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We investigate statistical properties of unstable periodic orbits, especially actions for two simple
linear maps p-adic Baker map and sawtooth maphe action of periodic orbits for both maps is
written in terms of symbolic dynamics. As a result, the expression of action for both maps becomes
a Hamiltonian of one-dimensional spin systems with the exponential-type pair interaction.
Numerical work is done for enumerating periodic orbits. It is shown that after symmetry reduction,
the dyadic Baker map is close to generic systems, ang-ttic Baker map and sawtooth map with
nonintegelK are also close to generic systems. For the dyadic Baker map, the trace of the quantum

time-evolution operator is semiclassically evaluated by employing the method of Phys. R8v. E
R963(1994. Finally, using the result of this and with a mathematical tool, it is shown that, indeed,
the actions of the periodic orbits for the dyadic Baker map with symmetry reduction obey the
uniform distribution modulo 1 asymptotically as the period goes to infinity. 2GD0 American

Institute of Physicg.S1054-150000)02101-7

Recent development of semiclassical quantization of cha-
otic systems has given us many fruitful results and has

The UPOs are also important objects for the purpose of
quantizing chaotic systems. The eigen energies are formed as

been applied to mesoscopic systems, atom-molecular sys- a result of complicated interference of waves along the

tems, nuclear systems, etc. One of the most important
goals of theoretical research is to elucidate the relation
between the prediction of random matrix theory and the
statistical behavior of quantized chaotic systems. To de-
velop semiclassical reasoning for this, it is quite impor-
tant to know the statistical behavior of periodic orbits of
the classical counter part. In this paper, we investigate
the action of periodic orbits for simple two-dimensional
maps (Baker map and sawtooth map theoretically and
numerically and report their statistical properties (e.g.,
Gaussian distribution and uniform distribution ). In par-
ticular, as a main result, for dyadic Baker map with sym-
metry reduction, mathematical discussion supports the
uniform distribution modulo 1 of actions of periodic or-
bits.

I. INTRODUCTION

Complex motion in chaotic dynamics is, in some sense,

UPOs, while for the regular system simple quantization con-
dition, i.e., the Einstein—Brillouin—Keller quantization con-
dition, is applied to the torus in classical dynamics. For
quantized chaotic systems, this complicated feature of inter-
ference is encoded in the Gutzwiller trace formula or the
associated Gutzwiller—Voros zeta function in a semiclassical
way. The most striking property of a quantized chaotic sys-
tem is good agreement with the prediction of the random
matrix theory(RMT), which assumes an ensemble of Hamil-
tonian matrices according to the symmetry which a given
system possesses. Even though the RMT gives us nice de-
scription for quantized chaotic systems, randomness deter-
ministically generated in such systems is highly nontrivial.
The link between classical chaos and the RMT should be
clarified. A recent detailed investigation by semiclassical
theory has shown that the statistical property of the UPOs
determines the statistical property of the corresponding quan-
tum system.

Here we briefly comment on known statistics of periodic

due to infinite number of variations of how a given systemOrbits. The number of the periodic orbits exponentially pro-
behaves. Infinite variations prevent us from forecasting thdferates with increasing their period,

future of the system in detail. The set of unstable periodic
orbits (UPOs9, which is an countably infinite invariant set in
chaotic dynamics, is regarded as a generator of an infinite

hT

HT,<T}~ E_T’ (1)

number of variations. In fact, the dynamical property of the\yhere h is the topological entropy. For dispersing billiard
hyperbolic system is described by the dynamical zeta funcgystems, a numerical calculation shows that the length and

tion (or the Fredholm determinant of the Perron—Frobeniugapiity factor for the set of periodic orbits with the same
operatlozy, which is expressed in terms of information on ,mher of bounces obey the Gaussian distributidfore-
UPOs.“ The dynamical zeta function provides us with the o er the nearest neighbor spacing distribution for the length
dynamical characteristic quantities, such as decay ratgy neriodic orbits approximately obeys the Poisson protess.
Lyapunov exponent, topological entropy, etc. In fact, this statistic explains linearity of the spectral form
factor for a quantum dispersing billiard in a short time
regime®
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For the correspondence between the behavior of a quarstatistical property of actions. The numerical results of action
tized chaotic system and the prediction of the RMT, the two-distribution are displayed. It will be shown that the dyadic
point level correlation functiorR,(s) is the most suitable Baker map with a symmetry reduction seems to satisfy the
characteristic function. For this quantity, MIT groband  assumption in Ref. 7. In Sec. IV, we consider the action
Bogomolny and Keating(see Appendix A for a brief re- distribution of a dyadic Baker map rather mathematically,
view) have obtained an apparently complete answer. Howbut not strictly rigorously. Using the similarity between the
ever, their result has excellent agreement with the RMT presemiclassical tracéthe sum over periodic orbitsand the
diction for the class of time-broken symmetry for both limit sum which appears in Weyl's uniform distribution theorem,
s—o and 0(it seems to be a complete ansyydaut does not we will confirm that the actions of UPOs of a dyadic Baker
reproduce the RMT result is—0 for the class of time- map with symmetry reduction obey the uniform distribution
reversal symmetry. This failure is as follows: &s-0, the ~ modulo 1. In Sec. V, we will consider the case of the saw-
diagonal partR{¥@9(s) diverges. This divergence is due to tooth map. It is shown that the expression of actions for
the Hannay—Ozorio de AlmeiddH-OdA) sum rule®®  UPOs becomes the Hamiltonian of a one-dimensional Potts
which represents a tendency toward a unique equilibriuninodel. In Sec. VI, we summarize the conclusions. In Appen-
state in the corresponding classical dynamics. For timedix A, the result on the semiclassical expressiorRg(s) is
broken symmetry, the off-diagonal paRyY™(s) also di-  given. The validity of the semiclassical sum rule is checked
verges and cancels the divergenceRi{®9(s). For time-  for both time-reversal and time-broken cases. In Appendix
reversal symmetry, this cancellation does not occur for theiB, we represent the resummation method to the dyadic Baker
result, because the order of divergenceﬂg?‘ag)(s) mis-  map which is originally employed by Gutzwiller to the an-
matches that iR (s) (see Appendix A R™(s) contains isotropic Kepler problem. In Appendix C, the extension to
the information on the pair correlation of UP&sThis cor-  the p-adic Baker map is done.
relation is highly nontrivial and shows the deviation from
pure randomness. As shown for the Riemann zeta functiof) pyapiC BAKER MAP
which is a mathematical test model of a quantized chaotic
system by Keating"'? the cancellation between the diver- ~ The dyadic Baker map is the area-preserving map on a
gence inRY™Y(s) and that inRP™(s) is essential to its unit square,
deviation. In order to improve their result, time-reversal  y’—py_[2x],

