the constant eigenvalues $c\xi_{l}\cdot\omega$ for the discrete-ordinate
system. Let $\lambda(U)$ be any eigenvalue for the system, which is equal to $\lambda_{k}$ at
$U=U_{-}$ . Then $\lambda(U)$ is constant for $U$ close to $U_{-}$ . Thus, condition (h4) is
verified.

In conclusion, we deduce the following result from the general theory de-
veloped in $[19, 3]$ .

Theorem 3.2. Under the physical assumptions (3.2) and (3.5), under the
discretization conditions (3.6) and (3.7), let $\mathrm{v}_{-}=0$ . Then for each $k\in\{1,5\}$

and for each $\delta$ close to and less than zero, the discrete-ordinate system (3.4)
has a smooth traveling wave solution $\phi(x-s_{k}(\delta)t)$ connecting U-on the lefl
to $U_{+}:=(_{h(u_{k}(\delta))}^{u_{k}(\delta)})$ on the $r’ ight$. $Mo$reover, $\phi(\sigma)$ converges exponentially

to its end-states as $\sigma$ goes $to\pm\infty$ .
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