<table>
<thead>
<tr>
<th>Title</th>
<th>A subfamily of complex error functions (Complex Dynamics and its Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MUROSAWA, Shunsuke</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2007), 1537: 77-80</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59031</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A subfamily of complex error functions

Shunsuke MOROSAWA
Department of Mathematics and Information Science,
Faculty of Science, Kochi University
morosawa@math.kochi-u.ac.jp

1 Introduction

A complex error function is a transcendental entire function given by the form

$$C_{a,b}(z) = a \int_{0}^{z} e^{-w^2} dw + b$$

with $a \in \mathbb{C} \setminus \{0\}$ and $b \in \mathbb{C}$. It has two asymptotic values $\pm a\sqrt{\pi}/2 + b$ and has no other singular value. In [3], a subfamily of complex error functions given by the form

$$C_{a,\sqrt{B}}(z) = a \int_{0}^{z} e^{-w^2} dw + \sqrt{B}$$

with $a \in \mathbb{R} \setminus \{0\}$ and $B \in \mathbb{R}$ is considered. Hence the family is described by two real parameters. Fatou components of some functions of this family have common boundary curves. In this note, we consider a subfamily of complex error functions given by the form

$$f_{a}(z) = a \int_{0}^{z} e^{-w^2} dw$$

with $a \in \mathbb{C} \setminus \{0\}$. Hence the family is described by one holomorphic parameter. A well-known family of transcendental entire functions with one complex parameter is an exponential family. It is studied by Baker and Rippon [1], Devaney [2] and others.

2 Results

We say that f_{a} is hyperbolic if the orbit of each asymptotic value accumulates to attracting cyclic points. A connected component of the set of parameters
Figure 1: The parameter space of $f_a(z)$. The range shown is $|\Re a| \leq 2$, $|\Im a| \leq 2$. The disk in the center is A. Hyperbolic components of B_n are colored white and those of D_n are colored black.

for which f_a is hyperbolic is called a hyperbolic component. It is known that hyperbolic components are open.

We define subsets in the parameter space of f_a as follows:

- $A = \{a \mid f_a$ has a completely invariant component.\},
- $B_n = \{a \mid f_a$ has only one attracting cycle with the period $2n$.\},
- $D_n = \{a \mid f_a$ has two attracting cycles with the period n.\},

for $n \in \mathbb{N}$.

If there exists a cycle $\{z_1, z_2, \cdots, z_n\}$, then $\{-z_1, -z_2, \cdots, -z_n\}$ is also a cycle from the equation

$$f_a(-z) = -f_a(z).$$

Furthermore, we see that if the cycle is attracting, repelling or indifferent, then so is the corresponding one, respectively. The Maclaurin expansion of
$E_r(z) = f_1(z)$ is of the form

$$E_r(z) = \int_0^z e^{-w^2} dw = z - \frac{z^3}{3} + \cdots.$$

Adding further investigation on properties of $E_r(z)$, we have the following theorem.

Theorem 1. Every hyperbolic component is contained in one of A, B_n and D_n. Furthermore, A is also described by $\{a \mid 0 < |a| < 1\}$. Each of B_1 and D_1 consists of only one component.

By the arguments similar to those in [1], we have the following theorems.

Theorem 2. Every hyperbolic component except A is simply-connected and unbounded.

Theorem 3. Each of B_n and D_n contains a component which is tangent to A.

Cyclic Fatou components of the function belonging to a hyperbolic component tangent to A attach to each other at the origin. By the arguments similar to those in [3], we have the following theorem.

Theorem 4. Fatou components of f_a belonging to a hyperbolic component tangent to A have common boundary curves.

References

Figure 2: The Julia sets of $f_a(z)$. The range shown is $|\Re z| \leq 2, |\Im z| \leq 2$. Upper left: $a = 0.95i$. Upper right: $a = 1.05i$. Middle left: $a = 0.475 + 0.8227241i$. Middle right: $a = 0.55 + 0.952628i$. Lower left: $a = -0.475 + 0.8227241i$. Lower right: $a = -0.55 + 0.952628i$.