<table>
<thead>
<tr>
<th>Title</th>
<th>Some topics on Fatou maps in higher dimensional complex dynamics (Complex Dynamics and its Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MAEGAWA, KAZUTOSHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2007), 1537: 33-36</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59038</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Some topics on Fatou maps
in higher dimensional complex dynamics

KAZUTOSHI MAEGAWA

This is the abstract of my talk in the conference held at RIMS, October 2-6 2006. The results obtained in [M] and recent related results will be explained.

We study Fatou maps for a holomorphic map in a compact complex manifold. Fatou maps were first introduced by Ueda in his research on dynamics in the complex projective space \(\mathbb{P}^k \).

(Fornaess & Sibony also considered such a notion in an implicit way.) Let \(M \) be a compact complex manifold of dimension \(k \geq 1 \) and let \(f \) be a holomorphic self-map of \(M \).

Definition 0.1. (Fatou maps) Let \(N \) be a complex manifold and let \(\psi : N \to M \) be a holomorphic map such that \(\{f^n \circ \psi\}_{n \geq 0} \) is a normal family in \(N \). We call such \(\psi \) a Fatou map. Particularly, in case when \(\psi \) is a holomorphic disc, we call it a Fatou disc. We say that a map \(\phi : N \to M \) is a limit map of \(\{f^n \circ \psi\}_{n \geq 0} \) if there is a subsequence of \(\{f^n \circ \psi\}_{n \geq 0} \) which converges to \(\phi \) locally uniformly in \(N \).

We treat two topics on Fatou maps as follows.

1 Stable dynamics in the whole space

Let \(M \) be a compact complex manifold of dimension \(k \geq 1 \) and let \(f \) be a holomorphic self-map of \(M \). Since \(M \) is compact, the Remmert proper mapping theorem implies that \(f^n(M) \) is an analytic subset of \(M \) for all \(n \geq 0 \) and there exists a number \(m_0 \geq 0 \) such that

\[
f^{m_0}(M) = f^{m_0+1}(M) = \ldots.
\]

We put \(S := f^{m_0}(M) \) and call it the minimal image. Denoting by \(g \) the restriction of \(f \) on \(S \), the map \(g \) is a surjective holomorphic self-map of \(S \).

In this section, we treat the case when \(\{f^n\}_{n \geq 1} \) is a normal family in \(M \), i.e. the case when the identity \(\text{id}_M \) is a Fatou map. By using Bochner-Montgomery theorem, we can obtain the following criterion.
Theorem 1.1. $(M) \{f^n\}_{n \geq 1}$ is a normal family in M if and only if $\{f^n\}_{n \geq 1}$ has at least one subsequence which converges uniformly in M.

By showing that S is a holomorphic retract, the next proposition follows.

Proposition 1.2. (M) Suppose that $\{f^n\}_{n \geq 1}$ is a normal family in M. Then, S has no singular points, i.e. S is a complex submanifold in M.

Next, we consider the number of periodic points of f. We denote by $\text{Fix}(f^n)$ the set of fixed points of f^n and put

$$\text{Per}(f) := \bigcup_{n \geq 1} \text{Fix}(f^n).$$

The following theorem shows that the total number of periodic points of f is independent of f and it is regulated by the Euler characteristic $\chi(M)$.

Theorem 1.3. Let f be a holomorphic automorphism of M. Suppose $\{f^n\}_{n \geq 1}$ is a normal family in M and $\# \text{Fix}(f^n) < +\infty$ for all $n \geq 1$. Then,

$$\# \text{Per}(f) = \chi(M).$$

Example 1.4. We regard $f(x, y) = (e^y, e^x)$ as a holomorphic self-map of $\mathbb{P}^1 \times \mathbb{P}^1$. Suppose $\alpha + \beta / 2\pi \in \mathbb{R} \setminus \mathbb{Q}$. Then, $(0, 0), (\infty, \infty)$ are fixed points, $(0, \infty), (\infty, 0)$ are period 2 points and there are no other periodic points. Hence, $\# \text{Per}(f) = 4 = \chi(\mathbb{P}^1 \times \mathbb{P}^1)$.

2 Semi-repellers outside the post-critical set

In this section, we describe semi-repelling property of forward invariant compact sets which are outside the closure of the post-critical set in terms of repelling points and non-contracting Fatou discs.

Let M be a compact complex manifold of dimension $k \geq 1$ with a hermitian metric $|\cdot|$. Let $f : M \to M$ be a surjective holomorphic map. We denote by C the set of critical points of f and put

$$D := \bigcup_{n \geq 1} f^n(C).$$

Definition 2.1. (Non-contracting Fatou discs) Let ψ be a Fatou disc for f. We say that ψ is non-contracting if no limit map of $\{f^n \circ \psi\}_{n \geq 0}$ is constant.

Definition 2.2. (Repelling points) Let $p \in M$. Denote by T_p the holomorphic tangent space at p. We say that p is repelling for f if $\min_{v \in T_p, |v|=1} |D(f^j)(v)| \to +\infty$ as $j \to +\infty.$
Let Δ denote the unit disc.

Theorem 2.3. ([M]) Let E be a compact subset in M such that $f(E) \subset E$ and $E \cap D = \emptyset$. Suppose that each connected component of $M \setminus D$ which meets E is hyperbolically embedded in M. Then, there are two subsets $E^u, E^c \subset E$ which have the following properties;

(i) $E^u \cup E^c = E$, $E^u \cap E^c = \emptyset$;

(ii) $f(E^u) \subset E^u$, $f(E^c) \subset E^c$;

(iii) Each point in E^u is repelling;

(iv) For each $p \in E^c$, there is a non-contracting Fatou disc $\psi : \Delta \to M$ such that ψ is an embedding and $\psi(0) = p$.

Moreover, if $f(E) = E$ and $E^c = \emptyset$, then E is a repeller with respect to the hermitian metric.

Remark 2.4. In Theorem 2.3, the hyperbolicity condition can not be removed.

In case when f is a holomorphic self-map of \mathbb{P}^k of degree at least 2, we can remove the hyperbolicity condition in Theorem 2.3, thanks to Ueda's normality criterion.

Theorem 2.5. ([M]) Let f be a holomorphic self-map of \mathbb{P}^k of degree at least 2. Let E be a compact subset in M such that $f(E) \subset E$ and $E \cap D = \emptyset$. Then, there are two subsets $E^u, E^c \subset E$ which have the following properties;

(i) $E^u \cup E^c = E$, $E^u \cap E^c = \emptyset$;

(ii) $f(E^u) \subset E^u$, $f(E^c) \subset E^c$;

(iii) Each point in E^u is repelling;

(iv) For each $p \in E^c$, there is a non-contracting Fatou disc $\psi : \Delta \to M$ such that ψ is an embedding and $\psi(0) = p$.

Moreover, if $f(E) = E$ and $E^c = \emptyset$, then E is a repeller with respect to the Fubini-Study metric.

Here we can find an interesting question.

Question. Let f, E be the same as in Theorem 2.5. When E is the support of the Green measure, E^c is empty?

This is still unsolved at present.
References

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KYOTO UNIVERSITY
606-8502, KYOTO, JAPAN

E-mail address: maegawa@math.kyoto-u.ac.jp