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Abstract

We consider the random dynamics of polynomials and the dynam-
ics of polynomial semigroups (semigroups $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}\wedge$ by a family of
polynomial maps) on the Riemann sphere C. We show that under a
certain condition, for almost every sequence $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)$ of polyno-
mials, the random Julia set of 7 is a Jordan curve but not a quasicircle
and the basin $A_{\gamma}$ of infinity is a John domain. Note that there exists
no polynomial $h$ such that the above holds. Furthermore, we give a
classification of polynomial semigroups $G$ such that $G$ is generated
by a compact family, the planar postcritical set of $G$ is bounded, and
$G$ is (semi-) hyperbolic. Many phenomena of polynomial semigroups
and random dynamics of polynomials that do not occur in the usual
dynamics of polynomials are found and investigated.

1 Introduction
The theory of complex dynamical systems, which has its origin in the impor-
tant work of Fatou and Julia in the $1910\mathrm{s}$ , has been investigated by many
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people and discussed in depth. In particular, since D. Sullivan showed the fa-
mous “no wandering domain theorem” using Teichm\"uller theory in the $1980\mathrm{s}$ ,
this subject has attracted many researchers from a wide area. For a general
reference on complex dynamical systems, see $\mathrm{M}\mathrm{i}\mathrm{l}\mathrm{n}\mathrm{o}\mathrm{r}^{)}\mathrm{s}$ textbook [M].

There are several areas in which we deal with generalized notions of clas-
sical iteration theory of rational functions. One of them is the theory of dy-
namics of rational semigroups (semigroups generated by holomorphic maps
on the Riemann sphere C), and another one is the theory of random dynamics
of holomorphic maps on the Riemann sphere.

In this paper, we will discuss these subjects. A rational semigroup
is a semigroup generated by non-constant rational maps on $\hat{\mathbb{C}}$ , where $\mathbb{C}$ de-
notes the Riemann sphere, with the semigroup operation being functional
composition $([\mathrm{H}\mathrm{M}1])$ . A polynomial semigroup is a semigroup generated
by non-constant polynomial maps. Research on the dynarnics of rational
semigroups was initiated by A. Hinkkanen and G. J. Martin $([\mathrm{H}\mathrm{M}1],[\mathrm{H}\mathrm{M}2])$ ,
who were interested in the role of the dynamics of polynomial semigroups
while studying various one-complex-dimensional moduli spaces for discrete
groups, and by F. Ren’s group$([\mathrm{Z}\mathrm{R}], [\mathrm{G}\mathrm{R}])$ , who studied such semigroups
from the perspective of random dynamical systems. Moreover, the research
on rational semigroups is related to that on “iterated function systems” in
fractal geometry. In fact, the Julia set of a rational semigroup generated by
a compact family has “ backward self-similarity” (cf. Lemma 3.1-2). For
other research on rational semigroups, see [Stal], [Sta2], [Sta3], [SY], [SSS],
[SS], [SU1], [SU2], and $[\mathrm{S}1]-[\mathrm{S}\mathrm{l}1]$ .

The research on the dynamics of rational semigroups is also directly re-
lated to that on the random dynamics of holomorphic maps. The first study
in this direction was by Fornaess and Sibony $([\mathrm{F}\mathrm{S}])$ , and much research has
folowed. (See [Br],[Bul],[Bu2], [BBR].)

We remark that the complex dynamical systems can be used to describe
some mathematical models. For example, the behavior of the population of
a certain species can be described as the dynamical system of a polynomial
$f(z)=az(1-z)$ such that $f$ preserves the unit interval and the postcritical
set in the plane is bounded (cf. [D]). Iilrom this point of view, it $\mathrm{i}8$ very
important to consider the random dynamics of such polynomials (see also
Example 1.4). For the random dynamics of polynomials on the unit interval,
see [Steins].

We shall give some definitions for the dynamics of rational semigroups:

Definition 1.1 $([\mathrm{H}\mathrm{M}1], [\mathrm{G}\mathrm{R}])$ . Let $G$ be a rational semigroup. We set

$F(G)=$ { $z\in\hat{\mathbb{C}}|G$ is normal in a neighborhood of $z$}, $J(G)=\hat{\mathbb{C}}\backslash F(G)$ .
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$F(G)$ is called the Fatou set of $G$ and $J(G)$ is called the Julia set of $G$ .
We let $\langle h_{1}, h_{2}, \ldots\rangle$ denote the rational semigroup generated by the family
$\{h_{i}\}$ . The Julia set of the semigroup generated by a single map $g$ is denoted
by $J(g)$ .

Definition 1.2.

1. For each rational map $g:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ , we set $CV(g):=$ {all critical values of
$g$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$}. Moreover, for each polynomial map 9 : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ , we set
$CV^{r}(g):=CV(g)\backslash \{\infty\}$ .

2. Let $G$ be a rational semigroup. We set

$P(G):= \bigcup_{g\in G}CV(g)(\subset\hat{\mathbb{C}})$
.

This is called the postcritical set of $G$ . Furthermore, for a polyno-
mial semigroup $G$ , we set $P^{*}(G):=P(G)\backslash \{\infty\}$ . This is called the
planar postcritical set (or finite postcritical set) of $G$ . We say
that a polynomial semigroup $G$ is postcritically bounded if $P^{*}(G)$

is bounded in C.

Remark 1.3. Let $G$ be a rational semigroup generated by a family A of
rational maps. Then, $P(G)=\overline{\bigcup_{g\in G\mathit{9}}(\bigcup_{h\in\Lambda}CV(h))}$ and $g(P(G))\subset P(G)$

for each $g\in G$ . From this formula, one can figure out how the set $P(G)$

(resp. $P$“ $(G)$ ) spreads in $\hat{\mathbb{C}}$ (resp. C). In fact, in Section 2.3, using the above
formula, we present a way to construct examples of postcritically bounded
polynomial semigroups (with some additional properties).

Example 1.4. Let A $:=\{h(z)=cz^{a}(1-z)^{b}|a,$ $b\in \mathrm{N},$ $c>0,$ $c( \frac{a}{a+b})^{a}(\frac{b}{a+b})^{b}$

$\leq 1\}$ and let $G$ be the polynomial semigroup generated by A. Since for
each $h\in\Lambda,$ $h([0,1])\subset[0,1]$ and $CV^{*}(h)\subset[0,1]$ , it follows that each
subsemigroup $H$ of $G$ is postcritically bounded.

Remark 1.5. It is well-known that for a polynomial $g$ with $\deg(g)\geq 2$ ,
$P$“ $(\langle g))$ is bounded in $\mathbb{C}$ if and only if $J(g)$ is connected ([M], Theorem 9.5).

As mentioned in Remark 1.5, the planar postcritical set is one piece of
important information regarding the dynamics of polynomials. Concerning
the theory of iteration of quadratic polynomials, we have been investigating
the famous “Mandelbrot set”

When investigating the dynamics of polynomial semigroups, it is natural
for us to discuss the relationship between the planar postcritical set and the
figure of the Julia set. The first question in this regard is:
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Question 1.6. Let $G$ be a polynomial semigroup such that each element
$g\in G$ is of degree at least two. Is $J(G)$ necessarily connected when $P^{*}(G)$

is bounded in $\mathbb{C}$?

The answer is NO.

Example 1.7 $([\mathrm{S}\mathrm{Y}])$ . Let $G= \langle z^{3}, \frac{z^{2}}{4}\rangle$ . Then $P^{*}(G)=\{0\}$ (which is bounded
in C) and $J(G)$ is disconnected ( $J(G)$ is a Cantor set of round circles). Fur-
thermore, according to ([S5], Theorem 2.4.1), it can be shown that a small
perturbation $H$ of $G$ still satisfies that $P^{*}(H)$ is bounded in $\mathbb{C}$ and that
$J(H)$ is disconnected. ( $J(H)$ is a Cantor set of quasi-circles with uniform
dilatation.)

Question 1.8. What happens if $P^{*}(G)$ is bounded in $\mathbb{C}$ and $J(G)$ is discon-
nected?

Problem 1.9. Classify postcritically bounded polynomial semigroups.

In this paper, we investigate (semi-)hyperbolic, postcritically bounded,
polynomial semigroups generated by a compact family $\Gamma$ of polynomials. We
show that if $G$ is such a semigroup with disconnected Julia set, and if there
exists an element $g\in G$ such that $J(g)$ is not a Jordan curve, then, for al-
most every sequence $\gamma\in\Gamma^{\mathrm{N}}$ , the Julia set $J_{\gamma}$ of $\gamma$ is a Jordan curve but not a
quasicircle, the basin of infinity $A_{\gamma}$ is a John domain, and the bounded com-
ponent $U_{\gamma}$ of the Fatou set $F_{\gamma}$ of $\gamma$ is not a John domain (cf. Theorem 2.26).
Moreover, we classify the semi-hyperbolic, postcritically bounded, polyno-
mial semigroups generated by a compact family $\Gamma$ of polynomials. We show
that such a semigroup $G$ satisfies either (I) every fiberwise Julia set is a qua-
sicircle with uniform distortion, or (II) for almost every sequence $7\in\Gamma^{\mathrm{N}}$ , the
Julia set $J_{\gamma}$ is a Jordan curve but not a quasicircle, the basin of infinity $A_{\gamma}$

is a John domain, and the bounded component $U_{\gamma}$ of the Fatou set is not a
John domain, or (III) for every a, $\beta\in\Gamma^{\mathrm{N}}$ , the intersection of the Julia sets $J_{\alpha}$

and $J_{\beta}$ is not empty, and $J(G)$ is arcwise connected (cf. Theorem 2.30). Fur-
thermore, we also classify the hyperbolic, postcritically bounded, polynomial
semigroups generated by a compact family $\Gamma$ of polynomials. We show that .
such a semigroup $G$ satisfies either (I) above, or (II) above, or (III) for every
$\alpha,$

$\beta\in\Gamma^{\mathrm{N}}$ , the intersection of the Julia sets $J_{\alpha}$ and $J_{\beta}$ is not empty, $J(G)$

is arcwise connected, and for every sequence $\gamma\in\Gamma^{\mathrm{N}}$ , there exist infinitely
many bounded components of the Fatou set $F_{\gamma}$ (cf. Theorem 2.32). We
give some examples of situation (II) above (cf. Example 2.27, Example 2.33
and Section 2.3). Note that situation (II) above is a special phenomenon of
random dynamics of polynomials that does not occur in the usual dynamics
of polynomials.
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The key to investigating the dynamics of postcritically bounded polyno-
mial semigroups is the density of repelling fixed points in the Julia set (cf.
Theorem 3.2), which can be shown by an application of the Ahlfors five island
theorem, and the lower semi-continuity of $\gamma\vdasharrow J_{\gamma}$ (Lemma 3.4-2), which is a
consequence of potential theory. Moreover, one of the keys to investigating
the fiberwise dynamics of skew products is, the observation of non-constant
limit functions (cf. Lemma 3.12 and [S1]). The key to investigating the
dynamics of semi-hyperbolic polynomial semigroups is, the continuity of the
map $\gamma\vdasharrow J_{\gamma}$ (this is highly nontrivial; see [S1]) and the Johnness of the basin
$A_{\gamma}$ of infinity (cf. [S4]). Note that the continuity of the map $\gamma\mapsto J_{\gamma}$ does
not hold in general, if we do not assume semi-hyperbolicity. Moreover, one
of the original aspects of this paper is the idea of “combining both the theory
of rational semigroups and that of random complex dynamics” It is quite
natural to investigate both fields simultaneously. However, no study thus far
has done so.

Furthermore, in Section 2.3, we provide a way of constructing examples of
postcritically bounded polynomial semigroups with some additional proper-
ties (disconnectivity of Julia set, semi-hyperbolicity, hyperbolicity, etc.) (cf.
Proposition 2.36, Theorem 2.39, Theorem 2.42). For example, by Proposi-
tion 2.36, there exists a 2-generator postcritically bounded polynomial semi-
group $G=\langle h_{1}, h_{2}\rangle$ with disconnected Julia set such that $h_{1}$ has a Siegel
disk.

As wee see in Example 1.4 and Section 2.3, it is not difficult to construct
many examples, it is not difficult to verify the hypothesis “postcritically
bounded”, and the class of postcritically bounded polynomial semigroups is
very wide.

Throughout the paper, we will see many phenomena in polynomial semi-
groups or random dynamics of polynomials that do not occur in the usual
dynamics of polynomials.

In Section 2, we present the main results of this paper. We give some
tools in Section 3. The proofs of the main results are given in Section 4.

2 Main results
In order to state the main results, we give some notations and definitions.

Definition 2.1. We set Rat: $=$ { $h:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}|h$ is a non-constant rational map}
endowed with the topology induced by uniform convergence on $\hat{\mathbb{C}}$ with respect
to the spherical distance. We set Poly $:=\{h:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}|h$ is a non-constant
polynomial map} endowed with the relative topology from Rat. Moreover,
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we set $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}:=$ { $g\in$ Poly $|\deg(g)\geq 2$} endowed with the relative
topology from Rat.

Remark 2.2. Let $d\geq 1,$ $\{p_{n}\}_{n\in \mathrm{N}}$ a sequence of polynomials of degree $d$ , and
$p$ a polynomial. Then, $p_{n}arrow p$ in Poly if and only if the coefficients converge
appropriately and $p$ is of degree $d$ .
Definition 2.3. Let $\mathcal{G}$ be the set of all polynomial semigroups $G$ with the
following properties:

$\bullet$ each element of $G$ is of degree at least two, and

$\bullet$ $P^{*}(G)$ is bounded in $\mathbb{C}$ , i.e., $G$ is postcritically bounded.