symmetry breaking oR,(s) has been considered in Ref. 13 )
by careful treatment of multiplicity of UPOs. The result of , y+2x]

Ref. 7 has been partially improved but this problem still y= 2

remains.

i+1

2

(+--bpby_1---bobieapaiay- - -a,- - -), (4)

In the analysis of Ref. 7, the crucial statistical assump-The orbit can be expressed in terms of the binary series,
tion has been made: the distribution of actions obeys Gauss- ” - 1\t
ian distribution and the distribution of actions moduldii X:i:EO a; , y:ion bi(z) , &)
the scale unit ofi) obeys uniform distribution. In the present
paper, we will investigate the statistical property of actionswherea;,b;{0,1}. The bi-infinite symbolic sequence,
of the UPOs for two simple examples of hyperbolic dynami-
cal systems, a Baker map, and a sawtooth map. Our aim here _ i )
is to check whether actions for both maps obey the assumﬁ-PeC'f'eS an actual orbit. This correspondence is one-to-one.
tions, which has been used in Ref. 7, or not. We use the The generating function of the Baker map can be con-
recent numerical result by Tanf&in which he applied the Structed by the following way through the mixed
result of Ref. 15 to the action correlation, and an extension ofépresentation® Let us consider the generating function for
Weyl's uniform distribution theorem. As a result, it will be the T-step mapping. Th&-step mapping is given as
shown that a dyadic Baker map with a symmetry reduction  y' =27y,
obeys the uniform distribution of actions modulo 1pAadic - (5)
Baker map and a sawtooth map are also investigated numeri- y’'=2"T(y+v).
cally. From .the numerical result for f[hese cases, it seems th%erefore, the associated generating function is now
for the p-adic Baker map and special cases of the sawtooth
map, actions of UPOs obey the uniform distribution modulo  F (x,y’)=2"Ty’x— vy’ — X, (6)
1.

The organization of this paper is as follows: In Sec. ”’Where

we introduce dyadic Baker map and write the expression of 1 _ ot

action for UPOs into the form of a Hamiltonian of one- v=2 a2 " w=3 a2. (7)
dimensional lattice gas system by using the binary symbolic =0 -0

dynamics. In Sec. lll, the quantized dyadic Baker map isThe mapping is expressed in terms of this generating func-
introduced. We carry out the semiclassical theory to the tracton,

of its Floquet operator. The evaluation of the semiclassical

trace is reduced to the evaluation of eigenvalues of some X’Z—,VZZTX—V, y:%zzTy,_; (®)

operator. The behavior of this eigenvalues determines the ay
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For periodic orbits, we identify the initial point and final TABLE I. Symmetry operations and minimum degeneracy.
point, namelyx=x', y=y’. Then, we get the position of the

periodic point, o i 9
X X 1
X O 2
XE =t o x 2
2T-1 o) o 4
_ 9
yr=—
2T-1
T-1
We also denote the one-step shift byand define here the S,= Zﬁ X;a,

shifted periodic sequenag”v,
oT-1 T-17-1

T-1 ) = 2 2 Z_J'a.a4 . d
0—“,/:2 a(i+n)modT2T7|71- (10) 2T-1 =0 =0 S medt
1=0
ehT/2 T-1
There is an interesting property of periodic points: The sums =——— 1 > a’+2e "™} aga
) 4 sinh(\T/2) | <0 i<
of x, andy,, are the sum of the symbotg,’s,
T
T-1 T-1 T-1 . .
xcosv{)\ ——||—J|> , (16)
2 Xn= z Yn= 2 an. (11 2
n=0 n=0 n=0

whereh =In 2. Finally the actiorS_V can be rewritten into the
A similar relation will appear for the sawtooth map later. Theone-dimensional lattice gas Hamiltonian with system Jize

action of the periodic orbit is obtained by the Legendre trans- NT/2

. . } — e
formation of the generating functids,,, = —AT2 a
g g S= Tsinhntiz) | Mot e % aia;
Smy X —Fuxy ey = = 12 T
V_yX V(X!y )|X*xy*_2T_1' ( ) XCOSV{)\ E_ll_ll) ]! (17)

