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Thermal conduction in a chain of colliding harmonic oscillators revisited
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Thermal conduction in a chain of colliding harmonic oscillators, sometimes called the ding-dong model, is
investigated. We first argue that this system is equivalent to the Dawson plasma sheet model. Next we show the
Lyapunov analysis for this system to characterize its dynamical property. Finally, we reconsider the numerical
study of thermal conduction for this system using the Green-Kubo relation and the direct simulation of Fourier
law. Both show that thermal conduction is normal in théN,T)<N°, at least, at low temperature in a large
system.
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[. INTRODUCTION whether such systems have normal transport coefficients.
In [7], a chain of colliding harmonic oscillators, some-
Thermal conduction in one-dimensional coupled anhartimes called the ding-dong model, was investigated. The
monic oscillators has been one of the central problems ifdamiltonian of this system is given by
nonlinear science since the pioneer work by Fermi, Pasta, )
and Ulam(FPU) [1]. The original motivation of the numeri- -3 S 1
cal work by FPU was to check equipartition of energy in H_i:1 _m+§mwpqi ' @
one-dimensional coupled anharmonic oscillators. If the sys-
tem is ergodic, equipartition of energy is expected. Howeveryith the elastic constraints
unexpectedly, equipartition was not realized in their simula-
tion. Instead, recurrence of the initial state was observed. q—Q+1=<A (i=1,2,...N—-1). 2
This astonishing result led to two directions of further inves-
tigation. One is the discovery of solitons or integrable sys+; represents the displacement of itie oscillator from its
tems. The other is further numerical study of equipartition orequilibrium point.A is the lattice spacing. This system rep-
thermalization. The historical perspective is well reviewed inresents coupled ahnarmonic oscillators with on-site potential.
Ford's article[2]. In the second direction, a vast number of |n [7], thermal conduction in this system was investigated.
numerical studies has been done. Mainly they investigategiowever, the numerical study was limited to system sizes
(1) equipartition of energy(2) local thermal equilibrium, with N=10-100. In a similar model, the ding-a-ling model
and (3) transport properties, i.e., thermal conduction. Somgg], saturation of system-size dependent thermal conductivity
of these studies showed that some class of systems displaggaluated from direct observation of the Fourier law starts
thermal conduction at finite system size, i.e., the Fourier lawground the system sizil=300 [9]. This observation sug-
is observed. However, it is still unknown whether the ther-gests that we have to take the system size sufficiently large.
mal conductivity in the thermodynamic limit is finite or not. \We believe that the analysis [i7] is insufficient for deter-
More precisely, what is the necessary and sufficient condimining the system-size dependence of the thermal conduc-
tion for normal conduction in one-dimensional anharmonictiyity of the ding-dong model. As another aspect of statistical
oscillator systems? behavior of this system, it has been shown numerically in

Recently these puzzles and confusions have been partialfy 0] that its stationary state in heat conduction satisfies the
resolved. The key point is that if the heat current has a hyf|yctuation theorem.

drodynamical mode the autocorrelation function for this |n addition, the ding-dong model is equivalent to the
mode has a long-time tail. Then, from the Green-Kubo for-pawson plasma sheet modElL1] whose Hamiltonian is
mula, the time integral of the current autocorrelation functiongjyen py

diverges. Thus the thermal conductivity diverges in the ther-

modynamic limit. Numerical evidence was observed 3h N p2 5,2
and analyzed by mode-coupling theory{#5]. Finally, in a H= 2—'— E |Qi—Qj
general setting for one-dimensional coupled anharmonic os- i=12m g0 i<
cillators, Prosen and Campbell have shown that momentum P N

L - . 270 [N L
conservation implies anomalous thermal conduction, namely, + (_) > | dQIQ—-Qj|
the thermal conductivity of such one-dimensional systems go \L/i=1 Jo
diverges in the thermodynamic lin{i6]. On the other hand, - 5

. . . . . ao? [N L L

coupled anharmonic oscillators with on-site potential do not _ _(_) f dQJ dQ'|Q- Q| (3)
satisfy momentum conservation. It is still controversial go \L/) Jo 0
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whereeg, is the dielectric constant for the vacuum. The equa-dynamic limit seems to be constant, at least at low tempera-
tion of motion is ture. In Sec. V, we summarize our results.