Furthermore, we set $\mathcal{G}_{con}=$ { $G\in \mathcal{G}|J(G)$ is connected} and $g_{di\epsilon}=\{G\in$

$\mathcal{G}|J(G)$ is disconnected}.
Notation: For a polynomial semigroup $G$ , we denote by $J=J_{G}$ the set of
all connected components $J$ of $J(G)$ such that $J\subset$ C. Moreover, we denote
by $\hat{J}=\hat{J}_{G}$ the set of all connected components of $J(G)$ .
Remark 2.4. If a polynomial semigroup $G$ is generated by a compact set
in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$, then $\infty\in F(G)$ and thus $J=\hat{J}$ .
Definition 2.5. For any connected sets $K_{1}$ and $K_{2}$ in $\mathbb{C},$

“$K_{1}\leq K_{2}$” indi-
cates that $K_{1}=K_{2}$ , or $K_{1}$ is included in a bounded component of $\mathbb{C}\backslash K_{2}$ .
Furthermore, “$K_{1}<K_{2}$

” indicates $K_{1}\leq K_{2}$ and $K_{1}\neq K_{2}$ . Note that $”\leq$” is
a partial order in the space of all non-empty compact connected sets in C.
This $”\leq$

” is called the surrounding order.

Deflnition 2.6. For a polynomial semigroup $G$ , we set

$\hat{K}(G):=$ { $z \in \mathbb{C}|\bigcup_{g\in G}\{g(z)\}$
is bounded in $\mathbb{C}$ }

and call $\hat{K}(G)$ the smallest filled-in Julia set of $G$ . For a polynomial $g$ ,
we set $K(g):=\hat{K}(\langle g\rangle)$ .
Notation: For a set $A\subset\hat{\mathbb{C}}$ , we denote by int $(A)$ the set of all interior points
of $A$ .
Notation: For a polynomial semigroup $G$ with $\infty\in F(G)$ , we denote by
$F_{\infty}(G)$ the connected component of $F(G)$ containing $\infty$ . Moreover, for a
polynomial $g$ with $\deg(g)\geq 2$ , we set $F_{\infty}(g):=F_{\infty}(\langle g\rangle)$ .

In [Sll], the following results (Theorem 2.7, Theorem 2.8 and Proposi-
tion 2.9) were shown. These results are used to present the main result of
this paper.
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Theorem 2.7 $([\mathrm{S}11])$ . Let $G\in \mathcal{G}$ (possibly generated by a non-compact
family). Then

1. $(J, \leq)$ is totally ordered.

2. Each connected component of $F(G)$ is either simply or doubly con-
nected.

S. For any $g\in G$ and any connected component $J$ of $J(G)$ , we have
that $g^{-1}(J)$ is connected. Let $g^{*}(J)$ be the connected component of
$J(G)$ containing $g^{-1}(J)$ . If $J\in J$ , then $g^{*}(J)\in J$ . If $J_{1},$ $J_{2}\in J$ and
$J_{1}\leq J_{2}$ , then $g^{-1}(J_{1})\leq g^{-1}(J_{2})$ and $g^{*}(J_{1})\leq g^{*}(J_{2})$ .

Theorem 2.8 $([\mathrm{S}11])$ . Let $G\in \mathcal{G}_{di\epsilon}$ . Under the above notation, we have the
follouring.

1. We have that $\infty\in F(G)$ and the connected component $F_{\infty}(G)$ of $F(G)$

containing $\infty$ is simply connected. hrthermore, the element $J_{\max}=$

$J_{\mathrm{m}\alpha}(G)\in J$ containing $\partial F_{\infty}(G)$ is the unique element of $J$ satisfying
that $J\leq J_{\mathrm{m}\mathrm{r}}$ for each $J\in$ J.

2. There exists a unique element $J_{\min}=J_{\min}(G)\in J$ such that $J_{\min}\leq J$

for each element $J\in J$ . Furtherrr ore, let $D$ be the unbounded compo-
nent of $\mathbb{C}\backslash J_{\min}$ . Then, $P^{*}(G)\subset\hat{K}(G)\subset \mathbb{C}\backslash D$ and $\partial\hat{K}(G)\subset J_{\min}$ .

3. We have that int $(\hat{K}(G))\neq\emptyset$ .
Proposition 2.9 $([\mathrm{S}\mathrm{l}1])$ . Let $G$ be a polynomial semigroup generated by a
compact subset $\Gamma$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$. Suppose that $G\in \mathcal{G}_{dis}$ . Then, there exists an
element $h_{1}\in\Gamma$ unth $J(h_{1})\subset J_{\max}$ and there exists an element $h_{2}\in\Gamma$ with
$J(h_{2})\subset J_{\min}$ .

Notation: We denote by $d$ the spherical distance on $\hat{\mathbb{C}}$ . Given $A\subset\hat{\mathbb{C}}$ and
$z\in\hat{\mathbb{C}}$ , we set $d(z, A):= \inf\{d(z, w)|w\in A\}$ . Given $A\subset\hat{\mathbb{C}}$ and $\epsilon>0$ , we
set $B(A, \epsilon):=\{a\in\hat{\mathbb{C}}|d(a, A)<\epsilon\}$ . Furthermore, given $A\subset \mathbb{C},$ $z\in \mathbb{C}$ ,
and $\epsilon>0$ , we set $d_{\mathrm{e}}(z, A):= \inf\{|z-w||w\in A\}$ and $D(A, \epsilon):=\{a\in \mathbb{C}|$

$d_{\epsilon}(a, A)<\epsilon\}$ .

Definition 2.10 $([\mathrm{S}1],[\mathrm{S}4])$ .
1. Let $X$ be a compact metric space, $g$ : $Xarrow X$ a continuous map,

and $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ a continuous map. We say that $f$ is a
rational skew product (or fibered rational map on trivial bundle $X\cross\hat{\mathbb{C}}$)
over $g$ : $Xarrow X$ , if $\pi\circ f=g\mathrm{o}\pi$ where $\pi$ : $X\cross\hat{\mathbb{C}}arrow X$ denotes
the natural projection, and if for each $x\in X$ , the restriction $f_{x}:=$
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$f|_{\pi^{-1}\{x\}}$ : $\pi^{-1}\{x\}arrow\pi^{-1}\{g(x)\}$ of $f$ is a non-constant rational map,
under the canonical identification $\pi^{-1}\{x’\}\cong\hat{\mathbb{C}}$ for each $x’\in X$ . Let
$d(x)=\deg(f_{x})$ , for each $x\in X$ . Let $f_{x,n}$ be the rational map defined
by: $f_{x,n}(y)=\pi_{\hat{\mathbb{C}}}(f^{n}(x, y))$ , for each $n\in \mathrm{N},$ $x\in X$ and $y\in\hat{\mathbb{C}}$ , where

$\wedge$

$\pi_{\hat{\mathbb{C}}}$ : $X\cross \mathbb{C}arrow \mathbb{C}$ is the projection map.
Moreover, if $f_{x,1}$ is a polynomial for each $x\in X$ , then we say that
$f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ is a polynomial skew product over $g:Xarrow X$.

2. Let $\Gamma$ be a compact subset of Rat. We set $\Gamma^{\mathrm{N}}:=\{\gamma=(\gamma_{1}, \gamma_{2}, \ldots)|$

$\forall j,\gamma_{j}\in\Gamma\}$ endowed with the product topology. This is a compact
metric space. Let $\sigma$ : $\Gamma^{\mathrm{N}}arrow\Gamma^{\mathrm{N}}$ be the shift map, which is defined by
$\sigma(\gamma_{1}, \gamma_{2}, \ldots):=(\gamma_{2}, \gamma_{3}, \ldots)$ . Moreover, we define a map $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow$

$\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ by: $(\gamma, y)rightarrow(\sigma(\gamma), \gamma_{1}(y))$ , where $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)$ . This is
called the skew product associated with the family $\Gamma$ of rational
maps. Note that $f_{\gamma,n}(y)=\gamma_{n^{\circ\cdots\circ}}\gamma_{1}(y)$ .

Remark 2.11. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a rational skew product over
$g:Xarrow X$. Then, the function $xrightarrow d(x)$ is continuous in $X$.

Definition 2.12 $([\mathrm{S}1],[\mathrm{S}4])$ . Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a rational skew
product over $g:Xarrow X$. Then, we use the following notation.

1. For each $x\in X$ and $n\in \mathrm{N}$ , we set $f_{x}^{n}:=f^{n}|_{\pi^{-1}\{x\}}$ : $\pi^{-1}\{x\}arrow$

$\pi^{-1}\{g^{n}(x)\}\subset X\cross\hat{\mathbb{C}}$.

2. For each $x\in X$ , we denote by $F_{x}(f)$ the set of points $y\in\hat{\mathbb{C}}$ which
has a neighborhood $U$ in $\hat{\mathbb{C}}$ such that $\{f_{x,n} : Uarrow\hat{\mathbb{C}}\}_{n\in \mathrm{N}}$ is normal.
Moreover, we set $F^{x}(f):=\{x\}\cross F_{x}(f)(\subset X\cross\hat{\mathbb{C}})$ .

3. For each $x\in X$ , we set $J_{x}(f):=\hat{\mathbb{C}}\backslash F_{x}(f)$ . Moreover, we set $J^{x}(f)$ $:=$

$\{x\}\cross J_{x}(f)(\subset X\cross\hat{\mathbb{C}})$ . These sets $J^{x}(f)$ and $J_{x}(f)$ are called the
fiberwise Julia sets.

4. We set $\tilde{J}(f):=\overline{\bigcup_{x\in X}J^{x}(f)}$, where the closure is taken in the product
space $X\cross\hat{\mathbb{C}}$ .

5. For each $x\in X$ , we set $\hat{J}^{x}(f):=\pi^{-1}\{x\}\cap\tilde{J}(f)$ . Moreover, we set
$\hat{J}_{x}(f):=\pi_{\hat{\mathbb{C}}}(\hat{J}^{x}(f))$ .

6. We set $\tilde{F}(f):=(X\cross\hat{\mathbb{C}})\backslash \tilde{J}(f)$ .
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Remark 2.13. We have $\hat{J}^{x}(f)\supset J^{x}(f)$ and $\hat{J}_{x}(f)\supset J_{x}(f)$ . However, strict
containment can occur. For example, let $h_{1}$ be a polynomial having a Siegel
disk with center $z_{1}\in \mathbb{C}$ . Let $h_{2}$ be a polynomial such that $z_{1}$ is a repelling
fixed point of $h_{2}$ . Let $\Gamma=\{h_{1}, h_{2}\}$ . Let $f$ : $\Gamma\cross\hat{\mathbb{C}}arrow\Gamma\cross\hat{\mathbb{C}}$ be the skew
product associated with the family F. Let $x=(h_{1}, h_{1}, h_{1}, \ldots)\in\Gamma^{\mathrm{N}}$ . Then,
$(x, z_{1})\in\hat{J}^{x}(f)\backslash J^{x}(f)$ and $z_{1}\in\hat{J}_{x}(f)\backslash J_{x}(f)$ .
Definition 2.14. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a polynomial skew prod-
uct over $g$ : $Xarrow X$. Then for each $x\in X$ , we set $K_{x,\wedge}(f):=\{y\in$

$\hat{\mathbb{C}}|\{f_{x,n}(y)\}_{n\in \mathrm{N}}$ is bounded in $\mathbb{C}$ }, and $A_{x}(f):=\{y\in \mathbb{C}|f_{x,n_{\wedge}}(y)arrow$

$\infty,$ $narrow\infty\}$ . Moreover, we set $K^{x}(f):=\{x\}\cross K_{x}(f)(\subset X\cross \mathbb{C})$ and
$A^{x}(f):=\{x\}\cross A_{x}(f)(\subset X\cross\hat{\mathbb{C}})$ .
Definition 2.15. Let $G$ be a polynomial semigroup generated by a subset
$\Gamma$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Suppose $G\in \mathcal{G}_{dis}$ . Then we set

$\Gamma_{\min}:=\{h\in\Gamma|J(h)\subset J_{\min}\}$ ,

where $J_{\min}$ denotes the unique minimal element in $(J, \leq)$ in Theorem 2.8-
2. Furthermore, if $\Gamma_{\min}\neq\emptyset$ , let $G_{\min,\Gamma}$ be the subsemigroup of $G$ that is
generated by $\Gamma_{\min}$ .
Remark 2.16. Let $G$ be a polynomial semigroup generated by a compact
subset $\Gamma$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Suppose $G\in \mathcal{G}_{dis}$ . Then, by Proposition 2.9, we have
$\Gamma_{\min}\neq\emptyset$ and $\Gamma\backslash \Gamma_{\min}\neq\emptyset$ . Moreover, $\Gamma_{\min}$ is a compact subset of F. For,
if $\{h_{\mathrm{n}}\}_{n\in \mathrm{N}}\subset\Gamma_{\min}$ and $h_{n}arrow h_{\infty}$ in $\Gamma$ , then for a repelling periodic point
$z_{0}\in J(h_{\infty})$ of $h_{\infty}$ , we have that $d(z_{0}, J(h_{n}))arrow 0$ as $narrow\infty$ , which implies
that $z_{0}\in J_{\min}$ and thus $h_{\infty}\in\Gamma_{\min}$ .
Notation: Let .7‘ $:=\{\varphi_{n}\}_{n\in \mathrm{N}}$ be a sequence of meromorphic functions in a
domain $V$. We say that a meromorphic function $\psi$ is a limit function of $F$

if there exists a strictly increasing sequence $\{n_{j}\}_{j\in \mathrm{N}}$ of positive integers such
that $\varphi_{n_{j}}arrow\psi$ locally uniformly on $V$ , as $jarrow\infty$ .

