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In this paper, it is considered a large-time behavior of solutions to the isentropic and com-
pressible Navier—Stokes equations in a half space. Precisely, we obtain a convergence rate
toward the stationary solution for the outflow problem. In §1, we consider the one dimen-
sional half space problem. For the supersonic flow at spatial infinity, we obtain an algebraic
or an exponential decay rate. Namely, if an initial perturbation decays with the algebraic or
the exponential rate in the spatial asymptotic point, the solution converges to the corresponding
stationary solution with the same rate in time as time tends to infinity. An algebraic conver-
gence rate is also obtained for the transonic flow. In §2, we study the same problem in a two
dimensional half space and obtain the algebraic and exponential convergence rate toward the
planar stationary wave for the supersonic flow. .

1. ONE DIMENSIONAL HALF SPACE PROBLEM

1.1. Main results. This section is devoted to consider an asymptotic behavior of a solution to
the initial boundary value problem for the compressible Navier-Stokes equation in one dimen-
sional half space R := (0,c). We especially study a convergence rate toward a corresponding
stationary solution for the problem in which fluid blows out through a boundary. An isentropic

or isothermal model of the compressible viscous fluid is formulated in the Eulerian coordinate
as

pr+(pu)x =0, (1.1a)
(pw)e + (P + p(P))x = Hitr. (1.1b)

In the equations (1.1), x € Ry and # > 0 mean a space variable and a time variable, respectively.
The unknown functions are a mass density p(x,) and a fluid velocity u(x,#). A constant y is
. called a viscosity coefficient. A pressure p(p) is given by p(p) = KpY where K >0 and y > 1
are constants. The initial condition is prescribed by

(p,u)(0,x) = (po,u0)(x), (1.2a)
Jim (po, u0) (x) = (P+,4+), of Po(x) >0, pi >0, (1.2b)
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where p, and u, are constants. The main concern of the present paper is a phenomena in which
the gas brows out from the boundary. This is called an outflow problem in [6]. Thus, we adopt
a Dirichlet boundary condition

u(t,0) =u, < 0. (1.3)
Note that only one boundary condition (1.3) is necessary and sufficient for the wellposedness of
this problem since the characteristic u(z,x) of the hyperbolic equation (1.1a) is negative around
the boundary {x = 0} due to the condition (1.3).

It is shown in the paper [4] that the solution to the problem (1.1), (1.2) and (1.3) converges to
the corresponding stationary solution as time tends to infinity. Here we summarize the results
in [4]. The stationary solution (3, #)(x) is a solution to the system (1.1) independent of a time
variable ¢, satisfying the same conditions (1.2b) and (1.3). Therefore, the stationary solution
(p,#) satisfies the system of equations

(pit)x =0, (1.4a)
(B2 + p(P))z = it (1.4b)

and the boundary and the spatial asymptotic conditions
#(0) = uy, lim(B,d)(x) = (ps+,u+), Jnf p(x) > 0. (1.5)

To summerize the solvability result for the problem (1.4) and (1.5), define c; and M, be a
sound speed and a Mach number at the spatial asymptotic states, respectively. Then they are

given by
- u
= VP (ps) = \/¥Kpl™, M, = g
+

Lemma 1.1 ([4]). There exists a constant w, such that the boundary value problem (1.4) and
(1.5) has a unique smooth solution (p, i) if and only if
' uy <0, M, >1andweuy > uy. (1.6)

If M, > 1, there exist positive constants A and C such that the stationary solution satisfies the
estimate

la)f(ﬁ(x) - p+,ﬁ(X) - u+)l S Case-—lx for k= 0, 1a21 T (173)
" where 85 := |uy — u|. If My = 1, the stationary solution satisfies
‘ ’ 55k+1
19 (B (x) — po,di(x) —uy )| < Cm—)—kﬁ Jor k=0,1,2,---, (1.7b)

where C is a positive constant.