2 N
Q=-wp| Q=A% AQi-Qy)|, (4) Il MOPEL

=1 As for the system of falling balls treated [ih3], it will be
convenient for us to construct the associated map, which is
defined among collisions. The positions and momenta of all
particles are represented by the vector

de?

with the plasma frequencgo§=4wazn/mso and the mean
spacing of sheetA=L/N=1/n. The step functiord(x) is

defined as
1, x>0 °[}
1 —o :
00=1 5. X= (5 a
X= . 7
0, x<O0. P1

As we can see from the equation of motion Ed), the

difference between the ding-dong model and the Dawson Pn

plasma sheet model is whether two particles collide with

hard-core interaction or pass through each other. Thereford/e denote the state just after tkih collision byx, and the

as far as energy transport is concerned the two systems astate just before thkth collision byx, . The time when the

equivalent. However, this equivalence holds only in the cas&th collision takes place between thgh particle and the

of the free boundary condition. For the case of the periodidi,+ 1)th particle is denoted bty . We takety=0. Our sys-

boundary condition, this equivalence no longer hqlti]. tem is formally considered as the dynamical system
Returning to the problem of the system-size dependence

of thermal conductivity, let us consider applying the method d

in [6] to the ding-dong model. For the ding-dong model, GiX~FX), xekK, ®)

there is no momentum conservation, but the system has two

conserved quantities. One is the total energy, and the other {ghereK is defined by

the energy of motion of the center of mass,

K={xe RNXRN|H=E, C=C}. 9)

Here E andC, are some constants. The flay defined by
Eq. (8) is given by

which is an even function of the total momentum. Thus, the

key term in the method di6] vanishes. Then the method of ' K—K. (10
[6] for this extra conserved quantity yields a trivial inequality

k=0, wherex is the thermal conductivity in the thermody- Now we define a manifold

namic limit. So at present the question about the thermal

conductivity of the ding-dong model in the thermodynamic =~ M={xeK|qgi—0q;;;<A for i=1,... N-1}CK.

2 1 N 2
2
+§mwp(i21 qi) , (6)

1 N
C:ﬁ<i21 Pi

limit is still open. Detailed reexamination of thermal conduc- (11
tion in the ding-dong model is therefore needed. This is one _
of the aims of the present paper. M is an open subset with compact closileand it has the

After describing the dynamics of our system in Sec. Il piecewise smooth boundas. M is split into the regular
first, we give the Lyapunov analysis of this system in SecpartdM, and the singular padM. The regular part corre-
[ll. This enables us to characterize its dynamical propertiessponds to two-body collisions, while the singular part corre-
As a result, from the behavior of the Lyapunov spectrum, wesponds to collisions involving more than two bodies and col-
know that the ding-dong model is a weakly chadtitother  lisions of more than one pair at the same time. The regular
words, mixed system. Next we carry out a detailed numeri- part JM, of the boundary oM is the union of N—1) sub-
cal study of thermal conduction in the ding-dong model inmanifolds,
Sec. IV. We have evaluated thermal conductivity by two
methods. One method uses the Green-Kubo relation. Thus,
we evaluate the thermal conductivity from the equilibrium
properties(without thermal reservojr The other method is
direct observation of the Fourier law. We observe the noNy here
equilibirum stationary state of a given finite system and
evaluate the thermal conductivity from the heat current an
the temperature profile in the gtationary state. These tw(g)”vll_{xEKIql A=A, G2~ G4 - An-17 N
methods show that the thermal conductivity in the thermo- <A},

IM,= U aM;, (12)
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IMo={xeK|g;— <A, gx—03z=A, ... an-1—0n
<A},
13
IMy-_1={xeK|q;— <A, g—q3<A,...ay-1—0n

—A}.