Definition 2.17. Let $G$ be a rational semigroup.

1. We say that $G$ is hyperbolic if $P(G)\subset F(G)$ .

2. We say that $G$ is semi-hyperbolic if there exists a number $\delta>0$ and
a number $N\in \mathrm{N}$ such that for each $y\in J(G)$ and each $g\in G$ , we
have $\deg(g : Varrow B(y, \delta))\leq N$ for each connected component $V$ of
$g^{-1}(B(y, \delta))$ , where $B(y, \delta)$ denotes the ball of radius 6 with center $y$

with respect to the spherical distance, and $\deg(g:\cdotarrow\cdot)$ denotes the de-
gree of finite branched covering. (For background of semi-hyperbolicity,
see [S1] and [S4].)
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Definition 2.18. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a rational skew product over
$g:Xarrow X$. We set

$C(f):=$ { $(x,$ $y)\in X\cross\hat{\mathbb{C}}|y$ is a critical point of $f_{x,1}$ }.

Moreover, we set $P(f):=\overline{\bigcup_{n\in \mathrm{N}}f^{n}(C(f))}$ , where the closure is taken in the
product space $X\cross \mathbb{C}$ . This $P(f)$ is called the fiber-postcritical set of $f$.

We say that $f$ is hyperbolic (along fibers) if $P(f)\subset F(f)$ .

Definition 2.19 $([\mathrm{S}1])$ . Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a rational skew product
over $g$ : $Xarrow X$. Let $N\in \mathrm{N}$ . We say that a point $(x_{0}, y_{0})\in X\cross\hat{\mathbb{C}}$ belongs to
$SH_{N}(f)$ if there exists a neighborhood $U$ of $x_{0}$ in $X$ and a positive number
$\delta$ such that for any $x\in U$ , any $n\in \mathrm{N}$ , any $x_{n}\in g^{-n}(x)$ , and any con-
nected component $V$ of $(f_{x_{n},n})^{-1}(B(y_{0}, \delta)),$ $\deg(f_{x_{n},n} : Varrow B(y_{0}, \delta))\leq N$ .
Moreover, we set $UH(f):=(X \cross\hat{\mathbb{C}})\backslash \bigcup_{N\in \mathrm{N}}SH_{N}(f)$ . We say that $f$ is semi-
hyperbolic (along fibers) if $UH(f)\subset\tilde{F}(f)$ .
Remark 2.20. Under the above notation, we have $UH(f)\subset P(f)$ .

Remark 2.21. Let $\Gamma$ be a compact subset of Rat and let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$

be the skew product associated with $\Gamma$ . Let $G$ be the rational semigroup
generated by $\Gamma$ . Then, by Lemma 3.5-1, it is easy to see that $f$ is semi-
hyperbolic if and only if $G$ is semi-hyperbolic. Similarly, it is easy to see that
$f$ is hyperbolic if and only if $G$ is hyperbolic.

Definition 2.22. Let $\Gamma$ and $S$ be non-empty subsets of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ with $S\subset$

F. We set $R(\Gamma, S):=\{\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in\Gamma^{\mathrm{N}}|\#(\{n\in \mathrm{N}|\gamma_{n}\in S\})=\infty\}$ .

2.1 Fiberwise Julia sets that are Jordan curves but not
quasicircles

We present a result on a sufficient condition for a fiberwise Julia set $J_{x}(f)$ to
be a Jordan curve but not a quasicircle. The proofs are given in Section 4.1.

Definition 2.23. Let $K\geq 1$ . A Jordan curve $\xi$ in $\mathbb{C}$ is said to be a K-
quasicircle if there exists a $K$-quasiconformal map $\varphi$ : $\mathbb{C}arrow \mathbb{C}$ such that
$\xi=\varphi(\{z\in \mathbb{C}||z|=1\})$ .
Definition 2.24. Let $V$ be a subdomain of $\hat{\mathbb{C}}$ such that $\partial V\subset$ C. We say
that $V$ is a John domain if there exists a constant $c>0$ and a point $z_{0}\in V$

( $z_{0}=\infty$ when $\infty\in V$) satisfying the following: for all $z_{1}\in V$ there exists an
arc $\xi\subset V$ connecting $z_{1}$ to $z_{0}$ such that for any $z\in\xi$ , we have $\min\{|z-a||$

$a\in\partial V\}\geq c|z-z_{1}|$ .
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Remark 2.25. Let $V$ be a simply connected domain in $\hat{\mathbb{C}}$ such that $\partial V\subset$ C.
It is well-known that if $V$ is a John domain, then $\partial V$ is locally connected
([NV], page 26). Moreover, a Jordan curve $\xi\subset \mathbb{C}$ is a quasicircle if and only
if both components of $\hat{\mathbb{C}}\backslash \xi$ are John domains $([\mathrm{N}\mathrm{V}],\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}9.3)$ .

Theorem 2.26. (Theorem A) Let $G$ be a polynomial semigroup generated
by a compact subset $\Gamma$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Suppose that $G\in \mathcal{G}_{dis}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow$

$\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with the family $\Gamma$ of polynomials. Let
$m\in \mathrm{N}$ and suppose that there exists an element $(h_{1}, h_{2}, \ldots, h_{m})\in\Gamma^{m}$ such
that $J(h_{m}\circ\cdots\circ h_{1})$ is not a quasicircle. Let $\alpha=(\alpha_{1}, \alpha_{2}, \ldots)\in\Gamma^{\mathrm{N}}$ be the
element such that for each $k,$ $l\in \mathrm{N}\cup\{0\}$ with $1\leq l\leq m,$ $\alpha_{km+l}=h_{l}$ . Then,
the following statements 1 and 2 hold.

1. $Suppo\mathit{8}e$ that $G$ is hyperbolic. Let $\gamma\in R(\Gamma, \Gamma\backslash \Gamma_{\min})$ be an element
such that there exists a sequence $\{n_{k}\}_{k\in \mathrm{N}}$ of positive integers satisfying
that $\sigma^{n_{k}}(\gamma)arrow\alpha$ as $karrow\infty$ . Then, $J_{\gamma}(f)$ is a Jordan $cu7we$ but not a
quasicircle. Moreover, the unbounded component $A_{\gamma}(f)$ of $F_{\gamma}(f)$ is a
John domain, but the unique bounded component $U_{\gamma}$ of $F_{\gamma}(f)$ is not a
John domain.

2. Suppose that $G$ is semi-hyperbolic. Let $\rho_{0}\in\Gamma\backslash \Gamma_{\min}$ be any element
and let $\beta:=(\rho_{0}, \alpha_{1}, \alpha_{2}, \ldots)\in\Gamma^{\mathrm{N}}$ . Let $\gamma\in R(\Gamma, \Gamma\backslash \Gamma_{\min})$ be an $element\backslash$

such that there exists a sequence $\{n_{k}\}_{k\in \mathrm{N}}$ of positive integers satisfying
that $\sigma^{n_{k}}(\gamma)arrow\beta$ as $karrow\infty$ . Then, $J_{\gamma}(f)$ is a Jordan curve but not a
quasicircle. Moreover, the unbounded component $A_{\gamma}(f)$ of $F_{\gamma}(f)$ is a
John domain, but the unique bounded component $U_{\gamma}$ of $F_{\gamma}(f)$ is not a
John domain.

Example 2.27. Let $g_{1}(z):=z^{2}-1$ and $g_{2}:= \frac{z^{2}}{4}$ . Let $\Gamma:=\{g_{1}^{2}, g_{2}^{2}\}$ . More-
over, let $G$ be the polynomial semigroup generated by $\Gamma$ . Then, it is easy
to see that $G\in \mathcal{G}_{di\epsilon}$ and $G$ is hyperbolic. Moreover, it is easy to see that
$\Gamma_{\min}=\{g_{1}^{2}\}$ . Since $J(g_{1}^{2})$ is not a Jordan curve, we can apply Theorem 2.26.
Setting $\alpha:=(g_{1}^{2}, g_{1}^{2}, g_{1}^{2}, \ldots)\in\Gamma^{\mathrm{N}}$ , it follows that for any

$\gamma\in$ {cv $\in R(\Gamma,$ $\Gamma\backslash \Gamma_{\min})|\exists(n_{k})$ with $\sigma^{n_{k}}(\omega)arrow\alpha$ },

$J_{\gamma}(f)$ is a Jordan curve but not a quasicircle, and $A_{\gamma}(f)$ is a John domain
but the bounded component of $F_{\gamma}(f)$ is not a John domain. (See Figure
1: Julia set of $G$ above. In this example, $\hat{J}_{G}=\{J_{\gamma}(f)|\gamma\in\Gamma^{\mathrm{N}}\}$ and if
$\gamma\neq\omega,$ $J_{\gamma}(f)\cap J_{\omega}(f)=\emptyset.)$
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Figure 1: The Julia set of $G=l\mathrm{o}_{1}^{2},$ $g_{2}^{2}\rangle$ .

2.2 Random dynamics of polynomials and classifica-
tion of compactly generated, (semi-)hyperbolic, poly-
nomial semigroups $G$ in $\mathcal{G}$

In this section, we present some results on the random dynamics of poly-
nomials. Moreover, we present some results on classification of compactly
generated, (semi-) hyperbolic, polynomial semigroups $G$ in $\mathcal{G}$ . The proofs are
given in Section 4.2.

Let $\tau$ be a Borel probability measure in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . We consider the i.i.d.
random dynamics on $\hat{\mathbb{C}}$ such that at every step we choose a polynomial map
$h$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ according to the distribution $\tau$. (Hence, this is a kind of Markov
process on $\hat{\mathbb{C}}$ . )
Notation: For a Borel probability measure $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$, we denote by
$\Gamma_{\tau}$ the support of $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . (Hence, $\Gamma_{\tau}$ is a closed set in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}.$ )
Moreover, we set $\tilde{\tau}:=\otimes_{\mathrm{j}=1}^{\infty}\tau$ . This is a Borel probability measure in $\Gamma_{\tau}^{\mathrm{N}}$ .
Furthermore, we denote by $G_{\tau}$ the polynomial semigroup generated by $\Gamma_{\tau}$ .

Deflnition 2.28. Let $X$ be a complete metric space. A subset $A$ of $X$ is
said to be residual if $A$ is a countable intersection of open dense subsets of
$x$.
Theorem 2.29. (Theorem B) Let $\Gamma$ be a non-empty compact subset of
$\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with the
family $\Gamma$ of polynomials. Let $G$ be the polynomial semigroup generated by $\Gamma$ .
Suppose $G\in \mathcal{G}_{di\epsilon}$ . Then, there exists a residual subset $\mathcal{U}$ of $\Gamma^{\mathrm{N}}$ such that for
each Borel probability measure $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ with $\Gamma_{\tau}=\Gamma$ , we have $\tilde{\tau}(\mathcal{U})=1$ ,
and such that each $\gamma\in \mathcal{U}$ satisfies all of the follounng.

1. There exists exactly one bounded component $U_{\gamma}$ of $F_{\gamma}(f)$ . Furthermore,
$\partial U_{\gamma}=J_{\gamma}(f)$ .
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2. Each limit function of $\{f_{\gamma,n}\}_{n}$ in $U_{\gamma}$ is constant. Moreover, for each
$y\in U_{\gamma}$ , there exists a number $n\in \mathrm{N}$ such that $f_{\gamma,n}(y)\in \mathrm{i}\mathrm{n}\mathrm{t}(\hat{K}(G))$ .

3. $\hat{J}_{\gamma}(f)=J_{\gamma}(f)$ . Moreover, the map $\omega-\rangle$ $J_{\omega}(f)$ defined on $\Gamma^{\mathrm{N}}$ is con-
tinuous at $\gamma$ , with respect to the Hausdorff topology in the space of
non-empty compa$ct$ subsets of $\hat{\mathbb{C}}$ .

4. The 2-dimensional Lebesgue measure of $\hat{J}_{\gamma}(f)=J_{\gamma}(f)$ is equal to zero.

Next we present a result on compactly generated, semi-hyperbolic, poly-
nomial semigroups in $\mathcal{G}$ .

Theorem 2.30. $\sigma \mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{C}$) Let $\Gamma$ be a non-empty compact subset of
$\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with the
family $\Gamma$ of polynomials. Let $G$ be the polynomial semigroup generated by $\Gamma$ .
Suppose that $G\in \mathcal{G}$ and that $G$ is semi-hyperbolic. Then, exactly one of the
folloutng three statements 1, 2, and 3 holds.

1. $G$ is hyperbolic. Moreover, there enists a constant $K\geq 1$ such that for
each $\gamma\in\Gamma^{\mathrm{N}},$ $J_{\gamma}(f)$ is a K-quasicircle.

