<table>
<thead>
<tr>
<th>Title</th>
<th>Simultaneous linearization and its application (Complex Dynamics and its Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawahira, Tomoki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2007, 1537: 143-149</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59026</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Simultaneous linearization and its application

Tomoki Kawahira (川平友規)
Graduate School of Mathematics
Nagoya University

Abstract

This note gives a proof of Ueda's simultaneous linearization theorem with real multipliers and its simple application to quadratic dynamics. This note is based on my talk at RIMS on 5 October 2006, titled "A proof of simultaneous linearization with a polylog estimate."

1 Simultaneous linearization

Here we give an alternative proof of Ueda's simultaneous linearization in a simplified setting. For $R \geq 0$, let E_R denote the region $\{z \in \mathbb{C} : \text{Re } z \geq R\}$.

Theorem 1.1 (Simultaneous Linearization) For $\epsilon \in [0,1]$, let $\{f_\epsilon\}$ be a family of holomorphic maps on $\{|z| \geq R > 0\}$ such that

$$f_\epsilon(z) = \tau_\epsilon z + 1 + O(1/z)$$
$$\rightarrow f_0(z) = z + 1 + O(1/z)$$

uniformly as $\epsilon \rightarrow 0$ where $\tau_\epsilon = 1 + \epsilon$. If $R \gg 0$, then for any $\epsilon \in [0,1]$ there exists a holomorphic map $u_\epsilon : E_R \rightarrow \mathbb{C}$ such that

$$u_\epsilon(f_\epsilon(z)) = \tau_\epsilon u_\epsilon(z) + 1$$

and $u_\epsilon \rightarrow u_0$ uniformly on compact sets of E_R.
Indeed, a similar theorem holds for any radial (= non-tangential) convergence \(\tau_{\epsilon} \to 1 \) outside the unit disk. See Ueda's original proof ([Ue1], [Ue2]). Moreover, the error term \(O(1/|z|) \) can be replaced by \(O(|z|^{-\sigma}) \) with \(0 < \sigma \leq 1 \). (See [Ka2].) Here we present a simplified proof only for real \(\tau_{\epsilon} \to 1 \) based on the argument of [Mi, Lemma 10.10]. The idea can be traced back at least to Leau's work on the Abel equation [L]. We first check:

Lemma 1.2 If \(R \gg 0 \), there exists \(M > 0 \) such that \(|f_{\epsilon}(z) - (\tau_{\epsilon}z + 1)| \leq M/|z| \) on \(\{|z| \geq R\} \) and \(\text{Re} f_{\epsilon}(z) \geq \text{Re} z + 1/2 \) on \(E_{R} \) for any \(\epsilon \in [0,1] \).

Proof. The first inequality and the existence of \(M \) is obvious. By replacing \(R \) by larger one, we have \(|f_{\epsilon}(z) - (\tau_{\epsilon}z + 1)| \leq M/R < 1/2 \) on \(E_{R} \).

Then \(\text{Re} f_{\epsilon}(z) \geq \text{Re}(\tau_{\epsilon}z + 1) - 1/2 \geq \text{Re} z + 1/2 \).

Let us fix such an \(R \gg 0 \). Next we show:

Lemma 1.3 For any \(\epsilon \in [0,1] \) and \(z_{1}, z_{2} \in E_{2S} \) with \(S > R \), we have:

\[
\left| \frac{f_{\epsilon}(z_{1}) - f_{\epsilon}(z_{2})}{z_{1} - z_{2}} - \tau_{\epsilon} \right| \leq \frac{M}{S^{2}}.
\]

Proof. Set \(g_{\epsilon}(z) := f_{\epsilon}(z) - (\tau_{\epsilon}z + 1) \). For any \(|z| \geq 2S \) and \(w \in B(z,S) \), we have \(|w| > S \). This implies \(|g_{\epsilon}(w)| \leq M/|w| < M/S \) and thus \(g_{\epsilon} \) maps \(B(z,S) \) into \(B(0,M/S) \). By the Cauchy integral formula or the Schwarz lemma, it follows that \(|g_{\epsilon}'(z)| \leq (M/S)/S = M/S^{2} \) on \(\{|z| \geq S\} \). Now the inequality easily follows by:

\[
|g_{\epsilon}(z_{1}) - g_{\epsilon}(z_{2})| = \left| \int_{[z_{2},z_{1}]} g_{\epsilon}'(z)dz \right| \leq \int_{[z_{2},z_{1}]} |g_{\epsilon}'(z)||dz| \leq \frac{M}{S^{2}}|z_{1} - z_{2}|.
\]

(Note that the segment \([z_{2}, z_{1}]\) is contained in \(E_{2S} \subset \{|z| \geq 2S\}\).)