In Lemma 1.1, the constant w, is determined as follows. For the case M, > 1, w, is one root
of the equation KpJ (we ’ — 1) + p+12 (we — 1) = 0 satisfying w, > 1. For the case M} = 1, w,
is equal to 1.

The asymptotic stability of the stationary solution is proved by Kawashima, Nishibata and
Zhu in [4]. Thus, the main purpose of the present section is to investigate the convergence rate
of the solution (p, ) toward the the stationary solution (p,#) under the assumption that the
initial perturbation decays exponentially or algebraically fast in the spatial direction.
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" Theorem 1.2. Suppose that the condition (1.6) hold. In addition, the initial data (py,uo) is
supposed to satisfy the condition

(po ——ﬁ,uo—ﬁ) EHl (R+)7 (pOauO) € gl+d(R+) X ‘%2+6(R+)

for a certain constant ¢ € (0,1) and the condition ||(py — p,uo — #)||1 + 8 < & for a certain
positive constant g.

(i) Suppose that My > 1 holds. If the initial data satisfies (1+x)%/2(po — p), (1 +x)%/2(ug —
#) € L*>(R,.) for a certain positive constant a,, then the solution (p,u) to (1.1), (1.2) and (1.3)
satisfies the decay estimate

(P, u)(e) — (B, )|l < C(1+£)~%/2, (1.8)

On the other hand, if the initial data satisfies e$/2%(py — p), /2% (yo — i) € LA(R,) for a
certain positive constant {, then there exists a positive constant o, such that the solution (p,u)
to (1.1), (1.2) and (1.3) satisfies

l(p,u)(¢) — (B, @)l < Ce™". (1.9)

(ii) Suppose that M, = 1 holds. There exists a positive constant €y such that if the initial
data satisfies ||(1+x)%/%(po— p,ug — ) ||1 < & for a certain constant o satisfying & € [2,*),
. where a* is a constant defined by '

* * __ 4 *
ot (a*—-2) = g and a* >0, (1.10)
then the solution (p,u) to (1.1), (1.2) and (1.3) satisfies
1(p,#)(®) = (B, @)l < C(1+1)7/4, (1.11)

Remark 1.3. We see that the convergence rate (1.11) for the transonic flow is not as fast as
the supersonic flow. Moreover, we assume the condition a < o*, which is necessary for the
derivation of the weighted estimate (1.31). Also, this type of assumption is used in [7] for the
analysis of the convergence rate toward the traveling wave for a scalar viscous conservation law.
It is still open problem whether the assumption & < a* can be removed or not.

Related results. For the one dimensional half space problem to the compressible Navier-Stokes
equation, Matsumura in [6] expects that the asymptotic states of the solutions are classified
into more than twenty cases subject to the boundary condition and the spatial asymptotic data.
Several problems in this classification have been already studied. For example, Matsumura
and Nishihara in [8] consider the case when the asymptotic state becomes one of stationary
. solutions, rarefaction waves and superposition of them for the inflow problem. The research [4]
by Kawashima, Nishibata and Zhu shows the asymptotic stability of the stationary solution for
the outflow problem. Following [4], the present paper investigates the convergence rate toward
the stationary solution for the outflow problem.
For the multi-dimensional half space problem, Kagei and Kawashima in [1] study the outflow
problem and prove the asymptotic stability of a planar stationary wave. Recently, the authors
have obtained the convergence rate for this problem. This result also will be published soon.
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Notations in the present section. For a non-negative integer / > 0, H*(R,) denotes the /-
th order Sobolev space over R in the L? sense with the norm |- ||;. We note H® = L? and
Il :== |l - llo. The norm | - ||.. means the L=-norm over R... For & € (0, 1), ***(R..) denotes
the Holder space of bounded functions over R which have the k-th order derivatives of Hélder
continuity with exponent . Its norm is |- |41o. For a domain Or C [0,T] x R, 2*B(0r)
_denotes the space of the Holder continuous functions with the Holder exponents o and 8 with
respect to ¢ and x, respectively. For integers k and /, BB (Qr) denotes the space of the
functions satisfying dju, o{u € B%P(Qr) for arbitrary integers i € [0,k] and j € [0 . We
abbreviate B*+2/+B([0,T] x R, ) by BLT%F

