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Perturbations of bivariate Chebyshev maps of C?
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Abstract

The Chebyshev map is a typical chaotic map. Few things are known
about the dynamics of generalized Chebyshev maps in higher dimensions.
Generalized Chebyshev maps are related to the theory of complex Lie algebras
and affine Weyl groups.

In a former note we showed that bivariate Chebyshev maps of C? are also
chaotic and the support of the maximal entropy measure u of each Chebyshev
map is connected.

In this note, we perturb a bivariate Chebyshev map in a certain direction.
Then, we show that the support u of a perturbed map is a Cantor sets.

1 Introduction

We study perturbations of bivariate Chebyshev maps C?. Bivariate Chebyshev
maps T, from C? to C?, (n € Z) are given by [V]. Uchimura [U] studies dynamics
of bivariate Chebyshev maps.

Tn(zay) = (gn(xa y)agn(ys x))s
where g,,(z,y) is a generalized Chebyshev polynomial defined by [L].
Let T=t,+t+ts, y==tty+tits+ists, 1= t,tsts.

~ Set gn(z,y) ;=17 +1t3+13. Hence
0n12) = (/t2)" + (1/t)" + (1/t5)" = g-n(z,).
For example, T3(z,y) = (2% — 2y,9* — 21),
Ts(z,y) = (z* — 3zy + 3,4® — 3zy + 3),
Ta(z,y) = (z* — 42y + 2% + 4z, y* — 47y° + 222 + 4y).

We perturb bivariate Chebyshev maps. We introduce a new parameter ¢ in
Ti(z,y).
We set
f®(z,y) = (9(z, v, ¢), ge(v, 7, )



where gi(z, y, c) is homogeneous in z,y, c and gx(z,¥, 1) = gi(z,y). We call f¥(z,y)
a c-Chebyshev map.
For example, g3(z,y) = z3 — 3zy + 3 and

f(z,y) = (z° - 3cay + 3¢%, 4 ~ 3cxy + 36%).

Theorem Assume c > 1. Then the support of the mazimal entropy measure of a
c-Chebyshev map f¥)(z,y) is a Cantor set for any k € Z\ {0,1,-1}.

In one dimensional case, this is parallel to the following facts.
The map f)(z,y) restricted on the line {z = y} is the map ¢®(z) =z?—2cz
which is conjugate to the map p,(z) = z? + A. Parameters correspond as follows:

1<¢c &= I<-2

p_2(z) =22 —2 is a Chebyshevmap. If X< -2, K(pr(z)) is a Cantor set.
When k& = 3, the map f®)(z,y) restricted on the line {z = y} is the map

¢®(z) = 2% - 3cx? + 3%,

Milnor[M] shows the moduli space of real cubic maps up to affine conjugate. In the
space the set {¢/¥)(z) : ¢ € R} can be represented as a curve. When ¢ = 1, the curve
is tangent to the horizontal line. When ¢ > 1, it lies in Rj.
From Theorem, we can easily see that if ¢ > 1, K(¢{®) is a Cantor set on the real
axis.

We review some properties of bivariate Chebyshev map (See [U]). From the defi-
nition of bivariate Chebyshev maps we have a branch covering map. The following
diagram is commutative. :

(C—{o})? ——  (C-{0})’
(u, v)lw \Ill( u®, v")
C?2 T , C?2
(z=ut+v+ L, (w+ v+ (),
y=1+1+u T4+ )

VU : C*2 —¥Y(D) - C2 — D is a 6-sheeted covering map. And its branch locus D
of W is written as z%y? — 423 — 493 + 182y — 27 = 0.

Next we study fundamental domains. '
Tn(z,y) restricted on {z = ¥} is a Chebyshev polynomial defined by [K] :

Pn_, é (z,‘z‘) — eina + e—inr + e,'(m._m,)-

Set 2(0,7) =€ +e "+ = u+iv.

The mapping z : (g,7) — (u,v) is a diffeomorphism from R; onto S , where S is a
closed domain bounded by a hypocycloid and R, is a triangular region. R is a slight
modification of R;. '
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N >
—_—
S

(u,v) S

K sets and J; sets of T;’s have the following properties.
(1) KT)={lt|=[t2|=1}=Sc{z=7}.