Proof of Theorem 1.1. Set \(z_{n} := f_{\epsilon}^{n}(z) \) for \(z \in E_{2R} \). Note that such \(z_{n} \) satisfies

\[
|z_{n}| \geq \text{Re} z_{n} \geq \text{Re} z + \frac{n}{2} \geq 2R + \frac{n}{2}
\]

by Lemma 1.2. Now we fix \(a \in E_{2R} \) and define \(u_{n,\epsilon} = u_{n} : E_{2R} \to \mathbb{C} \) \((n \geq 0)\) by

\[
u_{n}(z) := \frac{z_{n} - a_{n}}{\tau_{\epsilon}^{n}}.
\]
Then we have
\[
\left| \frac{u_{n+1}(z)}{u_n(z)} - 1 \right| = \left| \frac{z_{n+1} - a_{n+1}}{\tau_{\epsilon}(z_n - a_n)} - 1 \right| = \frac{1}{\tau_{\epsilon}} \cdot \left| \frac{f_{\epsilon}(z_n) - f_{\epsilon}(a_n)}{z_n - a_n} - \tau_{\epsilon} \right|.
\]

We apply Lemma 1.3 with \(2S = 2R + n/2\). Then
\[
\left| \frac{u_{n+1}(z)}{u_n(z)} - 1 \right| \leq \frac{M}{\tau_{\epsilon}(R + n/4)^2} \leq \frac{C}{(n+1)^2},
\]
where \(C = 16M\) and we may assume \(R > 1/4\). Set \(P := \prod_{n\geq 1}(1 + C/n^2)\). Since
\[
|u_{n+1}(z)/u_n(z)| \leq 1 + C/(n+1)^2,
\]
we have
\[
|u_n(z)| = \left| \frac{u_n(z)}{u_{n-1}(z)} \right| \cdots \left| \frac{u_1(z)}{u_0(z)} \right| \cdot |u_0(z)| \leq P|z - a|.
\]
Hence
\[
|u_{n+1}(z) - u_n(z)| = \left| \frac{u_{n+1}(z)}{u_n(z)} - 1 \right| \cdot |u_n(z)| \leq \frac{CP}{(n+1)^2} \cdot |z - a|.
\]
This implies that \(u_\epsilon = u_0 + (u_1 - u_0) + \cdots = \lim u_n\) converges uniformly on compact subsets of \(E_{2R}\) and for all \(\epsilon \in [0, 1]\). The univalence of \(u_\epsilon\) is shown in the same way as [Mi, Lemma 10.10].

Next we check that \(u_\epsilon(f_{\epsilon}(z)) = \tau_{\epsilon}u(z) + C_\epsilon\) with \(C_\epsilon \to 1\) as \(\epsilon \to 0\). One can easily check that \(u_n(f_{\epsilon}(z)) = \tau_{\epsilon}u_{n+1}(z) + C_n\) where
\[
C_n = \frac{a_{n+1} - a_n}{\tau_{\epsilon}^n} = \frac{(\tau_{\epsilon} - 1)a_n}{\tau_{\epsilon}^n} + \frac{1 + g_{\epsilon}(a_n)}{\tau_{\epsilon}^n}.
\]
When \(\tau_{\epsilon} = 1\), \(C_n\) tends to 1 since \(|g_{\epsilon}(a_n)| \leq M/|a_n| \leq M/(2R + n/2)\). When \(\tau_{\epsilon} > 1\), the last term of the equation above tends to 0. For \(n \geq 1\), we have
\[
a_n = \tau_{\epsilon}^n a + \frac{\tau_{\epsilon}^n - 1}{\tau_{\epsilon} - 1} + \sum_{k=0}^{n-1} \tau_{\epsilon}^{n-1-k} g_{\epsilon}(a_k).
\]
Thus
\[
\frac{(\tau_{\epsilon} - 1)a_n}{\tau_{\epsilon}^n} = (\tau_{\epsilon} - 1) \left(a + \frac{g_{\epsilon}(a)}{\tau_{\epsilon}} + \sum_{k=1}^{n-1} \frac{g_{\epsilon}(a_k)}{\tau_{\epsilon}^{k+1}} \right) + 1 - \frac{1}{\tau_{\epsilon}^n}.
\]
Since \(|g_{\epsilon}(a_k)| \leq M/(2R + k/2) \leq 2M/k\), we have
\[
\left| \sum_{k=1}^{n-1} \frac{g_{\epsilon}(a_k)}{\tau_{\epsilon}^{k+1}} \right| \leq \frac{2M}{\tau_{\epsilon}} \sum_{k=1}^{n-1} \frac{1}{k\tau_{\epsilon}^{k+1}} \leq -2M \log(1 - \frac{1}{\tau_{\epsilon}}).
\]
and this implies that the sums above converge as \(n \to \infty \). Hence \(C_n \to C_\epsilon = 1 + O(\epsilon \log \epsilon) \).