1.2. A priori estimate. In this subsection, we derive the a priori estimate of the solution in the
H' Sobolev space. To this end, we define the perturbation (¢, y) from the stationary solution
as

(0, w)(#,%) = (p,u)(t,x) — (B, ) (x)- (1.12)
Due to (1.1) and (1.4), we have the system of equations for (¢, y) as
@+ u@s+ pYe = — (@ + Pry), (1.13a)
PV +puys+P'(P)0x — Vix = — (@Y + 0+ py)idx— (p'(p) — P'(B))Ps.  (1.13b)
The initial and the boundary conditions to (1.13) are derived from (1.2a), (1.3) and (1.5) as

(9, ¥)(0,x) = (9o, Wo) (x) := (po, o) (x) = (B, &) (x), (1.14)
w(t,0) =0. (1.15)
- To obtain the weighted energy estimates, we use the norms |- |2, o, || - ||a, and || - ||e,a defined

by
fl2,0= {/oww(x)f(x)zdx}l/z, IAlee = fl2,a+ne  Mfllea :=1f12,e0x.

1.2.1. Supersonic flow. we first derive the weighted energy estimate of the solution for the case
when M, > 1 holds. To summarize the a priori estimate, we use the following notations for a
weight function W (¢,x) = x(¢)@(x) until the end of this subsection:

N = s (0. ¥)(Ol, (1.16)
M= [ 1) (1@ + 1D} + 0(2,07) dr, w1

102 = [ 1) (0 W) OBo+ (o)D)
20 (VOB o +1 @ WO ) d7. (118)

Proposition 1.4. Suppose that M, > 1 holds. Let (¢, y) be a solution to (1.13), (1.14) and

(1.15) satisfying (¢, w) € C([0,T); H'(R4.)) and (¢, ¥) € .@HG/Z I+o %’;4'0/2 20 for a cer-
 tain positive constant and T.
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(i) (Algebraic decay) Suppose that (1+x)%/%(,w) € C([0,T];L3(R.)) holds for a certain
positive constant o.. Then there exist positive constants € and C such that if N(T) + 8 < &,
then the solution (@, ) satisfies the estimate

(1+f)°‘+£|i(¢,w)(t)li%+/ot(1+T)°‘+E(H<Px(f)ll2+wa(f)ll?+l((P,fpx)(T,O)lz)dT

< C(II(@0, wo) I + 1l (00, W) 12 (1 +1)8 (1.19)
- for arbitraryt € [0,T] and € > 0.

(i) (Exponential decay) Suppose that e\*/2*(p,y) € C([0,T);L*(R..)) for a certain positive
constant {. Then there exist positive constants &), C, B (< §) and a satisfying o < B such that
if N(T) + 85 < &, then the solution (@, y) satisfies

(@O R+ 1@ VOIER) + [ e (lo I + () +1(0,06) (£ 0P) a7

+ [ e (10, DI+ WD 5) 45 < CCl 0, o) B + (00, W0IZ). (120)

To prove Proposition 1.4, we first derive the basic energy estimate. To this end, we define an
energy form &, as in [4], by

1 ) s
N 571 ( P =g _/ -7
£ 2|y2+Kp a)(p), o(s):=s—1 : n~'dn. (1.21)

Owing to Proposition 1.1, we see that the energy form & is equivalent to |(@, y)|2. Namely,
there exist positive constants ¢ and C such that

(0 +v?) < € <C(@*+ ). (1.22)
We also have positive bounds of p as
0<c<pltx) <C. (1.23)

Lemma 1.5. Suppose that the same assumptions as in Proposition 1.4 hold. Then there exists
a positive constant & such that if N(T) + 8s < &, it holds that

X1 @WOBa+ [ D@ W)OB o+ W08 0+ 0(5,07) do

< Cl(@o, ¥0)I3,0+CL()*. (1.24)