The regular pargM, further splits intoaM, = UM taM [
andoM,; =UN"'9M; where

IMT ={xeK|q;=0,=A,0,~q3<A, ..., Gy-1— 0y
<A,¥(p1—p2)>0},
M5 ={xeK|q;—0,<A,0,—0d3=A, ..., dy_1—dn<A,
+(p2—p3)>0},
IMy_1={xeK|q1—q2<A, g~ 03<A,....0dn-1—0n
=A,%(pn-1—Pn) >0} (14

In dM ;" F points inside, while i’M [~ F points outside. That

PHYSICAL REVIEW E64 056111

. + +
(I)k. &MikHaMikJrl. (17)

Succesive iteration gives the following relation:
Xp =D p_10@p_p0- - -oPg(Xg) (18

and

D, oD, 0. -0D: aMﬁo—u?Mf;—w--—ﬁMilz

_H;Mi*nfl_)awn. (19

Next we give the matrix representation of these maps. At
each collision, the colliding particles just exchange their mo-
menta. Therefore, the map of the collision process is given in
the following way. Suppose that at théh collision, theith
particle and the i¢+ 1)th particle collide with each other.
The map from the state, to the statex, is represented by
the matrix

is, M, corresponds to states immediately after collisions

anddM, to states immediately before collisions.

Here we consider only two-body collisions and disregard

collisions involving more than two bodies and collisions of

more than one pair, since it is expected that these collisions

are events of zero measure.

Now we define the collision ma@.,: M, — M, .
More specifically, we define the collision map for ttike and
the (+1)th particles®();: dM; —JM;" . Next we define
the map for the smooth flow %) : MUJM,;"— oM, for x
e MUIM,", where 7(x) is the time that it takes from the
statex to the next collision.7(x) is called the first collision
time. More specifically, if thekth collision occurs between

+
theith and (,+ 1)th particles, then we may Writ@;(sxé‘) :
aMﬁk—n?Mka. By definition, the time between successive
collisions is given by

(X ) =t~ Ly (15

With this setup, we now define the mdp, that maps the
statex, just after thekth collision to the state,, ; just after
the (k+1)th collision.®, is decomposed into two parts, the

a_[n O
Mcol = 0 Cik ' (20)
wherel y is theNX N identity matrix and
ith
1 l
1
Cik: 1 — |kth ,
1
1
1
(21

where vacant entries represent zero. Thus, we have

xif:/\/l(cigl)x; : (22)
The motion of the independent harmonic oscillators is
easily constructed. Set the stafe just after thekth collision

and the state,,; just before the K+1)th collision. The

motion of the independent harmonic oscillators and the colmap between these states is

lision process,

+
7(X, )
osc

=D kDo (16)

Obviously, we have

T(X;) +
osc k-

Xr1=M (23

.
The matrix M ;(chk) is given by
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(%) 0 |
Moscl; J= N . (32
—1y O
1
+ -
| codwpT(x)IIn e sinwp (X ) ]I Between collisions, the time evolution of the infinitesimal
- _ . P . deviation 5X is given by
—Mao,sifop7(X ) ]Iy co opm(X)]In
2 2
(24) _on I
) ) ) dJda da?
Thus we have obtained the matrix representation of the i@x— SX = 0 0 sX. (33
whole time evolution, dt°" | *H P*H =lo o/ ©3
n-1 . 932 dadd
=T (M, 29
Thus, between the collisions, the time evolutionsef is just
where the product is time ordered. SX(1)= 5X(0) (34)
1. LYAPUNOV ANALYSIS as long as no collisions occur. Therefore, in order to get the

tangent map, we have to consider only the contribution from
he collisions.
Let us consider how to chang#X in the collision pro-

The dynamics of this system is singular at coIIisions.t
Thus, the Lyapunov analysis differs from those for smooth

dynamical systems. We have to reformulate the Lyapunov AP "
analysis in a suitable form. In order to get the tangent map o ess. We denote the infinitesimal quantities after and before

. . - + B
the map obtained in the previous section, we change thi1€ kth collision by 5X, and 6X,, respectively. What we

variables from Cartesian coordinates to the action-angle varf?€€d is the RIX2N monodromy matrixM, satisfying the
ables following condition:

