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Moduli space of polynomial maps

"Toshi Sugiyama
Department of Mathematics, Kyoto University

In the study of the dynamics of a polynomial map f, the eigenvalues of the
fixed points of f play a very important role to characterize the original map f.
In this paper, we shall study how many affine conjugacy classes of polynomial
maps are there when the eigenvalues of their fixed points are specified.

For a natural number d with d > 2, we denote the moduli space of
polynomial maps of degree d by

Py:={f e Cls] | degf = d} /~,

where ~ denotes the affine conjugacy of polynomial maps, i.e., for f, g € C|z],
f ~ g holds if and only if there exists an affine transformation v(2) = az +b
(a,b € C, a # 0) such that f =yogo~y~!. We put

Fix(f) := {¢ € C| F(¢) = ¢}

for f € C[z], where Fix(f) is considered counted with multiplicity. Hence we
always have # (Fix(f)) = deg f.

Proposition 1 (Fixed point theorem). Let d be a natural number with d > 2
‘and suppose that a polynomial map f € P4 has no multiple fized point. Then

we have the equality .

2 T ="

¢€Fix(f)

We define the parameter spaces
Ag = {(Al, ce ,-/\d) e , Z:'Ll Hj;éi (1 - AJ) = 0}

and Kd := Ag/Bq4, and dsnotel)y pr the projection map pr: Ay — Xd. We
can define the map ®,: P; — Ay by

fe(f ’(C))(eFix(f) .
The aim of this paper is to analyze the structure of the map ®,.

Theorem 2. In the case d = 2 or 3, the map ¥, is bijective.



This theorem is well-known and easy to prove. By this theorem, polynomial
maps f € P; are completely parameterized by their fixed-point eigenvalues
in the case d = 2 or 3. Historically, making use of this parameterization,
John Milnor [2] started to study complex dynamics in the case of cubic
polynomials.

In the main theorems of this paper, we investigate the map ®, ford > 4 in
detail on the domain where polynomial maps have no multiple fixed points.
We prepare two more symbols:

Vii= {()\1,...,)\4) € Ag | i # 1 for any 1 Sisd},
Vy:=Vy/Sa.
We denote by A the equivalent class of A € A4 in .7\:4.

Main Theorem 1. Let d be a natural number with d > 4, and suppose that
A= (A1,...,Aq) 18 an element of V;. Then

1. we always have the inequalities 0 < # (®7'(2)) < (d—2)!.

2. The cardinality # (®7'())) is computed in finite steps from the two
combinatorial data

1
21—_:\;’"’}’

I = {Ig {1,2,...,d}
iel

K\ :={K C{1,2,...,d}|i,j € K= X =\;}.

8. If I(A) C IZ(X) and K(A) C K(X) for A, X € V4, then we have
#(27° (V) 2 # (87'(V).
4. The equality # (27 (2)) = (d — 2)! holds if and only if Z()) = 0 and

A1,...,Ad are mutually distinct.
5. If there exist ¢,...,cqa € Z\ {0} such that Zle leil < 2(d —2) and
i—:‘;;:u-:i—_l,\—;:cl:---:cd,thenwehave@;l()\)=0. |

6. In the case d < 7, the converse of the assertion 5 holds.

We are recently informed that Masayo Fujimura [1] also has studied the
similar theme as Main Theorem 1 independently. She completely studied the
map P, for d = 4, and showed that ®, is not surjective for d > 4.

The local fiber structure of the map ®, is also determined by the combi-
natorial data Z(A) and KC()).
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Main Theorem 2.

1. For any \, X € Vg with I(\) = Z(X) and K()) = K(X), there ez-
ist open neighborhoods U 3 A, U’ 3 A’ in V; and biholomorphic maps
£:8;'(0) » &;*(0"), L: U - U and L : U —» U’ such that the
following conditions (1a) and (1b) are satisfied, where U, U’ are the con-
nected components of pr~2(U), pr~(U') containing A\, X' respectively.