We denote the set of the actions of the periodic orbits withvhereM , denotes the number of particlése., the number
period T by PO; which includes all repetitions, namely ~ of “1” ). This is very similar to the approximate action of
=rT,, wherer is the repetition and, is the period of the periodic orbits for the anisotropic Kepler problem which is
prime periodic orbits labeled by. We also denote the set of an Ising spin system with exponentially decreasing pair
the actionsS, for the prime periodic orbits with perio@ by interaction:’
Pr. Symmetry: The Baker map has the following two types
Subtracting some integer fro,,, the expression o8,  0of symmetry. Under the following symmetry operation, the
is much more simplified. We defi@ssv—zw whereZ, action S, is invariant. (1) Time-reversal operation: This
= ij;Olajoflfj, symmetry operation is the exchange of the coordinatasd
y, hamelyx«Yy. Let us represent this operation loy. In
_ 1 the symbolic representation, it is given as
S,= 2, Xiai= 20 xi[2x], (13 apa;---ar_jeear_jar_, - -ag. (2) Geometrical symme-
try (the reflection wrt the diagonal): In the coordinate rep-
where resentation X,y), this operation is given ag—1—X, y
—1-—vy. Let us denote this operation lay . In the symbolic
n representation, this operation is the posi-nega transformation.
, (14 aja;---ar_1—(1—ag)(1—a;)---(1—ar_;). By these
two symmetries, the multiplicitg of a given periodic orbit
can be, at mosgy=4, except accidental degenerdaye will
observe accidental degeneracy in Fig. 5 and Fig.The
T-1 M correspondence between the multiplicity and the symmetry
M,=> a, > <S,<M,,. (15  operation is depicted in Table I.
An example of g=4 for period 7. Here we show an

) — ) — example of degeneracy of prime periodic orbits with 4
Obviously, S, mod 1=S, mod 1. We use this expressi®)  (period 7). We list the symbols for an example ca&®.

rather than the origing, , since in semiclassical analysis we 0001011, (b) 0001101, (c) 0010111, (d) 0011101.(a) and

only need the fractional part é‘:‘v,_as we will see later. Here (b) [or (c) and (d)] are mutually transformed by . At the

we denote the set of the actiofls with period T by POy same time,(a) and (d) [or (b) and (c)] are mutually trans-
(for the prime periodic orbitsPr.). S, can be written as formed byog.
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I1l. QUANTIZED BAKER MAP 5
4.5 |
The quantized version of the Baker map is constructed 4l
in the following way®'® Let us denote 35 |
=(0,¥1,....n_1) " the wave function in the position rep- = 3l
resentation. The time-evolution of the wave function is de- ) 25+ |
scribed by the followingN X N-matrix By, (N: positive even a 2 F |l i ‘\1‘
intege, 15 | i e ‘
‘ I Al !\ 1]
1 - U A R MU N
0.5 Hil ‘ , A
BNzgﬁl( Gnz 0 )’ (18 0 ".MIMMM“MJ )Mllw Mﬂmmm .MM
0 Gne 0051 152253354455
(a) T/N
where s
4.5 + Smoothed SFF —— |
1 2mi 1 1 4l COE —— ]
= =— - = = CUE -
(Gn)kn=(k[n) \/ﬁeXF{ N | KT3](nt 2) ’ 35t 1
3 -
) 2.5 ¢
k,n=0,1,..N—1. (19 i )

1.5 ¢ | ]
The phase space is now compact. This makes the Planck 1l WWWWMNWW W&ﬂ%
constant be quantized to give= 1/2zN, whereN is the 05 | M ‘ ' ﬂ ]
integer which corresponds to the size of matly. The L
eigenvalue problem is now 0051 152253354455
(b) T/N

Byy=e€"“y. (20
FIG. 1. Spectral form factor of a quantized dyadic Baker mab:

. . = 1/2h =1000. We used half of the whole eigenvalues, which corre-
The quantized Baker map shows the level repulsion. Th%ponds to the even parity. The horizontal axis is in sddMd. ty=T/N

neareslt'neighpor. |ev?| spacing diStgibUtion well agrees with- 1 s the Heisenberg tim¢a) The spectral form factorb) The smoothed
the Wigner distribution forN=2-.*® For the case ofN spectral form factor which is obtained by smoothiay in a certain small

=2l the accidental degeneracy of quasi-energies is obnterval. The solid line is the quantized dyadic Baker map. The dashed and
served. This curious property is not yet well understood. We'°tted ines are the COE and CUE statistics, respectively.

will see later for the numerical result of a spectral form fac-

tor. Since the eigenvalue is periodic with periogt,2hen the _

density of states is represented in terms of the sum of infinitk(T;N): FdeséTs’aRz(s)

number of delta functions, 0

N  +x 1 szEd é..rslafzﬂa N S 3 S
= S— S w —_— w— —
dlw)=2, 2 do-wn=2ml) 2md?Jo 0 2d 2d
N 1 O . :£|Tr(BL)|2—N5TO (23
= — J n —inw N .
5o+ W%ngl Tr(BY)e " (21)

The random matrix theory predicts the form K{T;N) for
dime-reversal ¢=2) and for time-broken systemg€ 1),