(2) Jo=supp p=S

(3) Repelling periodic points are equidistributed in S and J; is connected.
We describe Critical sets C(T}) and critical values T (C).
(1)  Any irreducible component of C(T}) is a rational curve of degree 2 or 4 :

x-t+€'7t+ Jt2’ (Ek=1)
1
y= %+——-+e’t"’
(2) Critical values Ty(C) is written as
1 1 1
ko 4k _ 2%
=ttt y=gtg+tt

We use the properties of Bottcher coordinates (see [BJ])

W*(Ju Ty) = {z € P? : d(Tjz, Ju) — 0, — oo},
where

Jn={(z:y:0):jz|=|y|}. (the Julia set in the line at infinity)
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There exists a homeomorphism ¥ such that
U We(Jn, fr) = W*(Jn, Tx)
conjugating fi to T; where fi(z,y) = (zF, v*).

External rays R(r, ¢,0) of T} are calculated by Nakane [N]

T=r e-2m'0 + _1]:"_ e2m'(0—¢) + e2m’¢,

y = re?mi@=0 4 _1_ g2mif 4 o~3mid
r

2 A main result

We state a main result of this note.

Theorem Assume c > 1. Then the support of the mazimal entropy measure p of
a c-Chebyshev map f®(z,y) is a Cantor set for any k € Z\ {0,1,-1}.

When ¢ = 1, the support of u of fl(")(:z:, y)(= Tk(z,y)) is a connected set S on the
plane {z = §}. However if ¢ > 1, the support of u of f*)(z,y) is not connected.
This shows that a bifurcation occurs at ¢ = 1.

One of the reason why we define a c-Chebyshev map in such a form is shown in
the next fact. Let

z=c(ty+ta+1t3), y=c(l/t1+1/ta+1/t3)
and f1tat3 =1. Then
Fo(,y) = (F(¢F + 85 + 5), F (/8] + 1/t + 1/15)).
The critiéal set C(f.) and the critical value f.(C) are written as follows.
C(f.) : x =c((1 + &)t + 1/(et?)),

y = c(1/t +1/(et) + €t?),
fo(C) s x = F(2t* + 1/1%), y=ck(2/th + t?),
where e =1 and t € C\ {0}
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3 Sketch of the proof of Theorem

The key observation of the proof of Theorem is the following proposition.
Proposition 3.1. Ifc> 1, K(f.)NC(f.) = ¢.

This is equivalent to the statement if ¢ > 1, then f2(f.(C)) — o0, (n — o)
with respect to Euclidean norm.  The critical value f.(C) is parameterized as

z = cF(2t* +1/t%), y=F2/t* +*),t € C\ {0}.
To prove Proposition 3.1, we will shrink the domain C \ {0} of ¢.

(un(t), vn(t)) := f(uo(t), uo(1/t)), where ug(t) = ck(2tF 4+ 1/t2).

(un(t), vn(t)) represents an element of f7(f.(C)).
We can see that for any n € N, v,(1/t) = uy,(t). _
Hence we can shrink the domain C*. We consider the domain D \ {0}.

Proposition 3.2. For anyt € D\ {0}, | v,(t) |= o0 as n — oo where D denotes
the unit disk.

To prove this we need two steps.
(A) If ¢ > 1, then | v,(t) | has its minimum value on the boundary dD for any
n€N.
(B) If ¢ > 1, then | v,(€*) |— oo as n — oo for any 6 in [0, 2).

For example, when k =3,

v (t) = 18 + (6¢° — 6¢7)t° + 3¢® — 15¢7 + 12¢° + (8° — 67 213 ,

1
w(t) = Ul(;)
Proof of (A)
(A) If ¢ > 1, then | v,(t) | has its minimum value on 8D for any n € N.

vn(t) is a rational function in ¢.

| va(t) | has its minimum value on 8D, if
(Al) w,(t) is holomorphic in D* and
(A2) wy(t) has no zeros in D*.