53 X =M8X . (35)
A= \/-—-cosa), pi=y2me dsin(a;),  (26) _ " "
Mwyp Here we note the relation amorX, and thedx, 's. From

fori=1,2,...N. The Hamiltonian becomes Eq. (26), we obtain the relations

' Xy =R(x5 ) "1oxy (36)
H= J; + (hard-core collision 2 _ _ _
wp 2y It . @ 8% =R(x) Xy, (37)
Between the collisions, the equation of motion is given by where
gJ-=0 and —a;= (28) R(X.)= Ru Ri 38
dt™ dt®i= “e- (4= Ra R’ %9
Therefore, we have Qy Q
R(xk*)l:( N 12) (39
Ji(t)=const and a;(t)=wyt+a;(0). (29 Q21 Q2
Now we define the new vectot, with the matrices
n a4
: 237
\] = ",
x= . (30) Ru ’
a1 Ay
2Jy
an
The equation of motion between collisions is now - r:—l
w
P
d - .
—X=—JVH, (31) Rio= ~ , (40)
dt -
_ P
whereJ is the symplectic matrix My,
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I
237
Rzl_ )
Py
235
Mwyd;
Raoo= , (42
Mo 0y
and
Mgy
Q1= )
My
Py
mwp
Q1= , (42
PN
M,
_pL
23]
Q1= )
_ P
235
ki
237
Q= (43
N
AN

In theR;; andQj; all vacant entries represent zero. At #th
collision, thei,th particle and i+ 1)th particle exchange
their momenta. In addition, the conditi(mk—qikH:A is

satisfied. Therefore, the infinitesimal quantities sati&afyk

=060, +1- Using this condition, we obtain the relation be-

tween dx, and dx,
Sy =Nyoxy (44)

where

(49)
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To setNy in this way is important for the symplectic condi-
tion of the tangent map. Now, using E@36), (37), and(44),
we have

OXy =RO¢) 1% =R~ Nedxy.

=R(x; ) " INR(Xy ) 8%, . (46)
Thus,M is given by
M =R(x¢)  INR(Xy ). (47

The matriceR(x, ) "1, Ny, andR(x, ) obtained here satisfy
the symplectic condition

'MIM=J where M=R(x/) %N,R(Xc). (48

Therefore,M, itself satisfies the symplectic condition. Fi-
nally, the time evolution of the infinitesimal quanti§X,
namely, the tangent map, is given by

X =M My _5---M1My8Xg . (49

Let us consider the Lyapunov spectrum of this system.
First check the dimension of the Lyapunov spectrum. The
number of particles ifN. Then the dimension of the phase
space is R, from which we have to subtract the number of
conserved quantitiel) The total energ¥ is conserved(2)
The energy of the center of mass is conserved. Thus, the
dimension of the Lyapunov spectrum isN22. The
Lyapunov exponents are given by

k—1

[T mexg ™
Ay lim —in| 10
I 16X ™M)

: (50)

where5X, (™ is the displacement to thath eigendirection
and the product of the matriced; is time ordered. The
Lyapunov spectrum is now

A== =N,y (51

We have to eliminate two irrelevant Lyapunov exponents
which correspond to the above-mentioned conserved quanti-
ties. These Lyapunov expoents have zero value. After re-

numbering, we have the Lyapunov spectrum

Ni=No=- - =Nonoo. (52
Here we do not consider the case of a quadruplet, in which
the value of the Lyapunov exponents is a complex number.
In our case, the Lyapunov exponents make paNg=
—Non_2, A= —N\yn_3, - .. . This is a consequence of the

symplecticity. Thus, we have
2N-2
> An=0. (53
m=1

The numerical result of the calculation of the Lyapunov
spectrum forN=50 is shown in Fig. 1. It is known from a
vast number of numerical studies that for a hyperbolic sys-
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0.1 — thermal conductivity behaves as(N)<N°. However, the
2 3-32 L 1 authors in[7] commented on the system-size dependence of
g 0.04 | the thermal conductivity from the numerical results of a sys-
& 002} tem with N=10-100 only. There is no systematic study of
g 0 the system-size dependence of thermal conductivity. The aim
£ :g-gﬁ [ of this section is to check this for the ding-dong model.
E 0.06 | While the thermal conductivity was measured by three dif-
= 008 | ferent methods for the ding-dong model(in], we use two