The first term in the second line corresponds the mean de ,
respectively,

sity of statesd= N/27r. To characterize the statistical prop-

erty of spectrum, we define the two-point correlation func- 2t—tIn(1+2t), 0<t=<l1,
tion R,(s), Kg=o(T;N)= 2t+1 (24)
1-tin|l /—|, 1<t
2t—-1
Ry(S) L] or 2 ’d( > ) d
S)=— vt — - an
e 2d 2d
¢ (TiN) {t, o<t<l1, 25
Kg=1(T;N)= 5
1 (2= _ S |\~ s g=1t 1,
= _Zj dod| 0+ — d((u———), (22 L=t
2md*Jo 2d 2d where we take the scate=T/N. In Fig. 1 and Fig. 2, the

L numerical results of the spectral form factor for even parity
whered(w)=d(w)—d and(---) denotes the energy aver- are depicted foN=1000 andN=1024=2'°, respectively.
age. The spectral form factét(T;N) is defined as the Fou- Figure 1 shows good agreement with the COE prediction,
rier transform of the two-point level correlation function,  while Fig. 2 seems to be rather Poisson, i.e., arithmetical

Downloaded 01 Jul 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 10, No. 1, 2000

K(T)

2 "
i

Mﬁa

5

1 “‘1; ‘“ {}i: i 1{:3 ‘1‘: \ ‘
0 bt it bl

0 051 15 2 25 3 354 45

(a) T/N

5
4.5 ¢
4t
35t
3 L
25 ¢
2 L
15 +
1 b
05

Smoothed SFF — |

K(T)

0 05115 2 25 3 35 4 45 5
(b) TN
FIG. 2. Spectral form factor of a quantized Baker ngapgthmetical case
N= 1/27h =2'9=1024. We used half of the whole eigenvalues, which
corresponds to the even parity. The horizontal axis is in stéah. t,
=T/N=1 is the Heisenberg time@ The spectral form factor folN
=1024. (bh) The smoothed spectral form factor which is obtained by
smoothing(a) in a certain small interval. The solid line is the Baker map.

The dashed and dotted lines are the COE and CUE statistics, respectively.

chaos?® This observation is consistent with the numerical
result of the level spacing distribution in Ref. 14. Thus we
must carefully treat thé-(or N-)dependence. If there is no
systematic degeneracy in eigenenergies, the following sem
classical sum rule, Eq27), should be satisfied which is a
simple application of identity on the smoothed delta
functions®

. 1 2
er:)Zwe _;$X+i6) =5(X). (26)
The semiclassical sum rule is
lim2meR) (s=0)=d, (27)
e—0
where
1 27 s |~ S
R(;)(s)z ——f dod®| o+ —|dO| 0— —
2mwd?Jo 2d 2d
(28)

and d¥(w) is the oscillatory part of ane-Lorentzian
smoothed density of states. The relation, EZil), implies
the discreetness of eigenenergies. Inserting(EY.into Eq.
(27), we have
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©

lim2e>, K(T;N)e 2T=1.
T=1

(29

e—0

This implies that the spectral form fact&r(T;N) saturates
to 1 asT—oo.
The semiclassical trace can be evaluaté§ s

e2miNS,

2 sin(\T/2)’

TriaBH= >
S, e Fix(T)

(30

where the sum is taken over the fixed points of Themes
map excep®' and1" which lay on the discontinuous bound-
ary. Fix(T) is the set of the actions of the fixed points with
period T. We note that the Maslov index is absent for a
quantized Baker map. The contribution from the periodic
orbits0" and1" is of the order of logk).? In the semiclas-
sical limit2— 0, this anomaly has a problem. One can avoid
this problem by using the different Baker m#pFor the
Baker map of Ref. 22, the action is jusbf S, and we can
enumerate all periodic orbits by the same binary symbolic
dynamics. But in this paper, since we are interested in the
statistics of the actions, we sum up all contributions from the
symbols Oand 1 For the usual Baker map, we sum up all
contribution apart from the symbols. Semiclassically the
spectral form factor can be written as

1
KEXTN) = S Tr(BY) |2

1
" N{2 Sinh(AT/2)12

X [gT2"+ (other contribution], (31

where the first term 2in the bracket is the number of peri-
odic orbits with periodT and g is the degeneracy of the
periodic orbits. g=2 for a symmetry reduced Baker map,
g=4 for the not symmetry reduced ogndhe H—OdA sum
rule is satisfied. Considering the multiplicity of periodic or-
bits due to the time-reversal symmetry, the diagonal part
explains the slope oK(T;N) in a short time limit, namely
the linearity inT.® On the other hand, in the long time limit,
however, the saturation df(T;N) needs the off-diagonal
part which expresses the correlation of actions. Unfortu-
nately, the semiclassical spectral form factor exponentially
diverges®>14So the semiclassical sum rule also breaks down
for the semiclassical two-point level correlation function
R,(s). Although the semiclassical spectral form factor di-
verges, it is worthwhile examining the explicit enumeration
of the off-diagonal part. In addition, as pointed out in Ref.
23, the divergence of the semiclassical spectral form factor is
controlled by the imaginary part of the semiclassical
eigenenergies. The semiclassical trac@d(BL) diverges as
~e*2, wherehy,— N2(=N/2 in the present cagés the
topological barrier and. is the maximum Lyapunov expo-
nent (=In 2 for the dyadic Baker mapConversely, in order