Finally, by taking additional linear coordinate change by \(z \mapsto z/C_\epsilon \), \(u_\epsilon \) gives a desired holomorphic map.

\[\blacksquare \]

Notes.

- One can check that \(u_\epsilon(z) = z(C_\epsilon^{-1} + o(1)) \) \((\text{Re } z \to \infty)\).

- There is a quasiconformal version of linearization theorem by McMullen. [Mc, §8].

2 Applications.

This section is devoted for a worked out example to explain my personal motivation to consider the simultaneous linearization theorem.

Cauliflower. In the family of quadratic maps, the simplest parabolic fixed point is given by \(g(z) = z + z^2 \). Now we consider its perturbation of the form \(f(z) = \lambda z + z^2 \) with \(\lambda \nearrow 1 \). According to [Mi, §8 and §10], we have the following fact:

Proposition 2.1 (Königs and Fatou coordinates) Let \(K_f \) and \(K_g \) be the filled Julia sets of \(f \) and \(g \). Then we have the following:

1. There exists a unique holomorphic branched covering map \(\phi_f : K_f^0 \to \mathbb{C} \) satisfying the Schröder equation \(\phi_f(f(z)) = \lambda \phi_f(z) \) and \(\phi_f(0) = \phi_f(-\lambda/2) - 1 = 0 \). \(\phi_f \) is univalent near \(z = 0 \).

2. There exists a unique holomorphic branched covering map \(\phi_g : K_g^0 \to \mathbb{C} \) satisfying the Abel equation \(\phi_g(g(z)) = \phi_g(z) + 1 \) and \(\phi_g(-1/2) = 0 \). \(\phi_g \) is univalent on a disk \(|z + r| < r \) with small \(r > 0 \).

Note that \(-\lambda/2\) and \(-1/2\) are the critical points of \(f \) and \(g \) respectively.

Observation. Set \(w = \phi_f(z) \). Now the proposition above asserts that the action of \(f|_{K_f} \) is semiconjugated to \(w \mapsto \lambda w \) by \(\phi_f \). Let us consider a Möbius map \(W = S_f(W) = \lambda(w - 1)/(\lambda - 1)w \) that sends \(\{0, 1, \lambda\} \) to \(\{\infty, 0, 1\} \) respectively. By taking
the conjugation by S_f, the action of $w \mapsto \lambda w$ is viewed as $W \mapsto W/\lambda + 1$. Let us set $W = \Phi_f(z) := S_f \circ \phi_f(z)$. Now we have

$$
\Phi_f(f(z)) = \Phi_f(z)/\lambda + 1 \quad \text{and} \quad \Phi_f(-\lambda/2) = 0.
$$

On the other hand, by setting $W = \Phi_g(z) := \phi_g(z)$, we can view the action of $g|_{K^o_g}$ as $W \mapsto W + 1$. Thus we have

$$
\Phi_g(g(z)) = \Phi_g(z) + 1 \quad \text{and} \quad \Phi_g(-1/2) = 0.
$$

If λ tends to 1, that is, $f \rightarrow g$, the semiconjugated action in W-coordinate converges uniformly on compact sets. However, as one can see by referring the proof of the proposition in [Mi, §8 and §10], ϕ_f and ϕ_g are given in completely different ways thus we cannot conclude the convergence $\Phi_f \rightarrow \Phi_g$ a priori.

![Figure 1: Semiconjugation inside the filled Julia sets](image)

But there is another evidence that support this observation. Figure 1 shows the equipotential curves of ϕ_f and ϕ_g in the filled Julia sets. Obviously similar patterns appear and it seems one converges to the other.

Actually, we have the following fact:
Proposition 2.2 For any compact set $E \subset K_{g}^{\circ}$,

(1) $E \subset K_{g}^{\circ}$ for all $f \approx g$; and

(2) $\Phi_{f} \rightarrow \Phi_{g}$ uniformly on E as $f \rightarrow g$.

Here $f \approx g$ means that f is sufficiently close to g, equivalently, λ sufficiently close to 1. See [Kal, Theorem 5.5] for more general version of this proposition, which is one of the key result to show the continuity of tessellation and pinching semiconjugacies constructed in [Kal].

Proof. Let us take a general expression $f_{\lambda}(z) = \lambda z + z^{2}$ with $0 < \lambda \leq 1$ (thus $f_{1} = g$).

By looking at the action of f_{λ} through a new coordinate $w = \chi_{\lambda}(z) = -\lambda^{2}/z$, we have

$$\chi_{\lambda} \circ f_{\lambda} \circ \chi_{\lambda}^{-1}(w) = \frac{w}{\lambda} + 1 + O(1/w)$$

near ∞. Now we can set $\tau_{\epsilon} := 1/\lambda = 1 + \epsilon$ and $f_{\epsilon} := \chi_{\lambda} \circ f_{\lambda} \circ \chi_{\lambda}^{-1}$ to have the same setting as Theorem 1.1. We consider that f and g are parameterized by λ or ϵ. (It is convenient to use both parameterization.)