-0.1 — methods (1) the estimation of the thermal conductivity from

0 10 20 30 40 S0 60 70 30 90 100 the Green-Kubo formula an@) the direct observation of the

i Fourier law. All discussion in this section will be done by

FIG. 1. Lyapunov spectrunil=50, E/N=1.0. The number of settingA=m=w,=1.
samples for averaging is 1000.
A. Green-Kubo formalism
tem, if the Lyapunov spectrum is arranged in decreasing or-

der of indices, it is linear with respect to the indices. How- We define the heat current at each site by

ever, in Fig. 1, the Lyapunov spectrum is not linear with 1

respect to the indices. This is a typical behavior of mixed Jk(t)= E(pkﬂ—pk)(pﬁﬂ—pﬁ)é(qk—qkﬂ—l)
systems as shown for various system§glid. Thus, Fig. 1 is

numerical evidence of the coexistence of stable and unstable 1 o

motions. Next we consider the Kolmogorov-Si&iS) en- = E(pﬁﬂ—pﬁ) (k)z_m S(t—thw), (55

tropy hyxs which is a characteristic quantity for the chaoticity

of a given system. Since the ding-dong model does not seem

to be a hyperbo"c system as shown in FIghI’LS is not well Wheretn(k) denotes the\(k)th collision between th&th and
defined for the ding-dong model. Therefore we defipg  (k+1)th sites and the momenta in E§5) should be evalu-
tentatively by the Pesin formula, which is valid only for hy- ated just before each collision. We define the total heat cur-
perbolic systems, rent

N
hks= 2 i (54) JN(t)=k§l (1), (56)

Xi>0

We show the behavior dfixg versusg/N in Fig. 2 for N
=10. For smallE/N, hyg increases approximately linearly
with increasingE/N. For E/N>5 hgg increases with in-

and the average heat current over all sites

N
creasing E/N very slowly. The fitting (dashed ling is - _i .
0.275|I’IE/N). JN(t)_ N kgl Jk(t)- (57)
IV. THERMAL CONDUCTION The Green-Kubo formula for thermal conduction gives the

In this section, we study thermal conduction in the ding—thermal conductivity as

dong model. The thermal conduction in systems with on-site .

potential is investigated if8,9] for the ding-a-ling model _ *

and in[7] for the ding-dong model. It is believed that in k(N T)= T2NJo A7{In0)In(T))e (58)
these models the thermal conduction is normal, that is, the

Here (- - -). represents the average over the canonical en-

0.12 semble. If there is no phase transitiftb], we can replace
0.1 this canonical ensemble average by the microcanonical aver-
2 0.08 ¢ age(- - - yme Specifying the energy from a given temperature,
£ 006}
S o004l 1
Y 0.02 (A)c=(A)mcto N/’ (59
o
002 t— . ... whereA is some observable.
0 5 10 15 20 25 30 35 40 45 50 In the escape rate formalism for the thermal conduction
E/N [16], the following quantityGy(t) plays a central role:
FIG. 2. Kolmogorov-Sinai entroplik s versuse/N: N=10. The N
number of samples for averaging is 300. The fittidgshed lingis Gp(t)—Gy(0) = f dTJ—N(T)- (60)
0.0275 InE/N). 0
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a5 . . . . — 10 ,
9
e s E—O—B~a.,
35t £ 100 | @ © o
s x| - =
Nl r =3 .02 “®
& 20 1 - 1075 ¢ '
15 | g
10 | £ 109 |
5t a
0 5 T T T T 10-04 " . L
0 50 100 150 200 250 300 101 10t 10" 10*"  10*™
t N
FIG. 3. Behavior ofFy(t): E/N=1.0. From bottom to topN FIG. 4. N dependence oby: E/N=0.5 (solid squares 1.0

=10,20,40,80,160,320,640. Each curve is obtained from an averageircles. The number of samples for averaging is 500—1000.
over 5000 initial conditions. In the short time reginfey(t) dif-
fuses as-\(t) ~t. Then later it converges to some oscillatory value. \We have to consider the thermodynamic lilNit=c. From

As the system size becomes larger, the diffusive regime becomepese observations, the thermal conductivity in the thermo-
longer. The slope of the diffusive regime is approximately constantdynamic limit would be defined by

However, there is a tendency to decreasing slopae t® system

size increases. Fn(t)

.