to obtain the semiclassical sum rule for the semiclassical
two-point correlation or the saturation of the semiclassical
form factor inT— o, we need the energy smoothing with the
size ofA/2 at least. So if we have an explicit expression of
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KG(T;N), equivalently the trace 1¥(B},), there is a pos- 0.3 _
sibility to control the imaginary part of eigenenergies, i.e., 025 | N(‘;;‘:fsrsﬁﬂ o
exponential rate of divergence, by hand. The action correla- )
tion can be expressed by the following quanfitgy;n),*%* g 02 |
0 =
P(y:;T)= X [Tre(B)[2e2m™™, (32 -S|
N= g o1l !
whereN= 1/27rh. From this expression, it is clear that the /
#-(or N-)dependence oK S%(T;N) is important. The RMT 0.05 ¢ Jﬁ
prediction for the action correlatiéh**is as follows: for the 0 A ‘
GUE, -5 0 5A 10 20
ction
1 (o) P(T) [sin(mo)\?
Pouelo) = _ZP(T) I _( +To(o), FIG. 3. Action distribution §,=3x;[2x;]) for the prime periodic orbits
T T o with period 20 without symmetry reduction: The distribution is approxi-
(33 mately Gaussian. The distribution has a periodic oscillation. Each peak is
and for the GOE, assigned by the numbéd ,, .
P ! P((r
Goe 7) T2\T Te(BT )= l _ 1 E g2miNs,
=N 2|2 sinh(AT/2) S, € Fix(T)

P(T) (Sin(ﬂ'a))z
= -2 1

T2 TO - 2miNSs,
) 2 COSHNT/2) SVE%’(T) € ' (38)
+ ;{COS(ZWU)(SKZWU)COE(ZWU) whereS), corresponds to half action of an orbit with length
2T whose symbol sequence is given a&( --,ar_1,1
= Ci(27o)sin(2m7o))+ Ci(4dmo)sin(dmo) —ap, - -,1—ar_1) and FiX(T) is the set of the actionS,

. of the fixed points with period . + (and —) corresponds
~siama)s(4mo)}+25(a), (34) to even(and odd parity, respectively. In the next subsection,
where we used the scaling= o/ T andP(y) corresponds the We will show the action distribution before symmetry reduc-
mean part of the weighted periodic orbit action pairtion and after symmetry reduction.
density* What is the most important for us is that the numerical
Recently in Ref. 14, using the weighted Perron—observation of the leading eigenval(iee., maximum modu-
Frobenius operatofWPF operator Uy for the Baker map lus) of Uy for each irreducible symmetry. Assigning two
introduced in Ref. 15, the action correlation has been invesifreducible representations by and —, the leading eigen-

tigated. The definition o)y is values ofUy (i.e., the eigenvalue with the maximum abso-
o iNS(G! lute value is greater than 1 and behave like
Un(a,0sN)=425(q— (20’ ~[2q']))e*"N@), (35) .
where logl A (N)|= —, 39
glAg(N)| N (39
S(a')=a'[2a']- 2([29'1+q"). (36)

whereC~0.291° The asymptotic behavior of the semiclas-
The most striking thing is that the semiclassical trace of thesical trace and the spectral form factor. This fact will be used
Baker map can be replaced by the trace of the WPF operatdor a mathematical discussion in the next section.

Uy and the evaluation of the semiclassical trace is now the We can also consider another quasiclassical operator like
evaluation of eigenvalues &fy .%* Thanks to this nice prop- Uy, i.e., the Gutzwiller's operatdf in Appendix B. How-
erty, he could enumerate the semiclassical trace up to pericelver, this method fails in the semiclassical limit. See Appen-
500. The semiclassical trace is given by dix B in detalils.

e27NS,i

SVE%((T) 2 Sin(\T/2)

A. Numerical observation of action distribution

Trs9(BT) = =Tr<UL>:,ZO AT(N),

In this subsection, we show the numerical results for the
(37)  action distribution of the periodic orbits for Baker maps.
Where{Ai(N)}-*"E) is the set of eigenvalues dfy. He has First, we depict the actual action distribution for the expres-
1= N —_—

also shown thatl) the symmetry reductiofi.e., geometrical ~ sion'S, without symmetry reduction in Fig. fare distribu-
symmetry is important;(2) to see the action correlation, the tion (S,)] and Fig. 4 §, mod 1) for the prime periodic
sum should be truncated; ari) the unitarity enforced by orbits. At first sight, the distribution has an oscillation of
using the bootstrap methbis important for the action cor- period~ 1. It looks like the binomial distribution. Remember
relation. The symmetry reduced semiclassical trace is givethe assumption on the action distribution of the periodic or-
as bits for their semiclassical analysis in Ref. 7. They assumed
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1.8
1.6
1.4
1.2

Multiplicity

0.8 |
0.6 !
04
0.2

Distribution
—

0 0.2 04 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 Action mod 1

Action mod 1

_ FIG. 6. Multiplicity distribution of actions modulo 1 for the prime periodic
FIG. 4. Action distribution §, modulo 1 without symmetry reduction: for  orbits with period 20 without symmetry reduction: The vertical axis repre-
the prime periodic orbits with period 20. A remarkable feature is that thesents the multiplicity of actions. For a higher period, we observe high mul-
distribution has an oscillation in the unit interval. tiplicity.