2. There exists a residual subset $\mathcal{U}$ of $\Gamma^{\mathrm{N}}$ such that for each Borel prob-
ability measure $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ with $\Gamma_{\tau}=\Gamma$ , we have $\tilde{\tau}(\mathcal{U})=1$ , and
such that for each $\gamma\in \mathcal{U},$ $J_{\gamma}(f)$ is a Jordan $cu7we$ but not a quasicircle,
$A_{\gamma}(f)$ is a John domain, and the bounded component of $F_{\gamma}(f)$ is not a
John domain. Moreover, there exists a dense subset $\mathcal{V}$ of $\Gamma^{\mathrm{N}}$ such that
for each $\gamma\in \mathcal{V},$ $J_{\gamma}(f)$ is not a Jordan curve. Furthermore, there evist
two elements $\alpha,$

$\beta\in\Gamma^{\mathrm{N}}$ such that $J_{\beta}(f)<J_{\alpha}(f)$ .
3. There exists a dense set $\mathcal{V}$ in $\Gamma^{\mathrm{N}}$ such that for each $7\in \mathcal{V}_{f}J_{\gamma}(f)$ is

not a Jordan curve. Moreover, for each $\alpha,$
$\beta\in\Gamma^{\mathrm{N}}\prime J_{\alpha}(f)\cap J_{\beta}(f)\neq\emptyset$.

$hrthemooe_{f}J(G)$ is arcwise connected.

Corollary 2.31. Let $\Gamma$ be a non-empty compact subset of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let
$f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with the family $\Gamma$

of polynomials. Let $G$ be the polynomial semigroup generated by F. Suppose
that $G\in \mathcal{G}_{di\epsilon}$ and that $G$ is semi-hyperbolic. Then, either statement 1 or
statement 2 in Theorem 2. $\mathit{3}0$ holds. In particular, for any Borel Probability
measure $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ with $\Gamma_{\tau}=\Gamma$ , for almost every $\gamma\in\Gamma_{\tau}^{\mathrm{N}}$ with respect to
$\tilde{\tau},$ $J_{\gamma}(f)$ is a Jordan curve.

We now classify compactly generated, hyperbolic, polynomial semigroups
in $\mathcal{G}$ .
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Theorem 2.32. (Theorem D) Let $\Gamma$ be a non-empty compact subset of
$\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with the
family F. Let $G$ be the polynomial semigroup generated by F. Suppose that
$G\in \mathcal{G}$ and that $G$ is hyperbolic. Then, exactly one of the following three
statements 1, 2, 3 holds.

1. There exists a constant $K\geq 1$ such that for each $\gamma\in\Gamma^{\mathrm{N}},$ $J_{\gamma}(f)$ is a
K-quasicircle.

2. There exists a residual subset $\mathcal{U}$ of $\Gamma^{\mathrm{N}}$ such that for each Borel prob-
ability measure $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ with $\Gamma_{\tau}=\Gamma$ , we have $\tilde{\tau}(\mathcal{U})=1$ , and
such that for each $\gamma\in \mathcal{U},$ $J_{\gamma}(f)$ is a Jordan $cu7ve$ but not a quasicircle,
$A_{\gamma}(f)$ is a John domain, and the bounded component of $F_{\gamma}(f)$ is not
a John domain. Moreover, there exists a dense subset $\mathcal{V}$ of $\Gamma^{\mathrm{N}}$ such
that for each $\gamma\in \mathcal{V},$ $J_{\gamma}(f)$ is a quasicircle. hrthermooe, there evists
a dense subset $\mathcal{W}$ of $\Gamma^{\mathrm{N}}$ such that for each $\gamma\in \mathcal{W}$ , there are infinitely
many bounded connected components of $F_{\gamma}(f)$ .

3. For each $\gamma\in\Gamma^{\mathrm{N}}$, there are infinitely many bounded connected com-
ponents of $F_{\gamma}(f)$ . Moreover, for each a, $\beta\in\Gamma^{\mathrm{N}}fJ_{\alpha}(f)\cap J_{\beta}(f)\neq\emptyset$ .
Furthermore, $J(G)$ is arcwise connected.

Example 2.33. Let $h_{1}(z):=z^{2}-1$ and $h_{2}(z):=az^{2}$ , where $a\in \mathbb{C}$ with
$0<|a|<0.1$ . Let $\Gamma:=\{h_{1}, h_{2}\}$ . Moreover, let $G:=\langle h_{1}, h_{2}\rangle$ . Let $U:=\{|z|<$

$0.2\}$ . Then, it is easy to see that $h_{2}(U)\subset U,$ $h_{2}(h_{1_{\wedge}}(U))\subset U$, and $h_{1}^{2}(U)\subset U$.
Hence, $U\subset F(G)$ . It follows that $P^{*}(G)\subset \mathrm{i}\mathrm{n}\mathrm{t}(K(G))\subset F(G)$ . Therefore,
$G\in \mathcal{G}$ and $G$ is hyperbolic. Since $J(h_{1})$ is not a Jordan curve and $J(h_{2})$ is a
Jordan curve, Theorem 2.32 implies that there exists a residual subset $\mathcal{U}$ of
$\Gamma^{\mathrm{N}}$ such that for each Borel probability measure $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ with $\Gamma_{\tau}=\Gamma$ ,
we have $\overline{\tau}(\mathcal{U})=1$ , and such that for each $\gamma\in \mathcal{U},$ $J_{\gamma}(f)$ is a Jordan curve but
not a quasicircle. Moreover, for each $\gamma\in \mathcal{U},$ $A_{\gamma}(f)$ is a John domain, but the
bounded component of $F_{\gamma}(f)$ is not a John domain. Furthermore, by [Sll],
$J(G)$ is connected.

Remark 2.34. Let $h\in \mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ be a polynomial. Suppose that $J(h)$ is a
Jordan curve but not a quasicircle. Then, it is easy to see that there exists
a parabolic fixed point of $h$ in $\mathbb{C}$ and the bounded connected component of
$F(h)$ is the immediate parabolic basin. Hence, $\langle h\rangle$ is not semi-hyperbolic.
Moreover, by [CJY], $F_{\infty}(h)$ is not a John domain.

Thus what we see in statement 2 in Theorem 2.30 and statement 2 in
Theorem 2.32, as illustrated in Example 2.27, Example 2.33, the following
Section 2.3 and Proposition 2.40, is a special phenomenon which can hold
in the random dynamics of a family of polynomials, but cannot hold in the
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usual iteration dynamics of a single polynomial. Namely, it can hold that for
almost every $\gamma\in\Gamma^{\mathrm{N}},$ $J_{\gamma}(f)$ is a Jordan curve and fails to be a quasicircle all
while the basin of infinity $A_{\gamma}(f)$ is still a John domain. Whereas, if $J(h)$ ,
for some polynomial $h$ , is a Jordan curve which fails to be a quasicircle, then
the basin of infinity $F_{\infty}(h)$ is necessarily not a John domain.

Pilgrim and Tan Lei $([\mathrm{P}\mathrm{T}])$ showed that there exists a hyperbolic ratio-
nal map $h$ with disconnected Julia set such that “almost every” connected
component of $J(h)$ is a Jordan curve but not a quasicircle.

Proposition 2.35. Let $\Gamma$ be a non-empty compact subset of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let
$f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with the family $\Gamma$ . Let $G$

be the polynomial semigroup generated by F. Suppose that $P”(G)\dot{i}$ included
in a connected component of int $(\hat{K}(G))$ . Then, there exists a constant $K\geq 1$

such that for each $\gamma\in\Gamma^{\mathrm{N}},$ $J_{\gamma}(f)$ is a K-quasicircle.

2.3 Construction of examples
We present a way to construct examples of semigroups $G$ in $\mathcal{G}_{dis}$ .

Proposition 2.36. Let $G$ be a polynomial semigroup generated by a compact
subset $\Gamma$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Suppose that $G\in \mathcal{G}$ and int $(K(G))\neq\emptyset$ . Let $b\in$

$\mathrm{i}\mathrm{n}\mathrm{t}(\hat{K}(G))$ . Moreover, let $d\in \mathrm{N}$ be any positive integer such that $d\geq 2$ , and
such that $(d, \deg(h))\neq(2,2)$ for each $h\in\Gamma$ . Then, there exists a number
$c>0$ such that for each $a\in \mathbb{C}$ with $0<|a|<c$ , there exists a compact
neighborhood $V$ of $g_{a}(z)=a(z-b)^{d}+b$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ satishing that for any
non-empty subset $V’$ of $V$ , the polynomial semigroup $H_{\Gamma,V’}$ generated by the
family $\Gamma\cup V’$ belongs to $\mathcal{G}_{di\epsilon},\hat{K}(H_{\Gamma,V’})=\hat{K}(G)$ and $(\Gamma\cup V’)_{\min}=\Gamma_{\min}$ .
Moreover, in addition to the assumption above, if $G$ is semi-hyperbolic (resp.
hyperbolic), then the above $H_{\Gamma,V’}$ is semi-hyperbolic (resp. hyperbolic).

Remark 2.37. By Proposition 2.36, there exists a 2-generator polynomial
semigroup $G=\langle h_{1}, h_{2}\rangle$ in $\mathcal{G}_{dis}$ such that $h_{1}$ has a Siegel disk.

Definition 2.38. Let $d\in \mathrm{N}$ with $d\geq 2$ . We set $\mathcal{Y}_{d}:=\{h\in$ Poly $|\deg(h)=$

$d\}$ endowed with the relative topology from Poly.

Theorem 2.39. Let $m\geq 2$ and let $d_{1},$ $d_{2},$
$\ldots,$

$d_{m}\in \mathrm{N}$ such that $d_{j}\geq 2$ for
each $j=1,$ $\ldots,$ $m$ . Let $h_{1}\in \mathcal{Y}_{d_{1}}$ with int $(K(h_{1}))\neq\emptyset$ such that $\langle h_{1}\rangle\in \mathcal{G}$ . Let
$b_{2},$ $b_{3},$

$\ldots,$
$b_{m}\in \mathrm{i}\mathrm{n}\mathrm{t}(K(h_{1}))$ . Then, all of the following statements hold.

1. Suppose that $\langle h_{1}\rangle$ is semi-hyperbolic (resp. hyperbolic). Then, there
exists a number $c>0$ such that for each $(a_{2}, a_{3}, \ldots, a_{m})\in \mathbb{C}^{m-1}$ with
$0<|a_{j}|<c$ $(j=2, \ldots , m)$, setting $h_{j}(z)=a_{j}(z-b_{j})^{d_{\dot{g}}}+b_{j}(j=$
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2, . . . , $m$), the polynomial semigroup $G=\langle h_{1}, \ldots , h_{m}\rangle$ satisfies that
$G\in \mathcal{G},$ $K(G)=K(h_{1})$ and $G$ is semi-hyperbolic (resp. hyperbolic).

2. Suppose that $\langle h_{1}\rangle$ is semi-hyperbolic (resp. hyperbolic). Suppose also
that either (i) there exists a $j\geq 2$ with $d_{j}\geq 3$ , or (ii) $d_{1}=3$ ,
$b_{2}=\cdots=b_{m}$ . Then, there exist $a_{2},$ $a_{3},$ $\ldots,$ $a_{m}>0$ such that set-
ting $h_{j}(z)=a_{j}(z-b_{j})^{d_{j}}+b_{j}(j=2, \ldots, m)$, the polynomial semigroup
$G=\langle h_{1}, h_{2}, \ldots, h_{m}\rangle$ satisfies that $G\in \mathcal{G}_{di\epsilon},\hat{K}(G)=K(h_{1})$ and $G$ is
semi-hyperbolic (resp. hyperbolic).

Proposition 2.40. Let $h_{1}$ be a polynomial with $\deg(h_{1})\geq 2$ such that $\langle h_{1}\rangle$ is
semi-hyperbolic (resp. hyperbolic), $P(\langle h_{1}\rangle)\backslash \{\infty\}$ is bounded in $\mathbb{C},$ $\mathrm{i}\mathrm{n}\mathrm{t}(K(h_{1}))$

$\neq\emptyset$ , and $J(h_{1})$ is not a Jordan curve. Moreover, let $d\in \mathrm{N}$ with $d\geq 2$ and
let $b\in \mathrm{i}\mathrm{n}\mathrm{t}(K(h_{1}))$ . Then, there exists a number $c>0$ such that for each
$a\in \mathbb{C}$ with $0<|a|<c$ , setting $h_{2}(z):=a(z-b)^{d}+b\in \mathcal{Y}_{d}$ and seuing
$\Gamma=\{h_{1}, h_{2}\}$ , statement 2 in Theorem $C$ (resp. statement 2 in Theorem $D$)
holals.

Definition 2.41. Let $m\in$ N. We set

$\bullet$ $\mathcal{H}_{m}:=$ { $(h_{1},$
$\ldots$ \dagger

$h_{m})\in(\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2})^{m}|\langle h_{1},$
$\ldots,$

$h_{m}\rangle$ is hyperbolic},
$\bullet$ $B_{m}:=\{(h_{1}, \ldots, h_{m})\in(\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2})^{m}|\langle h_{1}, \ldots, h_{m}\rangle\in \mathcal{G}\}$ , and
$\bullet$ $D_{m}:=$ { $(h_{1},$

$\ldots,$
$h_{m})\in(\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2})^{m}|J(\langle h_{1},$

$\ldots,$
$h_{m}\rangle)$ is disconnected}.