Next, we obtain the estimate for the first order derivatives of the solution (@, y). As the
existence of the higher order derivatives of the solution is not supposed, we need to use the
difference quotient for the rigorous derivation of the higher order estimates. Since the argument
using the difference quotient is similar to that in the paper [4], we omit the details and proceed
with the proof as if it verifies

(@,¥) € C(10, T H(R4)), @ € L*(0, T;H'(R+)), Yx € L2(0, T3 HA(Ry)).
Lemma 1.6. There exists a positive constant &y such that if N(T) + 8s < &, then
XON@OP+ [ 2@ 1oL+ 1¥in(DIP + 94(5,0)%) dt
< C(ll(@oxs o) I + (@0, W0) 13, ) + CL(£)> + C(N(#) + 85)M(£)2. (1.25)
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Summing up the estimates (1.24) and (1.25), and taking N(T') + &5 suitably small with the
aid of the Poincaré type inequality

o6, x)[ < [o(2,0)| + V|l @x (1)l (1.26)
which is proved by the similar computation as in [3, 9], we get the estimates (1.19) and (1.20).

1.2.2. Transonic flow. This subsection is devoted to prove the algebraic decay estimate for the
transonic case M, = 1 in Theorem 1.2. To state the a priori estimate of the solution precisely,
we use the notations:

M) = e (1 +x)%0,(1+x)*2y)(D)1,

M0 1= [ (1+0F (0n, e W) (D2 p .

Proposition 1.7. Suppose that M, = 1 holds. Let (@,y) be a solution to (1.13), (1.14) and
(1.15) satisfying (1+x)%/2(¢, w) € C([0, T}; H'(R+)) and (@, v) € Br0/H119 « gglto/t2+e
Jor certain positive constants T and o, € 2, a*), where o* is defined in (1.10). Then there exist
positive constants € and C such that if N\(T) + 8s < &, then the solution (@, y) satisfies the
- estimate

A+0% (@, )l + [ (1452 (g + sl +1(0, 9)(5,0)) e

< CJl (90, Vo, Pos, Vo) 2.6 (1 +0)°. (1.27)
In order to prove Proposition 1.7, we need estimates for # and the Mach number A7 on the
stationary solution (J,#) defined by

~

M(x) := i) (1.28)

VP Bx)

Lemma 1.8. The stationary solution ii(x) and the Mach number M(x) satisfy

; up 12 & _4Dps g
ux(x) _>_ A(ub) m, A= 2[1, s B:= SSA, (1.29)
2
rtl & o & _pryo1<c-S (1.30)

2luy|14+Bx  ~ (1+Bx)? 1+ Bx

Jor x € (0,00).
By using Lemma 1.8, we obtain the weighted L? estimate of (@, y).

Lemma 1.9. There exists a positive constant &y such that if N\(T) + s < &, then

A+08 @ W)+ [ (149 (905,07 + BRI(0,WIEpo-+ sl )

<o w)IZg+CE [ (14080, WIRpdr+Cos [ 1+ DflgulPdr (131)
for Be[0,a]and & > 0.

127



Next, we obtain the weighted estimate of (@, yx).

Lemma 1.10. There exists a positive constant & such that if Ny (T) + 8s < &), then
t
(1+0)%1l(ge, W) 25+ /0 (14+ )% (0x(7,0)* + 1| (@, W) (D) [12 5) A

. t
< Cll(@o, Yo, Pox, Wox) |12 g + CE /0 1+ 257 (e, v, 06, W) (D)2 g d7 (1.32)
Jor Be[0,a)and & > 0.

By the same inductive argument as in deriving (1.19), we can prove Proposition 1.7 which
immediately yields the decay estimate (1.11).