that(1) the bare action of periodic orbits obeys Gaussian and The distribution of the pair-difference of the actions
(2) the actions moduld: of periodic orbits are uniformly [§V_§V,(V¢V')] is depicted in Fig. @) (bare distribution
distributed. From Figs. 3 and 4, the assumption seems to bgnd Fig. 7b) (in modulo 1). For generic systems, the distri-
invalid for Baker maps without symmetry reduction. In ad- bution of the pair-difference of the actions can be expected to
dition, at present, we do not know whether these peaks havge approximately Gaussian, since the action distribution is
the remarkable hierarchical structure as the case of the timepproximately Gaussian as assumed in Ref. 7. In R, 7
domain approach in Ref. 25. we depict the bare distribution of the pair-difference of the
Next we examine the degeneracy of the action of periactions for period 17. Only the positive axis is shown. There
odic orbits without symmetry reduction, which is extremely exist some peaks in the distribution. The envelope function
important for the behavior of the spectrum of the correspondpf the distribution seems to be Gaussian. Figuitsy 8hows
ing quantum system. We remember the symmetry relation of
the actionS,. (a) Time reversal operationS,,Tuzsu; (b)

. e _ . . 0.18
posi-nega reverse operatidy, ,=S,+T—2M; (c) shift by 016 Numerical — |
one-stepsS,,=S,, In Figs. 5 and 6, we represent the distri- Gaussian ——
i L . . 0.14 .
bution of the multiplicity of actions. Each spike corresponds - »
to the value of actions. Its height represents the multiplicity. £ 0.
Figure 5 is bare distribution for period 20. Higher degenera- _.E 0.1 1
cies thang=4 are observed. In Fig. 6, we depict the distri- 5 008
bution of the multiplicity of actions modulo 1. After the /006
modulo operation, multiplicity becomes much higher. It is 0.04 |
numerically confirmed that the higher period has higher de- 0.02 ;
generacy. We summarize that the Baker map without sym- oL S
i i - 0 2 4 6 8 10 12 14 16 18 20
metry reduction has the tendency of high degeneracy of ac () Pairifference of Actions
tions.
14
1.2
14 1
=
2
£ 0.8 |
=
g *E 0.6 [
£ = o4}
A 0.2}
0 1 L L !
0 02 04 06 08 1
(b) Pair-difference of Actions mod 1

16 18 2 o ) - . .
0 2 46 SAclt?on 12 1416 18 20 FIG. 7. Distribution ofS,—S,(v#v') for prime periodic orbits(period

17) without symmetry reduction@) Bare distribution. We only shos,
FIG. 5. Multiplicity distribution of the actions for prime periodic orbits with  —S ,>0. The distribution has the periodic peaks as well as in the action
period 20 without symmetry reduction: The vertical axis represents the muldistribution. (b) Distribution modulo 1. The distribution has the periodic
tiplicity. Higher degeneracies thag=4 are observed. oscillation as well as in the action distribution with modulo operation.
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3 - - - - Weyl's uniform distribution theorerf? Consider a se-
25 quence of real numbdr,},_, . The necessary and sufficient
condition that the fractional par{a,} of a, is distributed
é 2 1 uniformly in the interval 0,1] is
.:-; 15 ] R _
g WMMWW |\/|||an — zl exd 27mia,]=0, (43)
0.5 | for an arbitrary natural number m
0 The sum in Eq(43) is very similar to the semiclassical

0 02 04 06 08 1 expression of the trace for quantized chaotic linear maps. We
Action mod 1 , . s
have to extend the above Weyl's uniform distribution theo-
FIG. 8. Action distribution §, modulo 1) for the Baker map with symme- rem to an appropriate form, i.e., the case of a sequence of
try reduction(odd parity with period 22: The distribution is close to uni- sets of real numbers. We define the uniform distribution
form distribution. . ’
modulo 1 for this case.
Definition: For a given sequence of sets of real numbers,

the distribution after the modulo 1 operation is depicted. ReSaY,{Sty-1 such that|S,| <[S,1| and[S,|—, if the fol-

flecting the tendency of the degeneracy of actions, the distril®wing condition is satisfied, we say that the elements of the
bution is not uniform distribution. In summary, the dyadic setS,, has uniform distribution modulo 1 asymptotically: for

Baker map has the tendency of high degeneracy of action@n arbitrary interval E=[a,b]C1=[0,1],

without symmetry reduction. A(E,|S,S,)
Finally, we depict the action distribution modulo 1 after lim T=b—a, (44)
symmetry reductiorfodd parity in Fig. 8 (period 22). Com- n—e n

pared with Fig. 4, it seems that the distribution tends to thegyng
uniform distribution as increasing peridd although it still

has modulation. In the next section, this point will be math- ~ A(E.[Sa|.Sn) =#{x:x € E, x e Sy} (45

ematically confirmed. Weyl's uniform distribution theorem is extended to the
case of a sequence of sets of real numbers in the following

IV. DISTRIBUTION OF ACTIONS: MATHEMATICAL way.

DISCUSSION Proposition 1: Consider a sequence of the set of real

dQumbers {Sp}o_; such that |S,|<|S,.41| and |Sy|—=,
Baker map is very similar to the sum which appears inwhere|8n| is the number of elements 8. The necessary

Weyl's uniform distribution theorem. This manifests that for and S”ff',c'e_m condition that. the r?a' numbers &, Is uni-

a dyadic Baker map, whether the distribution of actions igormly distributed asymptotically in the intervg0,1] as n

uniform or not is closely related to the value of its semiclas-— "

sical trace. First, we introduce the definition of uniform dis- 1

tribution. lim 5 >, exd2mmix] =0, (46)
Definition: If the following condition is satisfied for a n—enl X< 5

given infinite sequence of real numbe, }, we say that it for an arbitrary natural number m