We prove A2 by Argument principle :

W (vn(S1),0) = N — M.
These are proved by considering the map

9¢(2) = fel(z,y) | {z =7}
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from {z =7} to {z =7}.
When c is real, f.(z,y) admits an invariant plane {x = ¥}. Then we consider the
map g.(z) on the plane {z = 7} given by

9¢(2) = fe(z,y) | {z =7}

The map g.(z) may be viewed as a map from R? to RZ.
The critical set of g. is equal to the set

{c(€® +e€® + 1/(e€*®)) : 0 < 0 < 2n}.
The critical value of g, is equal to the set
{F(2e** + %)) : 0 < 6 < 27},

We state properties of the map g.(2).
(1) For any point z in the interior ¢*S°, g;!(2) C ¢S and g;!(z) consists of k2
distinct elements.
(2) g: | C\cS:C\cS — C\*S is a k-sheeted unbranched covering map and is
sense preserving.
(3) gc | BcS : dcS — Ok S is a k—to—one map.
Then we use topological argument principle (see [Ne], p.350). Let W (I, p) be the
winding number of a closed curve I round a point p. Let S! denote the unit circle
{e? : 0 < @ < 27}. We assume that a hypocycloid c*dS is oriented in an anti-
clockwise sense.
Topological Argument Principle implies
#{z € C: g.(2) = p and z belongs to the interior of 4} (counted with their
topological multiplicities) = W(g.(7), p)

Hence if ¢ > 1, then W(g?(c*8S),0) = k™.
Hence if ¢> 1, then
W (un(S%),0) = —W (un(SY), 0) = k™1,

The multiplicity of the pole at ¢t = 0 of v,(t) is at most k™*1.

We apply the argument principle to the rational function v,(t) on the unit circle S*
: W(v,(51),0) = N — M where N is the number of zeros in the unit disk D and
M is the number of poles in D. We conclude that v,(t) has no zeros in D and it
is holomorphic in D \ {0}. Then v, (t) has its minimum-modulus on the boundary
oD. o

Proof of (B)
(B) f c¢>1, then |v,(e®)|—> 00 as n — oo for any 6 € [0,2m).



To prove this, we introduce a new distance d(z, dcS) from an element 2z in C \ ¢S
to the boundary dcS and we show that there exists a number a > 1 such that

ad(z,0¢cS) < d(g.(2), 9cS).

To prove this we use Bottcher coordinates.
Based on Nakane[2004] , we consider the Bottcher coordinate ¥ restricted on the
set {t; =t, t; =1/t}. We denote the map by 1. Since

U(t,1/) = (t+1/E+/t, 1/t + T+ t/D),
Y(t)=t+1/t+1/t
and ¥(t,1/%) lies on the plane {z = §}. Since
Y(re) = (r+1/r)e? +e ¥, (r>1),
the map ¢ from C\ D to C\ S is a homeomorphism.

2 3

.5 2

The image of a radial line {re? : r > 1} under the map ¥ is also a half-line. Let
hx be a function from C\ S to C\ AS defined by hx(z) = Az with A > 1. The
composition Ay o 9 is a map from C\ D onto C\ AS. Then the image of a radial
line under the map h, o % is a half-line which is called a A-radial line.

We assume that ¢ > 1. For any point z in C\ ¢S we set (he o 9)~1(2) = re*®, and
(he © ¥)"1(ge(2)) = 1€ . Then we will prove that r; > (/cr.

2.5 P

: Q2
0.5 Q

Q1 -

2 3 4 H

We evaluate the length | PQ, |= c(ry + ;11- —2), where P = g,(2). Clearly,
| PQ1|=| PQ2 | + | Q1Q2 |-
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The following four properties hold:
(1) | PQs 2] PQs |= ck(r* +1/r* - 2)
2) |@Q:(2ck-c
(8) Ife>1, r>1landk > 2, thenc*(r*+1/r¥—2)+cF—c > c(ver+1/(ver)-2).
4) co(ri+ 7 —2)>c(Ver+ g ~2).
End of the proof of (B). |

We note that {f*(C)} converges uniformly to oo.
End of the proof of Proposition 3.1. ]

Lastly we prove that K(f.) = K(g.) is a Cantor set. This is proved from the follow-
ing three results.

(1) Theorem. (Fornaess and Sibony[2001]). Let f be a regular polynomial endo-
morphism of C¥. Assume that K(f) NC(f) = ¢. Then

(i) The map f is strictly expanding on K(f).

(ii) Repelling periodic points are dense in K(f).

(ii) K(f) = supp p.

(2) When ¢ > 1, any periodic points of f.(z,y) lies on the plane {z = 7} and be-
longs to the set K(g.).

(3) When ¢ > 1, there is a positive integer n such that g7 is uniformly expanding
on K(g.).

Then we have the following theorem.

Theorem Assume that ¢ > 1. Then
(i) K(fc) = supp uC {z =7}
(it) K(f.) = K(g.) is a Cantor set.
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