2. TWO DIMENSIONAL HALF SPACE PROBLEM

2.1. Main results. In this section, we consider the compressible Navier-Stokes equation in the
two dimensional half space R2 := R xR,
pr +div(pu) =0, (2.1a)
plu+ (u-Vyu} = mAu+ (u + p2)V(divu) — Vp(p). (2.1b)
In this equations, (x,y) € R2 is a space variable. The unknown functions are p and u = (u1, u3).
The constants y; and p, are viscosity coefficients satisfying u; > 0 and y; + g > 0. We put
the initial condition
. (p,u)(O,x,y) = (pOauO)(xay) (22)
and the outflow boundary condition

u(t,0,y) = (uy,0), (2.3)

where up, < 0 is a constant. We also assume that the spatial asymptotic state in a normal direction
of the initial data is a constant:

Jlim po(x,y) = p+ >0,  lim ug(x,y) = (u4,0). 24)

In the present section, we investigate a convergence rate toward the planar stationary wave under
the assumption that the initial perturbation decays in the normal direction.

The planer stationary wave (p(x),#(x)) is a solution to (2.1) independent of y and ¢. More-
over, we also assume that # is given by the form # = (#;,0) and that (5(x),##(x)) satisfies the
boundary condition (2.3) and the spatial asymptotic condition (2.4). Therefore, (3,i) is given
by the solution to the following boundary value problem:

(Piy)x =0, (2.52)
(i} + p(P))x = Mil1xs, (2.5b)
#(0) =up, Lim(p(x),d1(x)) = (p+,u+), xieg{ﬁ p(x) >0, (2.6)

. where p > 0 is a constant defined by u := 2u; + up. Since the problem (2.5) and (2.6) has
a same form to the problem (1.4) and (1.5), we can apply the solvability lemma 1.1 to the
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problem (2.5) and (2.6). Thus, under the condition (1.6), there exists a unique solution (p,#; ).
Moreover, (§,) satisfies the estimate (1.7a) for the case M, > 1.

For the multi-dimensional half space problem, Kagei and Kawashima prove an asymptotic
stability of the planar stationary wave under the smallness assumptions on the initial pertur-
bation and the shock strength 5. The main purpose of the present section is to obtain a
convergence rate of solutions toward the planar stationary wave by assuming that the initial
perturbation decays in the normal direction.

Theorem 2.1. Suppose that the conditions M. > 1, (1.6) and ||(po — p,up — @) ||z + 85 < &
hold for a certain positive constant .

(i) If the initial data satisfies (po — p,uo — i) € L% (R2 ) for a certain constant 0. > 0, then the

“ solution (p,u) to the initial boundary value problem (2.1), (2.2) and (2.3) satisfies the estimate

(o, w)(t) — (B, @)1~ < C(1+1)7/271/4, @.7)

(ii) If the initial data satisfies (po — p,uo — ii) € L2¢ (R2.) for a certain positive constant {, then
there exists a certain positive constant o such that the solution (p,u) to the initial boundary
value problem (2.1), (2.2) and (2.3) satisfies the estimate

1(p,u)(t) = (B, ) ||~ < Ce™*. 2.8)

Notations in the present section. For a constant o € R, the space L2, (]Ri) denotes the algebraic
weighted L? space in the normal direction defined by L2(R%) := {u € L3 (R2) ; |u|a < =}
equiped with the norm

el =g = ([, +x) ()P dsdy) -

The space L2%(R?% ) denotes the exponential weighted L2 space in the normal direction defined
by L2%(R%) := {u € L} (R%) ; ||u|lj2« < =} equiped with the norm

loc
fullza = ([, e lute)Pavas) "

2.2. A priori estimates. To prove Theorem 2.1, we obtain the a priori estimates of the pertur-
bation in H? and weighted L? spaces. To this end, we employ the perturbation (¢, ) by