The expression of semiclassical trace for the dyadi

has uniform distribution moduld.: for a given interval E Proof: The proof is the same line for that of Weyl's
=[a,b]CI=[0,1], uniform distribution theorem.
The condition in Weyl's uniform distribution theorem
__A(E,M) .
lim sz—a, (40 can be interpreted as
M—o
1 .
where lim-— E exd 2mimx]=0,

n4>00|7;1| XETn
A(E,M)=#{a,:{a,}eE for n=1,2,... M}, (41)

and{a,} is the fractional part of g.
The uniform distribution is characterized by the follow- Here we defined,= U{_,S; and|7;| is the number of ele-
ing theorem. ments of7,,. The order of the summation over action can be
Theorem: The necessary and sufficient condition for thearranged by the symbolic dynamics. For instance, the in-
uniform distribution modulo 1 is the following: for an arbi- creasing order of the value of the corresponding digit of

for any natural numbem. (47)

trary Riemann integrable real functior(x), given binary sequences is taken.|T|>|S,| and|S,|/| 7|
LM . —const an—o, we can easily show that E¢47) implies
lim — > f({an})=j f(x)dx. (42) 1
M—e M =1 0 lim—— 2 exd 2m7imx]=0,

Hoo|8n| Xe Sy
Fortunately, one can set the functibfx) to exp(2rimx) !
(m: integey. for any natural numbem. (48
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Proof: We set A,=3,.zexd2mmix] and B, [S,|/|7,| tends to a constant value. Therefdi®,|/|S,| tends

=3, s exd2mmix]. By the triangular inequality, we have tO zero.
" Let us consider the case of actions of UPOs for the dy-

1Bol—|An_a| A adic Baker maps. First, we defin@;=U/_Fix(i). We
n n— n

——=< . (49 identify the set7; (or St) with O+ [or Fix(T)]. We have
73| 73| |Fix(T)|/| Q1| — const, since the proliferation of periodic or-
bits is asymptotically determined by the topological entropy.
Thus Obviously, | Q,|>|Fix(n)|. Therefore, we have the follow-
ing.
|Snl Bl _ [Anl +An=a| _[Anl | [An—d] (50 Proposition 2: If the actions ofJ5_,Fix(T) have uni-
FAREN |7, |7 | Zo-al” form distribution modulo 1, then actions of KiK) has uni-

form distribution modulo 1 asymptotically.
The right hand side of Eq47) goes to zero. Furthermore, We have for odd parity,

. > _exg2mmis ]+ X {27mis]]
P r— ex Tmi ex Tmi
2|FIX(T)| S, e Fix(T) S,,EFiX,(T) v
__ ! 2 sinf(AT/2 > 2mmiS,]+2 AT/2 ! > 2mmiS,
= 2Fxm)] | 2 SN S SniaTr) o, By SR ZTMISH 2 COSNTID) 5 i T2 o, e exH2mmiS,]
11 11 - - 1 N C
=5 2T2 SintANT/2)| Tr(UL )| = 5 2T2 sinAT/2) 2‘,0 AN =3 T Z,O AT(N) =3 ex;{( >+ = T
—0 asT—om, (51

whereN=In2=0.69314... ancC~0.29. We used the fact V. SAWTOOTH MAP

that|Fix(T)|=2". By the numerical observation of Ref. 14, , , , )

this sum converges to 0 a@-—. Thus for a dyadic Baker In this section, we consider the sawtooth map. First, we
map with symmetry reduction, the actions of the periodicqu'Ckly review the classical dynamics of the sawtooth map
orbits are asymptotically uniform modulo 1 &s-c. This and show that the expression of the action for periodic orbits

fact is consistent with the assumption of Ref. 7. For ever1aS @ similar form to that for the Baker maps, namely the
parity, we have to change the sign which can be included ir?ne-d|men5|onal POtt? Spin systems. ) )
the actionsS,. After same calculation, we might conclude Let us start7_c2c;n5|der|ng the classma! dyna_mlcs of the
asymptotically uniformity modulo 1 a§—«. However, we sawtooth maps’ . The _savv_tooth map is defined on a
think that mathematical rigor is still needed, since the evaIu-Z'torus' The Hamiltonian is given by
ation is crude. To get the uniform distribution modulo 1, the y? x2 =
whole of actions should be dense in the unit interval. Now ~ H=Z%—K= > s(t-n), (52)
the actions takes rational values. For the dyadic Baker map e
without symmetry reduction, the behavior of the leading ei-where D=[ — 3,3) andx,ye D. The dynamics is described
genvalues olU{;”) for even and odd space is important. As by the following equation of motion:
mentioned in Ref. 14, the leading eigenvaluesUgf’ for
even and odd space have values of different order. Therefore,
we should still carefully discuss about uniform distribution Vns1=YntKX,, mod 1 inD.
modulo 1 for the case without symmetry reduction.