Moreover, let $\pi_{1}$ : $(\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2})^{m}arrow \mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ be the projection defined by
$\pi(h_{1}, \ldots, h_{m})=h_{1}$ .

Theorem 2.42. Under the above notation, all of the following statements
hold.

1. $\mathcal{H}_{m},$ $\mathcal{H}_{m}\cap \mathcal{B}_{m},$ $\mathcal{H}_{m}\cap D_{m}$ , and $\mathcal{H}_{m}\cap B_{m}\cap D_{m}$ are open in $(\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2})^{m}$.

2. Let $d_{1},$
$\ldots$ , $d_{m}\in \mathrm{N}$ such that $d_{j}\geq 2$ for each $j=1,$ $\ldots,m$ .

Then, $\pi_{1}$ : $\mathcal{H}_{m}\cap B_{m}\cap(y_{d_{1}}\cross\cdots\cross y_{d_{m}})arrow \mathcal{H}_{1}\cap$ $B_{1}\cap \mathcal{Y}_{d_{1}}$ is surjective.

3. Let $d_{1},$
$\ldots$ , $d_{m}\in \mathrm{N}$ such that $d_{j}\geq 2$ for $ea\mathrm{c}hj=1,$

$\ldots,$ $m$ and such
that $(d_{1}, \ldots, d_{m})\neq(2,2, \ldots, 2)$ . Then, $\pi_{1}$ : $\mathcal{H}_{m}\cap B_{m}\cap D_{m}\cap(\mathcal{Y}_{d_{1}}\cross$

$\cross y_{d_{m}})arrow \mathcal{H}_{1}\cap \mathcal{B}_{1}\cap \mathcal{Y}_{d_{1}}$ is $su\dot{\eta}ective$ .
Remark 2.43. Combining Proposition 2.36, Theorem 2.39, and Theorem 2.42,
we can construct many examples of semigroups $G$ in $\mathcal{G}$ (or $\mathcal{G}_{di\epsilon}$ ) with some
additional properties (semi-hyperbolicity, hyperbolicity, etc.).
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3 Tools
To show the main results, we need some tools in this section.

3.1 Rndamental properties of rational semigroups
Notation: For a rational semigroup $G$ , we set $E(G):= \{z\in\hat{\mathbb{C}}|\#(\bigcup_{g\in Gg^{-1}}\{z\})$

$<\infty\}$ . This is called the exceptional set of $G$ .

Lemma 3.1 ( $[\mathrm{H}\mathrm{M}1],[\mathrm{G}\mathrm{R}]$ ,[S1]). Let $G$ be a rational semigroup.

1. For each $h\in G$ , we have $h(F(G))\subset F(G)$ and $h^{-1}(J(G))\subset J(G)$ .
Note that we do not have that the equality holds in general.

2. If $G=\langle h_{1}, \ldots, h_{m}\rangle$ , then $J(G)=h_{1}^{-1}(J(G))\cup\cdots\cup h_{m}^{-1}(J(G))$ . More
generally, if $G$ is generated by a compact subset $\Gamma$ of Rat, then $J(G)=$
$\bigcup_{h\in\Gamma}h^{-1}(J(G))$ . (We call this property of the Julia set of a compactly
generated rational semigroup “backward self-similarity. ”)

S. If $\#(J(G))\geq 3$ , then $J(G)$ is a perfect set.

4. If $\#(J(G))\geq 3$ , then $\# E(G)\leq 2$ .

5. If a point $z$ is not in $E(G)$ , then $J(G)\subset\overline{\bigcup_{g\in Gg^{-1}}(\{z\})}$ . In particular
if a point $z$ belongs to $J(G)\backslash E(G)$ , then $\overline{\bigcup_{g\in Gg^{-1}}(\{z\})}=J(G)$ .

6. If $\#(J(G))\geq 3$ , then $J(G)$ is the smallest closed bachvard invariant set
containing at least three points. Here we say that a set $A$ is backward
invariant under $G$ if for each $g\in G,$ $g^{-1}(A)\subset A$ .

Theorem 3.2 ([HM1], [GR], [S1]). Let $G$ be a rational semigroup. If $\#(J(G))$

$\geq 3$ , then $J(G)=\{z\in\hat{\mathbb{C}}|\exists g\in G, g(z)=z, |g’(z)|>1\}$ . In particular,
$J(G)= \bigcup_{g\in G}J(g)$ .

Remark 3.3. If a rational semigroup $G$ contains an element $g$ with $\deg(g)\geq$

$2$ , then $\#(J(g))\geq 3$ , which implies that $\#(J(G))\geq 3$ .

3.2 Kndamental properties of fibered rational maps
Lemma 3.4. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a rational skew product over
$g:Xarrow X$. Then, we have the following.
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1. (Lemma 2.4 in [S1]) For each $x\in X,$ $(f_{x,1})^{-1}(J_{g(x)}(f))=J_{x}(f)$ .
Furthermore, we have $\hat{J}_{x}(f)\supset J_{x}(f)$ . Note that equality $\hat{J}_{x}(f)=$

$J_{x}(f)$ does not hold in general.

If $g:Xarrow X$ is a surjective and open map, then $f^{-1}(\tilde{J}(f))=\tilde{J}(f)=$

$f(\tilde{J}(f))$ , and for each $x\in X,$ $(f_{x,1})^{-1}(\hat{J}_{g(x)}(f))=\hat{J}_{x}(f)$ .

2. ($\mathrm{I}\mathrm{J}]$ , [S1]) If $d(x)\geq 2$ for each $x\in X$ , then for each $x\in X,$ $J_{x}(f)$

is a non-empty perfect set with $\#(J_{x}(f))\geq 3$ . Furthermore, the $map\wedge$

$x\mapsto J_{x}(f)$ is lower semicontinuous; $i.e.$ , for any point $(x, y)\in X\cross \mathbb{C}$

with $y\in J_{x}(f)$ and any sequence $\{x^{n}\}_{n\in \mathrm{N}}$ in $X$ with $x^{n}arrow x$ , there
exzsts a sequence $\{y^{n}\}_{n\in \mathrm{N}}$ in $\hat{\mathbb{C}}$ with $y^{n}\in J_{x^{n}}(f)$ for each $n\in \mathrm{N}$ such
that $y^{n}arrow y$ . However, $x\mapsto J_{x}(f)$ is NOT continuous with respect to
the Hausdorff topology in general.

3. If $d(x)\geq 2$ for each $x\in X$ , then $\inf_{x\in X}diam_{S}J_{x}(f)>0$ , where $diam_{S}$

denotes the diameter with respect to the spherical distance.

4. If $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ is a polynomial skew product and $d(x)\geq 2$ for
each $x\in X$ , then we have that there exists a ball $B$ around $\infty$ such
that for each $x\in X,$ $B\subset A_{x}(f)\subset F_{x}(f)$ , and that for each $x\in X$ ,
$J_{x}(f)=\partial(K_{x}(f))=\partial(A_{x}(f))$ . Moreover, for each $x\in X,$ $A_{x}(f)$ is
connected.

5. Iff : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ is a polynomial skew product and $d(x)\geq 2$

for each $x\in X$ , and if cv $\in X$ is a point such that int $(K_{w}(f))$ is a
non-empty set, then $\overline{\mathrm{i}\mathrm{n}\mathrm{t}(K_{\omega}(f))}=K_{\omega}(f)$ and $\partial(\mathrm{i}\mathrm{n}\mathrm{t}(K_{\omega}(f)))=J_{\mathrm{t}d}(f)$ .

Lemma 3.5. Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be a skew product associated with
a compact subset $\Gamma$ of Rat. Let $G$ be a rational semigroup generated by F.
Suppose that $\#(J(G))\geq 3$ . Then, we have the follout$ng$ .

I. $\pi_{\hat{\mathbb{C}}}(\tilde{J}(f))=J(G)$ .

2. For each $\gamma=(\gamma_{1}, \gamma_{2}, \ldots, )\in\Gamma^{\mathrm{N}},\hat{J}_{\gamma}(f)=\bigcap_{j=1}^{\infty}\gamma_{1}^{-1}\cdots\gamma_{j}^{-1}(J(G))$.

Lemma 3.6. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a polynomial skew product over
$g$ : $Xarrow X$ such that for each $x\in X,$ $d(x)\geq 2$ . $Then_{f}$ the following are
equivalent.

1. $\pi_{\hat{\mathbb{C}}}(P(f))\backslash \{\infty\}$ is bounded in C.

2. For each $x\in X,$ $J_{x}(f)$ is connected.

3. For each $x\in X,\hat{J}_{x}(f)$ is connected.
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Corollary 3.7. Let $G=\langle h_{1}, h_{2}\rangle\in \mathcal{G}$ . Then, $h_{1}^{-1}(J(h_{2}))$ is connected.

Lemma 3.8. Let $G$ be a polynomial semigroup generated by a compact subset
$\Gamma$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with
the family F. Suppose that $G\in \mathcal{G}$ . Then for each $\gamma=(\gamma_{1}, \gamma_{2}, \ldots, )\in\Gamma^{\mathrm{N}}$, the
sets $J_{\gamma}(f),\hat{J}_{\gamma}(f)$ , and $\bigcap_{j=1}^{\infty}\gamma_{1}^{-1}\cdots\gamma_{j}^{-1}(J(G))$ are connected.

Lemma 3.9. Under the same assumption as that in Lemma S.8, let $\gamma,$ $\rho\in$

$\Gamma^{\mathrm{N}}$ be two elements with $J_{\gamma}(f)\cap J_{\rho}(f)=\emptyset$ . Then, either $J_{\gamma}(f)<J_{\rho}(f)$ or
$J_{\rho}(f)<J_{\gamma}(f)$ .

Definition 3.10. Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be a polynomial skew product
over $g$ : $Xarrow X$. Let $p\in \mathbb{C}$ and $\epsilon>0$ . We set
$F_{f,p,\epsilon}:=\{\alpha$ : $D(p, \epsilon)arrow \mathbb{C}|$ $a$ is a well-defined inverse branch of $(f_{x,n})^{-1},$ $x\in$

$X,$ $n\in \mathrm{N}\}$ .

Lemma 3.11. Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be a polynomial skew product over
$g:Xarrow X$ such that for each $x\in X,$ $d(x)\geq 2$ . Let $R>0,$ $\epsilon>0$ , and
$F:=\{a$ $\circ\beta$ : $D(\mathrm{O}, 1)arrow \mathbb{C}|\beta$ : $D(\mathrm{O}, 1)\cong D(p, \epsilon))\alpha$ : $D(p, \epsilon)arrow \mathbb{C},$ $\alpha\in$

$\mathcal{F}_{f,p,\epsilon},$ $p\in D(\mathrm{O}, R)\}$ . Then, $F$ is normal on $D(\mathrm{O}, 1)$ .
The following three results are the keys to prove the main results. In fact,

these are non-trivial and difficult to show.

Lemma 3.12 ([S1], [Sll]). Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a polynomial skew
product over $g:Xarrow X$ such that for each $\omega\in X,$ $\deg(f_{\omega})\geq 2$ . Let $x\in X$ be
a point and $y_{0}\in F_{x}(f)$ a point. Suppose that there exists a strictly increas-
ing sequence $\{n_{j}\}_{j\in \mathrm{N}}$ of positive integers such that the sequence $\{f_{x,n_{\mathrm{j}}}\}_{j\in \mathrm{N}}$

converges to a non-constant map around $y0$ , and such that $\lim_{jarrow\infty}f^{n_{j}}(x, y_{0})$

exists. We set $(x_{\infty}, y_{\infty}):= \lim_{jarrow\infty}f^{n_{j}}(x, y_{0})$ . Then, there exists a non-empty
bounded open set $V$ in $\mathbb{C}$ , a point $x_{\infty}$ in $X$ , and a number $k\in \mathrm{N}$ such that
$\{x_{\infty}\}\cross\partial V\subset\tilde{J}(f)\cap UH(f)\subset\tilde{J}(f)\cap P(f)$ , and such that for each $j$ with
$j\geq k,$ $f_{x,n_{j}}(y_{0})\in V$.

Theorem 3.13 ([S1], Theorem 2.14). Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a semi-
hyperbolic polynomial skew product over $g$ : $Xarrow X$. Suppose that for each
$x\in X,$ $d(x)\geq 2$ . Then, the map $xrightarrow J_{x}(f)$ defined for all $x\in X$ is
continuous, with respect to the Hausdorff topology in the space of non-empty
compact subsets of C.

Theorem 3.14 ([S4], Theorem 1.12). Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a semi-
hyperbolic polynomial skew product over $g$ : $Xarrow X$. Suppose that for each
$x\in X,$ $d(x)\geq 2$ , and that $\pi_{\hat{\mathbb{C}}}(P(f))\cap \mathbb{C}$ is bounded in C. Then, for each
$x\in X,$ $A_{x}(f)$ is a John domain and $J_{x}(f)$ is locally connected.
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Using the above result, we can show the following.

Proposition 3.15. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a semi-hyperbolic polynomial
skew product over $g:Xarrow X$ . Suppose that for each $x\in X,$ $d(x)\geq 2$ , and
that $\pi_{\hat{\mathbb{C}}}(P(f))\cap \mathbb{C}$ is bounded in C. Let $\omega\in X$ be a point. If int $(K_{\omega}(f))$ is a
non-empty connected set, then $J_{\omega}(f)$ is a Jordan curve.