k(T)= izlim lim N (65)
The moment of this quantity is called the Helfand moment Totoeen—e
[16]. From the diffusive behavior o\ (t) we can discuss
thermal conduction. If the diffusive behavior Gfy(t) per-

sists forever, we have

In Fig. 4, we depict theN dependence oDy for E/N
=0.5,1.0. This show®y*xN"1° In Fig. 5, we show the
result for theN dependece oNDy . From Eq.(65), Fig. 3,
. Fig. 4, and Fig. 5, we know that the thermal conductivity is
f Ar(IN(0)In(D))ime. finite in the thermodynamic limit, at least at low temperature
0 [17]. Of course, we also have to check whether the thermal
(61 conductivity x(T) diverges or is finite in the thermodynamic
limit by direct numerical simulation of the Fourier law.
We now set In Fig. 6, we plot the energy dependence of the diffusion
coefficientDy(T). First, we note the relation between the
([GN(t) = Gn(0)]1D) me temperaturel and the total energf. From the numerical
Fn(t)= 5 ) (62 result, we know

i ([GN(H) = GN(0)]P)me
m ot =

t—oo

However, in general for a finite system, the diffusive behav- T~1.275. (66)

ior of Gy(t) does not persist, but saturates in some time

interval, sayt*. In Fig. 3, we plot the behavior dfy(t) for  From the fitting of Fig. 6, we have

E/N=1.0 andN=10,20,40,80,160,320. In the short time re-

gime t<t*, Gy(t) diffuses asFy(t)~t. Then for t Dp(T)ocT265 (67)
>t*F\(t) converges oscillatorily to some valug. is the

time at which the system reaches equilibrium. For larger sysTherefore, the temperature dependence of the thermal con-
tem sizeN, t* becomes longer, approximately in proportion ductivity is given by

to N. As the system size becomes large, the slopgeygt) is

approximately constant. There is a tendency to decreasing k(N T)e TOOS= T2, (68)
slope, as the system size increases. This behavior is exam-
ined later in detail. We define the diffusion coefficient for
finite systems,

10+02 £ T T ooy

-~

H
2
: % 10 #
Fn(t
D= lim ——. (63) g /
t—t* é 10+00 L
8
Here we define the thermal conductivity for a finite system z. o1 , . .
as follows: 10M° 10" 10*2  19*®  10*™
N
k(N,T)= EDN. (64) FIG. 5. N dependence oNDy: E/N=0.5 (solid squares 1.0
T? (circles. The number of samples for averaging is 500—1000.
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0.6 T - T B. Stationary state in a finite system

E 05¢ For the second method, i.e., the direct observation of the
g 04 L Fourier law, we have to introduce heat reservoirs. We con-
2 sider two heat reservoirs which consist of ideal gas with
; 03 r temperatured| (left) and T (right) and are placed at the
'z 02 left and right sides, respectively. The boundaries between the
£ 01+ system and the two reservoirs consist of two walls. The par-
| = ticles in the reservoirs obey the Maxwell distribution at given

00 ""(')'5 1 1'5 5 temperatures. If the particles at the ends of the system,

namely, the first particle and theth particle, collide with
the boundary walls, then these particles instantaneously ex-

FIG. 6. Temperature dependence of the diffusion coefficientChange their momenta With. th? pgrticles of the reservoirs,
Dy: N=50. As a result of fitting, it behaves likB y(T)~ T2, whose momenta obey the distribution

The number of samples for averaging is 300. Ip| D
P( p) = ?GXF{ - ?

Energy E/N

2

: (71)
Next we confirm that the hydrodynamic mode is not impor-

tant for our system. If the heat current has a hydmdynami?/vhereT:TL (Tg) for the first (the Nth) particle, respec-

mode, the heat current can be written as tively. It should be noted that we have to adjust the positions
of the walls appropriately so that the particles of the system
and the walls may collide efficiently.

The phenomenological Fourier law is given by

J=Jdiff+nT5$v, (69)

whereJyi¢ is the heat current due to thermal diffusionis
the density,T is the temperaturedS is the excess entropy, J=—«VT. (72)
and v is the velocity. The current autocorrelation function
can be written as There are two methods to evaluate the thermal conductivity
from direct simulation of the stationary statg) Thermal
(3(0)3()) = (Iair1(0) Iaifs (1)) + (NTES) v (0)u (1)), conductivity in a global sense is defined by

