A Note on Certain Analytic Functions

Mamoru NUNOKAWA, Shigeyoshi OWA and Emel YAVUZ

Abstract

The object of the present paper is to obtain some interesting properties of analytic functions.

1 Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disc $\mathbb{E} = \{z | |z| < 1\}$. Sakaguchi [1] proved the following theorem.

Theorem A. If $f(z) \in \mathcal{A}$ satisfies the condition

$$\operatorname{Re}\frac{zf'(z)}{f(z)-f(-z)} > 0 \ in \ \mathbb{E}, \tag{1}$$

then f(z) is univalent and starlike with respect to symmetrical points in \mathbb{E} .

We call f(z) a Sakaguchi functions which satisfies the condition (1).

In this paper, we need the following lemma.

Lemma 1. Let $f(z) \in \mathcal{A}$ and

$$\operatorname{Re}rac{zf'(z)}{f(z)} > K \ in \ \mathbb{E}$$

where K is a real and bounded constant, then we have

$$f(z) \neq 0$$
 in $0 < |z| < 1$.

2 Results

Theorem 1. For arbitrary positive real number α , $0 < \alpha \leq \pi$, if $f(z) \in A$ satisfies the following condition

2005 Mathematics Subject Classification: Primary 30C45. Key words and phrases: Analytic function, Sakaguchi function.

$$\operatorname{Re}\frac{z\left(e^{i\alpha}f'(ze^{i\alpha})-f'(z)\right)}{f(ze^{i\alpha})-f(z)} > 0 \ in \ \mathbb{E},\tag{1}$$

then f(z) is univalent in \mathbb{E} .

Proof. If there exists a r, 0 < r < 1 for which f(z) is univalent in |z| < r but f(z) is not univalent on |z| = r, then there exists two points $z_1, z_2 = z_1 e^{i\alpha}, 0 < \alpha \leq \pi$,

$$f(z_1) = f(z_2) \tag{2}$$

and f(z) is univalent on the arc \mathbb{C} where

$$\mathbb{C} = \{ z | z = z_1 e^{i\theta}, 0 \leq \theta < \alpha \}.$$
(3)

From the assumption of Theorem 1, we have

$$\operatorname{Re}\frac{z\left(e^{i\alpha/2}f'(ze^{i\alpha/2})-f'(z)\right)}{f(ze^{i\alpha/2})-f(z)} > 0 \text{ in } \mathbb{E}.$$
(4)

This shows that $(f(ze^{i\alpha/2}) - f(z))$ is starlike with respect to the origin.

From (2) and (3), we get the following image of |z| = r under the mapping w = f(z),

where β is sufficiently small positive real number.

Then vectors $(f(z_1e^{i\alpha/2}) - f(z_1))$ and $(f(z_1e^{i(\alpha/2+\beta)}) - f(z_1e^{i\beta}))$ move on the clockwise direction (the negative direction). This contradicts (4) and it completes the proof.

Another proof of Theorem 1. If there exists a r, 0 < r < 1 for which f(z) is univalent in |z| < r but f(z) is not univalent on |z| = r, then there exists at least two points z_1 , $z_2 = z_1 e^{i\alpha}, 0 < \alpha \leq \pi$ and for which

$$f(z_1)=f(z_2).$$

Applying Lemma 1 and form the hypothesis (1), we have

$$f(ze^{i\alpha}) - f(z) \neq 0.$$

This is a contradiction and therefore, it completes the proof.

Remark. If $f(z) \in \mathcal{A}$ satisfies the condition (1) only for the case $\alpha = \pi$, then f(z) is a Sakaguchi function.

Theorem 2. If $f(z) \in A$ satisfy the following condition for sufficiently small and positive real number δ and arbitrary real number α , $0 < |\alpha| < \delta$ for which

$$\operatorname{Re}\frac{z\left(e^{i\alpha}f'(ze^{i\alpha})-f'(z)\right)}{f(ze^{i\alpha})-f(z)} > 0 \ in \ \mathbb{E}.$$
(5)

Then f(z) is convex in \mathbb{E} or

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > 0 \ in \ \mathbb{E}.$$

Proof. From the hypothesis (5), all the tangent vector of \mathbb{C} which is the image of |z| = r, 0 < r < 1 under the mapping w = f(z) move in the counterclockwise direction. Geometrically, this shows that f(z) is convex in \mathbb{E} or

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > 0 \text{ in } \mathbb{E}.$$

References

[1] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan (11) (1959), 72-75.

MAMORU NUNOKAWA Emeritus Professor, University of Gunma, Hoshikuki-cho, 798-8, Chiba 260-0808, Japan e-mail: mamoru_nuno@doctor.nifty.jp

SHIGEYOSHI OWA Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan e-mail: owa@math.kindai.ac.jp

EMEL YAVUZ Department of Mathematics and Computer Science, TC İstanbul Kültür University, 34156 İstanbul, Turkey e-mail: e.yavuz@iku.edu.tr