Proof. By ([S4], Theorem 1.12) and Lemma 3.6, we get that the unbounded
component $A_{\omega}(f)$ of $F_{\omega}(f)$ is a John domain and $J_{\omega}(f)=\partial(A_{\omega}(f))$ (cf.
Lemma 3.4) is locally connected. Moreover, by Lemma 3.4-5, we have
$\partial(\mathrm{i}\mathrm{n}\mathrm{t}(K_{\omega}(f)))=J_{\omega}(f)$ . Hence, we see that $\hat{\mathbb{C}}\backslash J_{\omega}(f)$ has exactly two con-
nected components $A_{\gamma}(f)$ and int $(K_{\omega}(f))$ , and that $J_{\omega}(f)$ is locally con-
nected. By Lemma 5.1 in [PT], it follows that $J_{\gamma}(f)$ is a Jordan curve.
Thus, we have proved Proposition 3.15.

4 Proofs of the main results
In this section, we demonstrate the main results.

4.1 Proofs of results in 2.1
In this section, we demonstrate Theorem 2.26. We need the following nota-
tions and lemmas.

Deflnition 4.1. Let $h$ be a polynomial with $\deg(h)\geq 2$ . Suppose that $J(h)$

is connected. Let $\psi$ be a biholomorphic map $\hat{\mathbb{C}}\backslash \overline{D(0,1)}arrow F_{\infty}(h)$ with
$\psi(\infty)=\infty$ such that $\psi^{-1}\circ h\circ\psi(z)=z^{\deg(h)}$ , for each $z\in\hat{\mathbb{C}}\backslash \overline{D(0,1)}$. (For
the existence of the biholomorphic map th, see [M], Theorem 9.5.) For each
$\theta\in\partial D(\mathrm{O}, 1)$ , we set $T(\theta):=\psi(\{r\theta|1<r\leq\infty\})$ . This is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ the external
ray (for $K(h)$ ) with angle $\theta$ .

Lemma 4.2. Let $h$ be a polynomial with $\deg(h)\geq 2$ . Suppose that $J(h)$ is
connected and locally connected and $J(h)$ is not a Jordan curve. Moreover,
suppose that there $e$ vists an attracting periodic point of $h$ in $K(h)$ . Then, for
any $\epsilon>0$ , there enist a point $p\in J(h)$ and elements $\theta_{1},$ $\theta_{2}\in\partial D(\mathrm{O}, 1)$ with
$\theta_{1}\neq\theta_{2}$ , such that all of the following hold.

1. For each $i=1,2$, the extemal ray $T(\theta_{i})$ lands at the point $p$ .

2. Let $V_{1}$ and $V_{2}$ be the two connected components of $\hat{\mathbb{C}}\backslash (T(\theta_{1})\cup T(\theta_{2})\cup$

$\{p\})$ . Then, for each $i=1,2,$ $V_{i}\cap J(h)\neq\emptyset$ . Moreover, there exists an
$i$ such that diam $(V_{i}\cap K(h))\leq\epsilon$ .
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Lemma 4.3. Let $G$ be a polynomial semigroup generated by a compact subset
$\Gamma$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated
with the family $\Gamma$ . Suppose $G\in \mathcal{G}_{dis}$ . Let $m\in \mathrm{N}$ and suppose that there
exists an element $(h_{1}, . . . , h_{m})\in\Gamma^{m}$ such that setting $h=h_{m}\circ\cdot$ . $\circ h_{1}$ ,
$J(h)$ is connected and locally connected, and $J(h)$ is not a Jordan curve.
Moreover, suppose that there exists an attracting $per\dot{\mathrm{v}}odic$ point of $h$ in $K(h)$ .
Let $\alpha=(a_{1}, a_{2}, \ldots)\in\Gamma^{\mathrm{N}}$ be the element such that for each $k,$ $l\in \mathrm{N}\mathrm{U}\{0\}$

with $1\leq l\leq m,$ $a_{km+l}=h_{l}$ . Let $\rho_{0}\in\Gamma\backslash \Gamma_{\min}$ be an element and let
$\beta=(\rho_{0}, \alpha_{1}, \alpha_{2}, \ldots)\in\Gamma^{\mathrm{N}}$. Moreover, let $\psi_{\beta}$ : $\hat{\mathbb{C}}\backslash \overline{D(0,1)}arrow A_{\beta}(f)$ be a
biholomorphic map with $\psi_{\beta}(\infty)=\infty$ . Furthermore, for each $\theta\in\partial D(\mathrm{O}, 1)_{f}$

let $T_{\beta}(\theta)=\psi_{\beta}(\{r\theta|1<r\leq\infty\})$ . Then, for any $\epsilon>0_{f}$ there exist a point
$p\in J_{\beta}(f)$ and elements $\theta_{1},$ $\theta_{2}\in\partial D(\mathrm{O}, 1)$ with $\theta_{1}\neq\theta_{2}$ , such that all of the
follovring statements 1 and 2 hold.

1. For each $i=1,2,$ $T_{\beta}(\theta_{i})$ lands at $p$ .

2. Let $V_{1}$ and $V_{2}$ be the two connected components of $\hat{\mathbb{C}}\backslash (T_{\beta}(\theta_{1})\cup T_{\beta}(\theta_{2})\cup$

$\{p\})$ . Then, for each $i=1,2,$ $V_{2}\cap J_{\beta}(f)\neq\emptyset$ . Moreover, there exists an $i$

such that diam $(V\cap K_{\beta}(f))\leq\epsilon$ and such that $V_{i}\cap J_{\beta}(f)\subset\rho_{0}^{-1}(J(G))\subset$

$\mathbb{C}\backslash P(G)$ .

Lemma 4.4. Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be a polynomial skew product over
$g$ : $Xarrow X$ such that for each $x\in X,$ $d(x)\geq 2$ . Let $\mathit{7}\in X$ be a point.
Suppose that $J_{\gamma}(f)$ is a Jordan curve. Then, for each $n\in \mathrm{N},$ $J_{g^{\mathfrak{n}}(\gamma)}(f)$ is a
$Jo$rdan curve. Moreover, for each $n\in \mathrm{N}$ , there exists no $c$ritical value of $f_{\gamma,n}$

in $J_{g^{*}(\gamma)},(f)$ .

Lemma 4.5. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a polynomial skew product over
$g$ : $Xarrow X$ such that for each $x\in X,$ $d(x)\geq 2$ . Let $\mu>0$ be a number.
Then, there exists a number $\delta>0$ such that the following statement holds.

$\bullet$ Let $\omega\in X$ be any point and $p\in J_{\omega}(f)$ any point with $\min\{|p-b||$
$b\in\pi_{\hat{\mathbb{C}}}(P(f))\cap \mathbb{C}\}>\mu$ . Suppose that $\sqrt\omega(f)$ is connected. Let $\psi$ :
$\hat{\mathbb{C}}\backslash \overline{D(0,1)}arrow A_{\omega}(f)$ be a biholomorphic map with $\psi(\infty)=\infty$ . For
each $\theta\in\partial D(\mathrm{O}, 1)_{l}$ let $T(\theta)=\psi(\{r\theta|1<r\leq\infty\})$ . Suppose that there
exist two elements $\theta_{1},$ $\theta_{2}\in\partial D(0,1)$ with $\theta_{1}\neq\theta_{2}$ such that for each $i=$

$1,2,,$ $\tau_{\wedge}(\theta_{i})$ lands at $p$ . Moreover, suppose that a connected component
$V$ of $\mathbb{C}\backslash (T(\theta_{1})\cup T(\theta_{2})\cup\{p\})$ satisfies that diam $(V\cap K_{\omega}(f))\leq\delta$ .
Furthermore, let $\gamma\in X$ be any point and suppose that there exists a
sequence $\{n_{k}\}_{k\in \mathrm{N}}$ of positive integers such that $g^{n_{k}}(\gamma)arrow\omega$ as $karrow\infty$ .
Then, $J_{\gamma}(f)$ is not a quasicircle.
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Proof. Let $\mu>0$ . Let $R>0$ with $\pi_{\hat{\mathbb{C}}}(\tilde{J}(f))\subset D(0, R)$ . Combining Lemma3.11
and Lemma 3.4-3, we see that there exists a $\delta_{0}>0$ with
$0< \delta_{0}<\frac{1}{20}\min${ $\inf_{x\in X}$ diam $J_{x}(f),$ $\mu$} such that the following statement
holds:

$\bullet$ Let $x\in X$ be any point and $n\in \mathrm{N}$ any element. Let $p\in D(\mathrm{O}, R)$ be any
point with $\min\{|p-b||b\in\pi_{\hat{\mathbb{C}}}(P(f))\cap \mathbb{C}\}>\mu$ . Let $\phi$ : $D(p_{)}\mu)arrow \mathbb{C}$

be any well-defined inverse branch of $(f_{x,n})^{-1}$ on $D(p, \mu)$ . Let $A$ be any
subset of $D(p,2)\mu$ with diam $A\leq\delta_{0}$ . Then,

diam $\phi(A)\leq\frac{1}{10}\inf_{x\in X}$ diam $J_{x}(f)$ . (1)

We set $\delta:=\frac{1}{10}\delta_{0}$ . Let $\omega\in X$ and $p\in J_{\omega}(f)$ with $\min\{|p-b||b\in\pi_{\hat{\mathbb{C}}}(P(f))\cap$

$\mathbb{C}\}>\mu$ . Suppose that $J_{\omega}(f)$ is connected and let $\psi$ : $\hat{\mathbb{C}}\backslash \overline{D(0,1)}arrow A_{\omega}(f)$ be
a biholomorphic map with $\psi(\infty)=\infty$ . Setting $T(\theta):=\psi(\{r\theta|1<r\leq\infty\})$

for each $\theta\in\partial D(\mathrm{O}, 1)$ , suppose that there exist two elements $\theta_{1},$ $\theta_{2}\in\partial D(0,1)$

with $\theta_{1}\neq\theta_{2}$ such that for each $i=1,2,$ $T(\theta_{i})$ lands at $p$ . Moreover, suppose
that a connected component $V$ of $\hat{\mathbb{C}}\backslash (T(\theta_{1})\cup T(\theta_{2})\cup\{p\})$ satisfies that

diam$(V\cap K_{\omega}(f))\leq\delta$. (2)

IFMrthermore, let $\gamma\in X$ and suppose that there exists a sequence $\{n_{k}\}_{k\in \mathrm{N}}$

of positive integers such that $g^{n_{k}}(\gamma)arrow\omega$ as $karrow\infty$ . We now suppose that
$J_{\gamma}(f)$ is a quasicircle, and we will deduce a contradiction. Since $g^{n_{k}}(\gamma)arrow\omega$

as $karrow\infty$ , we obtain

$\max\{d_{\mathrm{e}}(b, K_{\omega}(f))|b\in J_{g^{n_{k}}(\gamma)}(f)\}arrow 0$ as $karrow\infty$ . (3)

We take a point $a$ $\in V\cap J_{\omega}(f)$ and fix it. By Lemma 3.4-2, there exists a
number $k_{0}\in \mathrm{N}$ such that for each $k\geq k_{0}$ , there exists a point $y_{k}$ satisfying
that

$y_{k} \in J_{g^{n_{k}}(\gamma)}(f)\cap D(a, \frac{|a-p|}{10k})$ . (4)

Let $V’$ be the connected component of $\hat{\mathbb{C}}\backslash (T(\theta_{1})\cup T(\theta_{2})\cup\{p\})$ with $V\neq V$.
Then, by Lemma 17.5 in [M],

$V’\cap J_{\omega}(f)\neq\emptyset$ . (5)

Combining (5) and Lemma 3.4-2, we see that there exists a $k_{1}(\geq k_{0})\in \mathrm{N}$

such that for each $k\geq k_{1}$ ,

$V’\cap J_{g^{n_{k}}(\gamma)}(f)\neq\emptyset$ . (6)

22



By assumption and Lemma 4.4, for each $k\geq k_{1},$ $J_{g^{n_{k}}(\gamma)}(f)$ is a Jordan curve.
Combining it with (4) and (6), there exists a $k_{2}(\geq k_{1})\in \mathrm{N}$ satisfying that
for each $k\geq k_{2}$ , there exists a smallest closed subarc $\xi_{k}$ of $J_{g^{n_{k}}(\gamma)}(f)\cong S^{1}$

such that $y_{k}\in\xi_{k},$ $\xi_{k}\subset\overline{V},$ $\#(\xi_{k}\cap(T(\theta_{1})\cup T(\theta_{2})\cup\{p\}))=2$ , and such that
$\xi_{k}\neq J_{g^{n_{k}}(\gamma)}(f)$ . For each $k\geq k_{2}$ , let $y_{k,1}$ and $y_{k,2}$ be the two points such that
$\{y_{k,1}, y_{k,2}\}=\xi_{k}\cap(T(\theta_{1})\cup T(\theta_{2})\cup\{p\})$ . Then, (3) implies that

$y_{k,:}arrow p$ as $karrow\infty$ , for each $i=1,2$ . (7)

Combining that $\xi_{k}\subset V\cup\{y_{k,1}, y_{k,2}\},$ (3), and (2), we get that there exists a
$k_{3}(\geq k_{2})\in \mathrm{N}$ such that for each $k\geq k_{3}$ ,

diam $\xi_{k}\leq\frac{\delta_{0}}{2}$ . (8)

Moreover, combining (4) and (7), we see that there exists a constant $C>0$

such that

diam $\xi_{k}>C$. (9)