(a) The equalities ®40 £ = Lo®, and pro L =L o pr hold.
(b) For any X' € U, the equalities TZ(\") = I(L()\")) and K(X") =
K(L(XN")) hold.

2. For each combinatorial data T, K C {I | I C {1,...,d}}, we define the
parameter subspaces

V(EK) = {Xe Vi A€ Vs Z(N) =T and K(3) = IC}
V(L) ={leVi| eV, I(A)=I}

and
VK ={3eVi|xe Vi KN =1c}.
Then for any Z,K C {I | I € {1,...,d}} we have the following:
(a) the map Ralg-1 (7)) &7 (V (Z,%)) = V (T, #) is proper.
(b) The map Palaz1(viux) : @51 (V (%,K)) = V (%, K) is locally home-
omorphic.
(c) For each connected component X of ®;' (V (Z,K)), the map
®;|x : X = V (Z,K) is an unbranched covering.

To state the computation of # (@;1(5\)) explicitly, we prepare the defini-
tion.

Definition 3. Let A = ()Ay,..., Ad) be an element of V5. Then

e we define the set
I1II III; {1,...,d}
:}(A) o {Ilau.-)Il} I #ﬂforanyls'u,Sl s
1>2

where I; I1 - - - II I; denotes the disjoint union of I;,...,I;. Note that
J()) is completely determined by Z()). The partial order < in J(}) is
defined by the refinement of sets.
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e We denote by Ki,..., K, the collection of maximal elements of X(A).
Note that the equality Ky Il ---II K, = {1,...,d} holds. We put
kw = #(Ky) for 1 < w < ¢ and denote by g, the greatest common
divisor of K1,...,Kw—1,Kw — 1, Kywt1,..., &g for 1 <w < q.

e We put B(N) := =5 for s € C\ {1}.
e We may assume )\ to be in the form
/\= /\1,.;.,/\1,...,/\q,...,/\q),
) S-S
[} Kq

where )y,..., A, are mutually distinct. For each 1 < w < ¢ and for
each divisor ¢ of g, with ¢t > 2, we put d(t) := i}-l- + 1 and denote by
A(t) the element of Vg such that

MO 1= (BB, ... B (B, -,

BB, -+, BB s BB, -, B (EBOD), M)

Note that Z(\(t)) is completely determined by Z(\), K()) and t.

Main Theorem 3. Let A = ()y,..., ) be an element of V4. Then the
cardinality # (877 ())) is computed in the following steps.

e For eachI={I,...,I;}} € 3()\), we define the number ex(\) satisfying
the equality

l : ! #(1u)—1
e() = (H(#(Iu)—l)!)— > (en'(/\%H( I1 k))

u=1 T € 3(X) u=1 \ k=#(lu)—xu(I)+1
Vy»1,1#1

where we put xo(I) :=# ({I' e'|I' C 1, }) for I' = L.
o We define the number s4()\) to be

| d—2
sd(/\) = (d-— 2)! - Z (e](/\) y H k) .

Tea(\) k=d—#(I)+1



o For each 1 < w < q and for each divisor t of g, with t > 2, we define
the number c,()\) satisfying the equality

t sd(t)()\(t))
= cp(A) = :
t.,,:w”" ()1 (o)) (=t )y (e (%))

where t|b denotes that t divides b. Moreover we define the number c;())
satisfying the equality

Sd/\
+Z(Z ct('\)) 751—‘(—)/5;_'

w=1 \t|gw, t>2

o Then the numbers ey()), sd(A) and ¢c;(\) are non-negative integers. More-
over we have

# (23" (V) Eq (A)+i( ) ct(A)).

1D=1 |g‘wa t22

References

[1] Fujimura, Masayo. Projective moduli space for the polynomials. To
appear in Dynamics of Continuous , Discrete and Impulsive Systems

[2] Milnor, John. Remarks on iterated cubic maps. Ezperiment. Math. 1
(1992), no. 1, 5-24.

154