(0, ¥)(t,%,) := (p,u) (t,%,y) — (B, ) (x)-

Owing to equations (2.1) and (2.5), the perturbation (@, ) satisfies the system of equations
¢ tu-Vo+pdivy=f, (2.92)

plvi+(u-V)y}-Ly+p'(p)Vo =g, (2.9b)

where
Ly = Ay + (1 + 12)V(divy),
fi=—divig-Vp-y,
g=—p(y-V)i—o(a-V)i- (' (p) - P'(B))VA.
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The initial and the boundary condition for (¢, y) are prescribed by
(0, ¥)(0,%,y) = (0, Wo)(x,) := (po, u0) (x,y) = (B, @) (x), (2.10)
v(,0,) =0. (2.11)

To summerize the a priori estimate for (¢, ), we introduce the following notations for £ =0, 1:

4 o 1/2
Ni() = sup Bi(s), Edlt)= (2‘3 a +t>fmayf¢<t>|n%_,-) ,
<T<t Jj=

¢ 2= 3= - 1/2
Du) = { S0+ (3 o+ 3 WO+ X V3 00lolliy )}
=0 i=1 i=1 i=0

where @ := (¢, y) and @y := (o, yo). We also define || - ||| and |[-]|m by

1/2

m 1/2 {m/2] /
el = (zuun%) il :=( k_zouv'"—zkafuw) ,

i=0
" where [x] denotes the greatest integer which does not exceed x.

Proposition 2.2. Suppose that M, > 1 holds. Let (¢,y) be a solution to (2.9), (2.10) and
(2.11) satisfying (9, ) € C([0,T] ; H*(R..)) for a certain positive constant T.

(i) (Algebraic decay) Suppose that (p,y) € C([0,T)] ; L%(R2%)) holds for a certain constant
0 > 0. Then there exist positive constants € and C such that if Ny (t) + 8s < &, then the solution
@ = (0, y) satisfies, for arbitrary t € [0,T), A € [0,a] and € > 0,

1+ @0 Ry + [ (140 {(@=DISDE +IVY (D, }de
F UM+ [ (149470 (02dr < C(1Bofk + [@0l3e) (140, @.12)

(ii) (Exponential decay) Suppose that (@, y) € C([0,T] ; L*¢(R2)) holds for a certain positive
constant . Then there exist positive constants &, C, B (< {) and a satisfying a < B such
that if No(t) + s < &, then the solution ® = (@, y) satisfies, for arbitrary t € [0,T),

e (| (1)]|,5 + Eo(1)?) + ’e“'(na>(r>uiz,p + [V (2)|2,6 + Do(1)?) dz
0
<C(lIPoli2p + | Dol2n).  (2.13)

Since the derivation of (2.13) is almost same to that of (2.12), we only show the key lemmas
to obtain the a priori estimate (2.12).

First, we derive the time weighted L%, estimate for B € [0, a]. To do this, we introduce an
energy form &, in the same way to (1.21), by

= Le 571 é ms—1— [ -7
é".—zlwl +Kp w(p), o(s) =51 /;n dn.

Using & and a weighted energy method, we obtain the estimate in Lf, space.
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Lemma 2.3. There exists a positive constant € such that if N\ (t) + 8 < &, then it holds that
t
(1408100 + [ (140 (BIOE_, +VY(®) B +19(Dlemola) 47

t t
< Cl@yf}+CE /0 (14750 (2) 3 dz + Cds /0 (1+0%|[Vo(r)|2dr  (2.14)
for arbitrary constants B € [0, 0] and & > 0.

. To complete the proof of derivation of (2.12), we need to obtain estimates for the higher order
derivatives. Namely, we get a time weighted H? estimate.

Lemma 2.4. There exists a positive constant € such that if Ny (t) + 8 < &y, then it holds that

(1+08E () + /0 (14 1)8Dy(r)2de

Z s .
<Cll+C Y E+)) [ 1+ IFe@IR dr @19)
j=0

for£=0,1and & > 0.

Summing up the estimates (2.14) and (2.15), and taking N (¢) + &g suitably small with the aid
of the induction for B and £, we obtain Proposition 2.2. Moreover, using the Sobolev inequality

1/4
|®lle- < C(I @] @l @l @),
we get the decay estimate in Theorem 2.1.
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