Let us show (1): For any compact $E \subset K_{g}^{\circ}$ and small $r > 0$, there exists $N \gg 0$ such that $g^{N}(E) \subset P_{r} = \{|z + r| < r\}$. (For instance, one can show this fact by existence of the Fatou coordinate.) By uniform convergence, we have $f^{N}(E) \subset P_{r}$ for all $f \approx g$. To show $E \subset K_{g}^{\circ}$, it is enough to show that $f(P_{r}) \subset P_{r}$ for all $f \approx g$. Since $\chi_{\lambda}(P_{r}) = E_{R}$ for some $R \gg 0$, Lemma 1.2 implies that $E_{R} \subset f_{\epsilon}(E_{R})$ independently of ϵ. This is equivalent to $f_{\epsilon}(P_{r}) \subset P_{r}$ in a different coordinate. Thus we have (1).

Next let us check (2): Set $\Phi_{\epsilon} := \Phi_{f}$ and $\Phi_{0} := \Phi_{g}$. Then we have $\Phi_{\epsilon}(f_{\lambda}(z)) = \tau_{\epsilon} \Phi_{\epsilon}(z) + 1$. On the other hand, by simultaneous linearization, we have a uniform convergence $u_{\epsilon} \rightarrow u_{0}$ on E_{R} that satisfies $u_{\epsilon}(f_{\lambda}(w)) = \tau_{\epsilon} u_{\epsilon}(w) + 1$. By setting $\Psi_{\epsilon}(z) := u_{\epsilon} \circ \chi_{\lambda}(z)$, we have $\Psi_{\epsilon} \rightarrow \Psi_{0}$ compact uniformly on P_{r}, and $\Psi_{\epsilon}(f_{\lambda}(z)) = \tau_{\epsilon} \Psi_{\epsilon}(z) + 1$.

We need to adjust the images of critical orbits mapped by Φ_{ϵ} and Ψ_{ϵ}. Since $g^{n}(-1/2) \rightarrow 0$ along the real axis, there is an $M \gg 0$ such that $g^{M}(-1/2) = a_{0} \in P_{r}$. By uniform convergence, we also have $f^{M}(-1/2) =: a_{\epsilon} \in P_{r}$ and $a_{\epsilon} \rightarrow a_{0}$ as $\epsilon \rightarrow 0$.

Set $b_{\epsilon} := \Psi_{\epsilon}(a_{\epsilon})$ and $c_{\epsilon} := \Phi_{\epsilon}(a_{\epsilon})$ for all $\epsilon \geq 0$. Set also $\ell_{\epsilon}(w) = \tau_{\epsilon} W + 1$, then we have $c_{\epsilon} = \ell_{\epsilon}^{M}(0) = \tau_{\epsilon} M^{-1} + \cdots + \tau_{\epsilon} + 1$ and $c_{\epsilon} \rightarrow c_{0} = M$ as $\epsilon \rightarrow 0$. When $\epsilon > 0$, we take an affine map T_{ϵ} that fixes $1/(1 - \tau_{\epsilon})$ and sends b_{ϵ} to c_{ϵ}. When $\epsilon = 0$, we take an affine map T_{0} that is the translation by $b_{0} - c_{0}$. Then one can check that $T_{\epsilon} \rightarrow T_{0}$.
compact uniformly on the plane and $\bar{\Phi}_\epsilon := T_\epsilon \circ \Psi_\epsilon$ satisfies $\bar{\Phi}_\epsilon \rightarrow \tilde{\Phi}_0$ on any compact sets of P_r. Moreover, $\bar{\Phi}_\epsilon$ still satisfies $\bar{\Phi}_\epsilon(f_\lambda(z)) = \tau_\epsilon \bar{\Phi}_\epsilon(z) + 1$ and the images of the critical orbit by Φ_ϵ and $\bar{\Phi}_\epsilon$ agree. Finally by uniqueness of ϕ_f and ϕ_g, one can easily check that $\Phi_\epsilon = \bar{\Phi}_\epsilon$ on P_r.

Since

$$\Phi_f(z) = \ell_\epsilon^{-N} \circ \bar{\Phi}_\epsilon(f^N(z)) \rightarrow \ell_0^{-N} \circ \tilde{\Phi}_0(g^N(z)) = \Phi_g(z)$$

uniformly on E, we have (2).

Acknowledgement. I would like to thank T. Ueda for correspondence. This research is partially supported by Inamori Foundation and JSPS.

References