(70 k(N T) = — JN/(Tg—T,). (73)

where ~we assumed that(Jgt+(0)v(t))=0 and  pere 7, is the time average of the energyE,, injected from
(J4irs(t)v(0))=0. If the velocity autocorrelation function the (cold and hox reservoirs,

has a long-time tail, the thermal conductivity will diverge

from the Green-Kubo formula. Here we check the velocity 1 M

autocorrelation function for a tagged particle. In Fig. 7, we In=lim= > AE,. (74)
depict the power spectrum of the velocity of the tagged par- toee s N1

ticle for the system siz& =200. The tagged patrticle is the .
. AE, represents the energy exchange with (i@d and hok
100th one from the left. Figure 7 clearly shows that thereservoirs.m(t) is the number of collisions with the reser-

power spectrum is Lorentzian, not power law. Therefore, in

i o \{oirs up to the time. We may use the heat current averaged
our system, there is no power law behavior in time, at least alyer all sites:

low temperature. This implies that there is no hydrodynamic

contribution to the heat current. This is another support for 1 (= —
the normal thermal conduction in our system. IN= Iim?JO drdyn(t). (75)
t—o
10! (2) Thermal conductivity in the local sense is defined as the
0 ratio between the local heat current and the local temperature
107 ¢ gradient.
3 109 | We measure the thermal conductivity in the global sense.
71 In Fig. 8, we depict theN dependence of the thermal con-
04 ductivity determined by direct observation of the Fourier
107 law. In the high temperature regime, it behaves«éhl, T)
05 , , , ~N17% where 0<8<1, while in the low temperature re-
10 102 10 10" 10" 19+ gime, it behaves ag(N,T)~N°, i.e., normal conduction.

«©
_ _ V. SUMMARY
FIG. 7. Power spectrum of velocity of the tagged partidie:

=200. The tagged particle is the 100th one, namely, the middle We have shown that the ding-dong model, unlike the FPU
particle. From bottom to topE/N=0.5,1.0,2.0. The number of model, indeed exhibits normal conduction, at least in the low
samples for averaging is 250. temperature regime. This is the central result of this paper.
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220 - - - - high temperature, there is the possibility that the ballistic
;“;_:‘ %gg [ .//._./-/"’"\F-/' 1 motion destroys the normal conduction. This problem is re-
£ 160 | 1 served for future study.
E 140 ¢ 1 In order for FPU-type models to have normal thermal
s ] conduction, the dimension should be larger than 1. In fact, in
= 80| ] [20], it is shown that the two-dimensional FPU model still
g Y S e 1 has anomalous conduction, but the three-dimensional FPU
= gg . ] model seems to be normal.
0 A A il i Other examples in one dimension that display normal
0 50 100 150 200 conduction are the hyperbolic billiard systefthe Lorentz
System size : N gas model, a pseudo-one-dimensional systgi8] and the

multibaker system with energy, which is a toy model of the
FIG. 8. N dependence of the thermal conductivity by direct ob- | orentz gas moddl19]. These models are independent par-
servation of the Fourier lawl =2.0, Tz=1.6 (solid squares T, ticle systems. Therefore, these systems are essentially differ-
=1.2,Tg=0.8(circles, T,=0.6, Tr=0.2(solid circles. ent from the ding-dong model. The ding-dong model is one
of the rare examples of one-dimensional interacting particle
As explained in Sec. |, we expect that the Dawson plasma&ystems displaying normal conduction. Finally, a kinetic
sheet model has the same energy transport properties. THeeory for the ding-dong model has been investigatd@ i
main difference between the FPU model and the ding-dondf Will be published elsewhere.
model is the conserved quantity. For the FPU model the total
momentum is conserved, Wh_ile for the ding-dong modgl it is ACKNOWLEDGMENTS
not conserved. Instead the ding-dong model has the different
conserved quantitg in Eq.(6). The anomalous properties of ~ We thank Profssor S. Takesue and Professor H. van
the conductivity in the FPU model are justified in terms of Beijeren for useful discussions and continuous encourage-
the conservation of total momentum, as pointed out byment. This work was supported by a Grant-in-Aid for Scien-
Prosen and Campbdlb]. The application of their method to tific ResearciiNo. 11837018from the Japan Society for the
the ding-dong model yields just the trivial inequalitz=0. Promotion of Science. The numerical computation in this
Therefore, for the ding-dong model there is a regime wherevork was partially carried out at the Yukawa Institute Com-
the system displays the normal conduction. However, foputer Facility.
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