Combining (7), (8), and (9), we may assume that there exists a constant
$C>0$ such that for each $k\in \mathrm{N}$ ,

$C<$ diam $\xi_{k}\leq\frac{\delta_{0}}{2}$ and $\xi_{k}\subset D(p, \delta_{0})\subset \mathbb{C}\backslash \pi_{\hat{\mathbb{C}}}(P(f))$ . (10)

By Lemma 4.4, each connected component $v$ of $(f_{\gamma,n_{k}})^{-1}(\xi_{k})$ is a subarc of
$J_{\gamma}(f)\cong S^{1}$ and $f_{\gamma,n_{k}}$ : $varrow\xi_{k}$ is a homeomorphism. For each $k\in \mathrm{N}$ , let
$\lambda_{k}$ be a connected component of $(f_{\gamma,n_{k}})^{-1}(\xi_{k})$ , and let $z_{k,1},$ $z_{k,2}\in\lambda_{k}$ be the
two endpoints of $\lambda_{k}$ such that $f_{\gamma,n_{k}}(z_{k,1})=y_{k,1}$ and $f_{\gamma,n_{k}}(z_{k,2})=y_{k,2}$ . Then,
combining (1) and (10), we obtain

$\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\lambda_{k}<$ diam $(J_{\gamma}(f)\backslash \lambda_{k})$ , for each $k\in \mathrm{N}$ . (11)

Moreover, combining (7), (10), and Koebe distortion theorem, it follows that

$\frac{\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\lambda_{k}}{|z_{k,1}-z_{k,2}|}arrow\infty$ as $karrow\infty$ . (12)

Combining (11) and (12), we conclude that $J_{\gamma}(f)$ can not be a quasicircle,
since we have the following well-known fact:
Fact([LV], Section 2): Let $\xi$ be a Jordan curve in C. Then, $\xi$ is a quasicircle
if and only if there exists a constant $K>0$ such that for each $z_{1},$ $z_{2}\in\xi$ , we
have $\frac{\mathrm{d}i\mathrm{a}\mathrm{m}\lambda(z_{1},z_{2})}{|z_{1}-z_{2}|}\leq K$, where $\lambda(z_{1}, z_{2})$ denotes the smallest closed subarc of $\xi$

such that $z_{1},$ $z_{2}\in\lambda(z_{1}, z_{2})$ and such that diam $\lambda(z_{1}, z_{2})<\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\xi\backslash \lambda(z_{1}, z_{2}))$ .
Hence, we have proved Lemma 4.5.
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In [Sll], the following fact was shown.

Theorem 4.6 $([\mathrm{S}11])$ . Let $G$ be a polynomial semigroup generated by a
compact subset $\Gamma$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product
associated with the family F. Suppose that $G\in \mathcal{G}_{dis}$ and that $G$ is semi-
hyperbolic. Let $\gamma\in R(\Gamma, \Gamma\backslash \Gamma_{\min})$ be any element. Then, $\hat{J}_{\gamma}(f)=J_{\gamma}(f)$ and
$J_{\gamma}(f)$ is a Jordan curve. Moreover, for each point $y_{0}\in \mathrm{i}\mathrm{n}\mathrm{t}(K_{\gamma}(f))$ , there
exists an $n\in \mathrm{N}$ such that $f_{\gamma,n}(y_{0})\in \mathrm{i}\mathrm{n}\mathrm{t}(\hat{K}(G))$ .

We now demonstrate Theorem 2.26-1.
Proof of Theorem 2.26-1: Let $\gamma$ be as in Theorem 2.26-1. Then, by
Theorem 4.6, $J_{\gamma}(f)$ is a Jordan curve. Moreover, setting $h=h_{m}\circ\cdots\circ h_{1}$ ,
since $h$ is hyperbolic and $J(h)$ is not a quasicircle, $J(h)$ is not a Jordan
curve. Combining it with Lemma 4.5 and Lemma 4.2, it follows that $J_{\gamma}(f)$ is
not a quasicircle. Moreover, $A_{\gamma}(f)$ is a John domain(cf. [S4], Theorem 1.12).
Combining the above arguments with ([NV], Theorem 9.3), we conclude that
the bounded component $U_{\gamma}$ of $F_{\gamma}(f)$ is not a John domain.

Thus, we have proved Theorem 2.26-1.

We now demonstrate Theorem 2.26-2.
Proof of Theorem 2.26-2: Let $\rho_{0},$

$\beta,$
$\gamma$ be as in Theorem 2.26-2. By

Theorem 4.6, $J_{\gamma}(f)$ is a Jordan curve. By Theorem 2.8-3, we have $\emptyset\neq$

$\mathrm{i}\mathrm{n}\mathrm{t}(\hat{K}(G))\subset \mathrm{i}\mathrm{n}\mathrm{t}(K(h))$ . Moreover, $h$ is semi-hyperbolic. Hence, $h$ has an
attracting periodic point in $K(h)$ . Combining Lemma 4.5 and Lemma 4.3,
we get that $J_{\gamma}(f)$ is not a quasicircle. Combining it with the argument in
the proof of Theorem 2.26-1, it follows that $A_{\gamma}(f)$ is a John domain, but the
bounded component $U_{\gamma}$ of $F_{\gamma}(f)$ is not a John domain.

Thus, we have proved Theorem 2.26-2.

4.2 Proofs of results in 2.2
In this subsection, we will demonstrate results in Section 2.2. To demonstrate
Theorem 2.30, we need several lemmas.

Lemma 4.7. Let $\Gamma$ be a compact set in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$

be the skew product associated with the family $\Gamma$ . Let $G$ be the polynomial
semigroup generated by F. Suppose that $G\in \mathcal{G}$ and that $G$ is semi-hyperbolic.
Moreover, suppose that there exist two elements $\alpha,$

$\beta\in\Gamma^{\mathrm{N}}$ such that $J_{\beta}(f)<$

$J_{\alpha}(f)$ . Let $\gamma\in\Gamma^{\mathrm{N}}$ and suppose that there exists a sequence $(n_{k})$ in $\mathrm{N}$ such
that $\sigma^{n_{k}}(\gamma)arrow a$ as $karrow\infty$ . Then, $J_{\gamma}(f)$ is a Jordan curve.
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Lemma 4.8. Let $\Gamma$ be a non-empty compact subset of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ : $\Gamma^{\mathrm{N}}\cross$

$\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with the family $\Gamma$ of polynomials.
Let $G$ be the polynomial semigroup generated by $\Gamma$ . Let a, $\rho\in\Gamma^{\mathrm{N}}$ be two
elements. Suppose that $G\in \mathcal{G}$ , that $G$ is semi-hyperbolic, that $a$ is a periodic
point of $\sigma$ : $\Gamma^{\mathrm{N}}arrow\Gamma^{\mathrm{N}}$ , that $J_{\alpha}(f)$ is a quasicircle, and that $J_{\rho}(f)$ is not a
Jordan curve. Then, for each $\epsilon>0$ , there exist $n\in \mathrm{N}$ and two elements

$\theta_{1},$ $\theta_{2}\in\partial D(0,1)$ with $\theta_{1}\neq\theta_{2}$ satisfying all of the following.

1. Let $\omega=$ $(\alpha_{1}, \ldots , a_{n}, \rho_{1}, \rho_{2}, \ldots)\in\Gamma^{\mathrm{N}}$ and let $\psi$ : $\hat{\mathbb{C}}\backslash \overline{D(0,1)}\cong A_{\omega}(f)$

be a biholomorphic map with $\psi(\infty)=\infty$ . Moreover, for each $i=1,2$,
let $T(\theta_{i}):=\psi(\{r\theta_{1}|1<r\leq\infty\})$ . Then, there exists a point $p\in J_{\omega}(f)$

such that for each $i=1,2,$ $T(\theta_{i})$ lan& $at$ $p$ .

2. Let $V_{1}$ and $V_{2}$ be the two connected components of $\hat{\mathbb{C}}\backslash (T(\theta_{1})\cup T(\theta_{2})\cup$

$\{p\})$ . Then, for each $i=1,2,$ $V_{i}\cap J_{\omega}(f)\neq\emptyset$ . Moreover, there exists an
$i\in\{1,2\}$ such that diam $(V_{i}\cap K_{\omega}(f))\leq\epsilon$, and such that $V_{i}\cap J_{\omega}(f)\subset$

$D(J_{\alpha}(f), \epsilon)$ .
Lemma 4.9. Let $\Gamma$ be a non-empty compact subset of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ :
$\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the skew product associated with the family $\Gamma$ of poly-
nomials. Let $G$ be the polynomial semigroup generated by $\Gamma$ . Let a, $\beta,$ $\rho\in\Gamma^{\mathrm{N}}$

be three elements. Suppose that $G\in \mathcal{G}$ , that $G$ is semi-hyperbolic, that a
is a periodic point of $\sigma$ : $\Gamma^{\mathrm{N}}arrow\Gamma^{\mathrm{N}}$ , that $J_{\beta}(f)<J_{\alpha}(f)$ , and that $J_{\rho}(f)$

is not a Jordan curve. Then, there exists an $n\in \mathrm{N}$ such that setting $\omega$ $:=$

$(a_{1}, \ldots, \alpha_{n}, \rho_{1}, \rho_{2}, \ldots)\in\Gamma^{\mathrm{N}}and\mathcal{U}:=\{\gamma\in\Gamma^{\mathrm{N}}|\exists\{m_{j}\}_{j\in \mathrm{N}},$ $\exists\{n_{k}\}_{k\in \mathrm{N}},$ $\sigma^{m_{j}}(\gamma)$

$arrow a,$ $\sigma^{n_{k}}(\gamma)arrow\omega\}$ , we have that for each $\gamma\in \mathcal{U},$ $J_{\gamma}(f)$ is a Jordan curve
but not a quasicircle, $A_{\gamma}(f)$ is a John domain, and the bounded component
$U_{\gamma}$ of $F_{\gamma}(f)$ is not a John domain.

In [Sll], the following result was shown.

Theorem 4.10 $([\mathrm{S}11]).\wedge$ ($\mathrm{U}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}$ fiberwise quasiconformal surgery)
Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross \mathbb{C}$ be a polynomial skew product over $g$ : $Xarrow X$

such that for each $x\in X,$ $d(x)\geq 2$ . Suppose that $f$ is hyperbolic and that
$\pi_{\hat{\mathbb{C}}}(P(f))\backslash \{\infty\}$ is bounded in C. Moreover, suppose that for each $x\in X$ ,
int $(K_{x}(f))$ is connected. Then, there exists a constant $K$ such that for each
$x\in X,$ $J_{x}(f)$ is a K-quasicircle.

We now demonstrate Theorem 2.30.
Proof of Theorem 2.30: We suppose the assumption of Theorem 2.30.
We will consider several cases. First, we show the following claim.
Claim 1: If $J_{\gamma}(f)$ is a Jordan curve for each $\gamma\in\Gamma^{\mathrm{N}}$ , then statement 1 in
Theorem 2.30 holds.
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To show this claim, Lemma 4.4 implies that for each $\gamma\in X$ , any critical
point $v\in\pi^{-1}\{\gamma\}$ of $f_{\gamma}$ : $\pi^{-1}\{\gamma\}arrow\pi^{-1}\{\sigma(\gamma)\}$ (under the canonical iden-
tification $\pi^{-1}\{\gamma\}\cong\pi^{-1}\{\sigma(\gamma)\}\cong\hat{\mathbb{C}})$ belongs to $F^{\gamma}(f)$ . Moreover, by ([S1],
Theorem $2.14-(2)), \tilde{J}(f)=\bigcup_{\gamma\in\Gamma^{\mathrm{N}}}J^{\gamma}(f)$ . Hence, it follows that $C(f)\subset F(f)$ .
Therefore, $C(f)$ is a compact subset of $\tilde{F}(f)$ . Since $f$ is semi-hyperbolic,
([S1], Theorem $2.14-(5)$ ) implies that $P(f)= \bigcup_{n\in \mathrm{N}}f^{n}(C(f))\subset\tilde{F}(f)$ . Hence,
$f$ : $\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ is hyperbolic. Combining it with Remark 2.21, we
conclude that $G$ is hyperbolic. Moreover, Theorem 4.10 implies that there
exists a constant $K\geq 1$ such that for each $\gamma\in\Gamma^{\mathrm{N}},$ $J_{\gamma}(f)$ is a K-quasicircle.
Hence, we have proved Claim 1.

Next, we will show the following claim.
Claim 2: If $J_{\alpha}(f)\cap J_{\beta}(f)\neq\emptyset$ for each $(\alpha, \beta)\in\Gamma^{\mathrm{N}}\cross\Gamma^{\mathrm{N}}$ , then $J(G)$ is arcwise
connected.

To show this claim, since $G$ is semi-hyperbolic, combining $([\mathrm{S}4],\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}$

$1.12)$ , Lemma 3.6, and ([NV], page 26), we get that for each $\gamma\in\Gamma^{\mathrm{N}},$ $A_{\gamma}(f)$ is
a John domain and $J_{\gamma}(f)$ is locally connected. In particular, for each $\gamma\in\Gamma^{\mathrm{N}}$ ,

$J_{\gamma}(f)$ is arcwise connected. (13)

Moreover, by Theorem 2.14(2) in [S1], we have

$\tilde{J}(f)=\bigcup_{\gamma\in\Gamma^{\aleph}}J^{\gamma}(f)$ . (14)

Combining (13), (14) and Lemma 3.5-1, we conclude that $J(G)$ is arcwise
connected. Hence, we have proved Claim 2.

Next, we will show the following claim.
Claim 3: If $J_{\alpha}(f)\cap J_{\beta}(f)\neq\emptyset$ for each $(\alpha, \beta)\in\Gamma^{\mathrm{N}}\cross\Gamma^{\mathrm{N}}$ , and if there exists
an element $\rho\in\Gamma^{\mathrm{N}}$ such that $J_{\rho}(f)$ is not a Jordan curve, then statement 3
in Theorem 2.30 holds.

To show this claim, let $\mathcal{V}:=\bigcup_{n\in \mathrm{N}}(\sigma^{n})^{-1}(\{\rho\})$ . Then, $\mathcal{V}$ is a dense subset
of $\Gamma^{\mathrm{N}}$ . By Lemma 4.4, it follows that for each $\gamma\in \mathcal{V},$ $J_{\gamma}(f)$ is not a Jordan
curve. Combining this result with Claim 2, we conclude that statement 3 in
Theorem 2.30 holds. Hence, we have proved Claim 3.

We now show the following claim.
Claim 4: If there exist two elements $a,$ $\beta\in\Gamma^{\mathrm{N}}$ such that $J_{a}(f)\cap J_{\beta}(f)=\emptyset$ ,
and if there exists an element $\rho\in\Gamma^{\mathrm{N}}$ such that $J_{\rho}(f)$ is not a Jordan curve,
then statement 2 in Theorem 2.30 holds.

To show this claim, using Lemma 3.9, We may assume that $J_{\beta}(f)<$

$J_{\alpha}(f)$ . Combining this, Lemma 3.9, ([S1], Theorem $2.14-(4)$ ), and that the
set of all periodic points of $\sigma$ in $\Gamma^{\mathrm{N}}$ is dense in $\Gamma^{\mathrm{N}}$ , we may assume further
that $\alpha$ is a periodic point of $\sigma$ . Applying Lemma 4.9 to $(\Gamma, a, \beta, \rho)$ above,
let $n\in \mathrm{N}$ be the element in the statement of Lemma 4.9, and we set $\omega=$
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$(\alpha_{1}, \ldots, a_{n}, \rho_{1}, \rho_{2}, \ldots)\in\Gamma^{\mathrm{N}}$ and $\mathcal{U}:=\{\gamma\in\Gamma^{\mathrm{N}}|\exists(m_{j}),$ $\exists(n_{k}),$ $\sigma^{m_{j}}(\gamma)arrow$

$\alpha,$ $\sigma^{n_{k}}(\gamma)arrow\omega\}$ . Then, by the statement of Lemma 4.9, we have that for each
$\gamma\in \mathcal{U},$ $J_{\gamma}(f)$ is a Jordan curve but not a quasicircle, $A_{\gamma}(f)$ is a John domain,
and the bounded component $U_{\gamma}$ of $F_{\gamma}(f)$ is not a John domain. Moreover, $\mathcal{U}$

is residual in $\Gamma^{\mathrm{N}}$ , and for any Borel probability measure $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ with
$\Gamma_{\tau}=\Gamma$ , we have $\tilde{\tau}(\mathcal{U})=1$ . Furthermore, let $\mathcal{V}:=\bigcup_{n\in \mathrm{N}}(\sigma^{n})^{-1}(\{\rho\})$ . Then,
$\mathcal{V}$ is a dense subset of $\Gamma^{\mathrm{N}}$ , and the argument in the proof of Claim 3 implies
that for each $\gamma\in \mathcal{V},$ $J_{\gamma}(f)$ is not a Jordan curve. Hence, we have proved
Claim 4.

Combining Claims 1,2,3 and 4, Theorem 2.30 follows.

To demonstrate Theorem 2.32, we need several lemmas.
Notation: For a subset $A$ of $\hat{\mathbb{C}}$ , we denote by $C(A)$ the set of all connected
components of $A$ .
Lemma 4.11. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a polynomial skew product
over $g$ : $Xarrow X$ such that for each $x\in X,$ $d(x)\geq 2$ . Let $\alpha\in X$ be a
point. Suppose that $2\leq\#(C(\mathrm{i}\mathrm{n}\mathrm{t}(K_{\alpha}(f))))<\infty$ . Then, $\#(C(\mathrm{i}\mathrm{n}\mathrm{t}(K_{g(\alpha)}(f))))<$

$\#(C(\mathrm{i}\mathrm{n}\mathrm{t}(K_{\alpha}(f))))$ . In particular, there exists an $n\in \mathrm{N}$ such that int $(K_{g^{\prime*}(\alpha)}(f))$

is a non-empty connected set.

Lemma 4.12. Let $f$ : $X\cross\hat{\mathbb{C}}arrow X\cross\hat{\mathbb{C}}$ be a polynomial skew product over
$g$ : $Xarrow X$ such that for each $x\in X,$ $d(x)\geq 2$ . Let $\omega\in X$ be a point.
Suppose that $f$ is hyperbolic, that $\pi_{\mathfrak{H}}(P(f))\cap \mathbb{C}$ is bounded in $\mathbb{C}$ , and that
int $(K_{\omega}(f))$ is not connected. Then, there exzst infinitely many connected
components of int $(K_{\omega}(f))$ .
Lemma 4.13. Let $\Gamma$ be a non-empty compact subset of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ . Let $f$ :
$\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}arrow\Gamma^{\mathrm{N}}\cross\hat{\mathbb{C}}$ be the polynomial skew product associated with the family
$\Gamma$ . Let $G$ be the polynomial semigroup generated by $\Gamma$ . Let $a\in\Gamma^{\mathrm{N}}$ be an
element. Suppose that $G\in \mathcal{G}$ , that $G$ is hyperbolic, and that int $(K_{\alpha}(f)))$ is
connected. Then, there exists a neighborhood $\mathcal{U}_{0}$ of $\alpha$ in $\Gamma^{\mathrm{N}}$ satisfying the
follou\’{n}ng.

$\bullet$ Let $\gamma\in\Gamma^{\mathrm{N}}$ and suppose that there exists a sequence $\{m_{j}\}_{j\in \mathrm{N}}\subset \mathrm{N},$ $m_{j}arrow$

$\infty$ such that for each $j\in \mathrm{N},$ $\sigma^{m_{\mathrm{j}}}(\gamma)\in \mathcal{U}_{0}$ . Then, $J_{\gamma}(f)$ is a Jordan
curve.

We now demonstrate Theorem 2.32.
Proof of Theorem 2.32: We suppose the assumption of Theorem 2.32.
We consider the following three cases.
Case 1: For each $\gamma\in\Gamma^{\mathrm{N}},$

$\mathrm{i}\mathrm{n}\mathrm{t}(K_{\gamma}(f))$ is connected.
Case 2: For each $\gamma\in\Gamma^{\mathrm{N}},$

$\mathrm{i}\mathrm{n}\mathrm{t}(K_{\gamma}(f))$ is disconnected.
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Case 3: There exist two elements $\alpha\in\Gamma^{\mathrm{N}}$ and $\beta\in\Gamma^{\mathrm{N}}$ such that int $(K_{\alpha}(f))$

is connected and such that int $(K_{\beta}(f))$ is disconnected.
Suppose that we have Case 1. Then, by Theorem 4.10, there exists a

constant $K\geq 1$ such that for each $\mathit{7}\in\Gamma^{\mathrm{N}},$ $J_{\gamma}(f)$ is a K-quasicircle.
Suppose that we have Case 2. Then, by Lemma 4.12, we get that for

each $\gamma\in\Gamma^{\mathrm{N}}$ , there exist infinitely many connected components of int $(K_{\gamma}(f))$ .
Moreover, by Theorem 2.30, we see that statement 3 in Theorem 2.30 holds.
Hence, statement 3 in Theorem 2.32 holds.

Suppose that we have Case 3. By Lemma 4.12, there exist infinitely many
connected components of int $(K_{\beta}(f))$ . Let $\mathcal{W}:=\bigcup_{n\in \mathrm{N}}(\sigma^{n})^{-1}(\{\beta\})$ . Then, for
each $\gamma\in \mathcal{W}$, there exist infinitely many connected components of int $(K_{\gamma}(f))$ .
Moreover, $\mathcal{W}$ is dense in $\Gamma^{\mathrm{N}}$ .

Next, combining Lemma 4.13 and that the set of all periodic points of
$\sigma$ : $\Gamma^{\mathrm{N}}arrow\Gamma^{\mathrm{N}}$ is dense in $\Gamma^{\mathrm{N}}$ , we may assume that the above $\alpha$ is a periodic
point of $\sigma$ . Then, $J_{\alpha}(f)$ is a quasicircle. We set $\mathcal{V}:=\bigcup_{n\in \mathrm{N}}(\sigma^{n})^{-1}(\{\alpha\})$ .
Then $\mathcal{V}$ is dense in $\Gamma^{\mathrm{N}}$ . Let $\gamma\in \mathcal{V}$ be an element. Then there exists an
$n\in \mathrm{N}$ such that $\sigma^{n}(\gamma)=a$ . Since $(f_{\gamma,n})^{-1}(K_{\alpha}(f))=K_{\gamma}(f)$ , it follows that
$\#(C(\mathrm{i}\mathrm{n}\mathrm{t}(K_{\gamma}(f))))<\infty$ . Combining it with Lemma 4.12 and Proposition 3.15,
we get that $J_{\gamma}(f)$ is a Jordan curve. Combining it with that $J_{\alpha}(f)$ is a
quasicircle, it follows that $J_{\gamma}(f)$ is a quasicircle.

Next, let $\mu:=-\min\{|b-c||b\in J(G), c\in P^{*}(G)\}(>0).$ Apply-
ing Lemma 4.5 to $(f, \mu)$ above, let $\delta$ be the number in the statement of
Lemma 4.5. We set $\epsilon:=\min\{\delta,\mu\}$ and $\rho:=\beta$ . Applying Lemma 4.8
to $(\Gamma, \alpha, \rho, \epsilon)$ above, let $(n, \theta_{1}, \theta_{2},\omega)$ be the element in the statement of
Lemma 4.8. Let $\mathcal{U}:=\{\gamma\in\Gamma^{\mathrm{N}}|\exists\{m_{j}\}_{j\in \mathrm{N}},$ $\exists\{n_{k}\}_{k\in \mathrm{N}},$ $m_{j}arrow\infty,$ $\sigma^{m_{j}}(\gamma)arrow$

$a,$ $\sigma^{n_{\mathrm{k}}}(\gamma)arrow\omega\}$ . Then, combining the statement of Lemma 4.5 and that of
Lemma4.8, it follows that for any $\gamma\in \mathcal{U},$ $J_{\gamma}(f)$ is not a quasicircle. Moreover,
by Lemma 4.13, we get that for any $\gamma\in \mathcal{U},$ $J_{\gamma}(f)$ is a Jordan curve. Com-
bining the above argument, ([S4], Theorem 1.12), Lemma 3.6, and ([NV],
Theorem 9.3), we see that for any $\gamma\in \mathcal{U},$ $A_{\gamma}(f)$ is a John domain, and
the bounded component $U_{\gamma}$ of $F_{\gamma}(f)$ is not a John domain. Furthermore,
it is easy to see that $\mathcal{U}$ is residual in $\Gamma^{\mathrm{N}}$ , and that for any Borel probabil-
ity measure $\tau$ in $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{\deg\geq 2}$ with $\Gamma_{\tau}=\Gamma,\tilde{\tau}(\mathcal{U})=1$ . Thus, we have proved
Theorem 2.32.

We now demonstrate Proposition 2.35.
Proof of Proposition 2.35: Since $P^{*}(G)\subset \mathrm{i}\mathrm{n}\mathrm{t}(\hat{K}(G))\subset F(G),$ $G$ is
hyperbolic. Let $\gamma\in\Gamma^{\mathrm{N}}$ be any element. We will show the following claim.
Claim: int $(K_{\gamma}(f))$ is a non-empty connected set.

To show this claim, since $G$ is hyperbolic, int $(K_{\gamma}(f))$ is non-empty. Sup-
pose that there exist two distinct connected components $W_{1}$ and $W_{2}$ of
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int $(K_{\gamma}(f))$ . Since $P^{*}(G)$ is included in a connected component $U$ of int $(\hat{K}(G))$

$\subset F(G),$ ( $[\mathrm{S}4]$ , Corollary 2.7) implies that there exists an $n\in \mathrm{N}$ such that
$P^{*}(G)\subset f_{\gamma,n}(W_{1})=f_{\gamma,n}(W_{2})$ . Let $W:=f_{\gamma,n}(W_{1})=f_{\gamma,n}(W_{2})$ . Then, any
critical value of $f_{\gamma,n}$ in $\mathbb{C}$ is included in $W$. Using the method in the proof
of Lemma 4.13, we se that $(f_{\gamma,n})^{-1}(W)$ is connected. However, this is a
contradiction, since $W_{1}\neq W_{2}$ . Hence, we have proved the above claim.

By Claim above and Theorem 4.10, it follows that there exists a constant
$K\geq 1$ such that for each $\gamma\in\Gamma^{\mathrm{N}},$ $J_{\gamma}(f)$ is a K-quasicircle.

Hence, we have proved Proposition 2.35.
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