The extension for @-adic Baker map is done in Appen-
dix C. The actions of UPOs for p-adic Baker map is also .. :
rational. If accidental degeneracy often occfihés probably tively. The mapping now becomes
depends on the value @h, by the result of Appendix C, at Xns1=Xn+Yns1— W
the present, we cannot say whether the actions of UPOs for
the p-adic Baker map obey uniform distribution or not, al-
though the numerical observation suggests the uniform dispuye to the linearity of the sawtooth map, the tangent map for

tribution modulo 1. one-step is simply given as
In the next section, we consider the sawtooth map, K+1 1}

Xn+1=Xn+VYn+1, Mmod 1 inD,
(53)

Without modulo operation, we have to introduce the winding
numberw, (orw,) € Z along thex- (or y-) direction, respec-

(54)
Yn+1=Ynt Kxn_Wg/n) .

whose actions can take irrational values for some values of
K 1|

the perturbation parameté&. (59
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X, w{ Y
andwi=| . |. (63)
Yi Wy

So the action is the sum of area of triangle with sign. The
expression of periodic points can be rewritten into a different
form. Here we setw=Invy. Then the periodic poink, is
given by

We define the following quantities for later use:

K+2+D

D=K(K+4), y=——F—, (56)

XiE

wherey is the largest eigenvalue 8. The dynamics of the
sawtooth map is characterized by the following way)
—4<K<0: The mapping is elliptic(2) K<—4, 0<K:

The mapping is hyperbolic. The dynamics is totally chaotic. 1 T

(2-8) K: Integer(K< —4,K>0): the sawtooth map becomes ~ X,=J3(a,T) 2, C05|< (2 ))Sn+r1 (64)
Arnold’s cat map(Anosov diffeomorphism It is ergodic. =0

(2-b) K: Noninteger; the mapping is discontinuous. This where

breaks some nice properties which are observed in Arnold’s 1

cat maps. However, the system is still ergodic. Even the J(q,T)= (65)

decay of correlation is exponential. By periodicity, andy,, 2 sin(a)sinf(aT/2)-
should be confined in the intervig- 3,5]. This enforces the The conjugate coordinate for the periodic point becomes
winding number to be bounded ¢ [see Eq.(54)]. The T
winding number gives us a natural symbolic description of _

the trajectory’’” We define the symbol sefA as A =) E cos

T -
E_r)>(5n+r_sn+r1)+wg(n l)-

={—anadK),—ana K)+1,...~1,0,1,..,.ama(K)}, Where (66)
s, is expressed in terms oi{” andw{",
AmalK)=| 2+ 5. %7 Sp=wW{+ (WP —w{"" D). (67)
and[ - - - ] represents the integer part of the argument. For th&Ve have an obvious relation,
periodic symbolic sequencg=s;S,- - - St_1St1, the location T-1 T-1
of periodic points is given by Z 5= Z Wg)_ (68)

T
2 T (ySpsr—1+Sn_s), (58 Inserting Eq.(64) and Eq.(66) into Eq. (62) and using Eq.

(y*— 1)(yT 1) (69), we finally obtain

wheres; e A. Here we note that in this symbolic description, 1 -

the mapping from the symbolic sequer{sg} to the position S= EJ(a,T)TE (wi)?

{x,} is one to, at most, one. This property affects the analysis =0

of the quantized maps. The winding numbers of a given pe- T-17-1 T

riodic orbit along bothx- andy-directions can be represented - —J(a T 2 2 SiS; COSf{ (— —li—j ))

as the sum of the values of positions for the conjugate coor- =

dinate, namely (69
T-1 Equations(62) and (69) are the main result of this section.
E = 2 Vi, (599  Compared with the expression, E¢2), of the action for the

Baker maps, Eq(69) of the sawtooth maps is the one-
dimensional multi-state spin model. Equati@®) expresses
w, = s w)(,”):KE X . (60) th,e sum o]‘ the area of triangles determingd by the.vectors
= n=0 X;'s andw;’s. We also note that the symbolic dynamics for
, o L . the sawtooth map is not complete, namely there is pruning.
The action for the periodic orbit with periallis given as’ These are main differences between the Baker and sawtooth
y2 K2 maps. Severe pruning prevents us from carrying out the same
S= E { (—'— Ly (X — X0 procedure of the WPF or Appendix B, since the construction
2 of the integral kernel is impossible. Therefore, we only nu-
merically check the distribution of actions of UPOs.
—W§‘)xi+w§j1>yi]_ (61) Action Distribution for Sawtooth Mapwe show the re-
sults of the numerical studies on action distribution for the
Using Eq.(54) and considering the periodicity carefully, we Sawtooth maps. In order to avoid the number theoretical
can show anomaly, we set the paramet€to be a noninteger. We have
done the numerical check of the action distribution for sev-
s iy OMNER eral v_alges. Although we did not find_the number theoretical
=5 & W TYimWy) =5 2y XiXW, (62 peculiarity for the case thaf is a rational value, here we
comment that the corresponding quantized map has some
where the symboX is the exterior product and we define the anomalous behavior for some rational valueKofsuch as
vectors accidental degeneracy.

T-1
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0.05 | 0.05
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Action Pair-difference of Actions

FIG. 9. Action distribution for the sawtooth map with period & (  FIG. 11. Distribution ofS,—S,, (p#p’) for prime periodic orbits(saw-

=3.385756): For higher periods, we can clearly see a periodic oscillation oooth map: We only plot the pairs of prime UPOs with period & (
Gaussian distribution. =3.385756). The approximate distribution is Gaussian.

First, we examine the bare action distribution. In Fig. 9 : 7 : ;

T L ) ! 'tropic Kepler problent/ Reducing geometrical symmetry,
the.bgr;a action distribution 'i dbelpl:c:ted K)':, 3'ﬁ85 7r\56dwlthb we numerically showed that the actions modulo 1 are distrib-
period from 4 tp 9. Alremar aie ee}tlrjlre IS ,t ;tt € ,'IT"'_ Uuted asymptotically uniformly in the unit interval. Further-
tlpn'l IS apphrOX|mateby Gal:js?an hWItd pglrlo ('jc o;mkatlon more, replacing the semiclassical trace by some quasiclassi-
simi ar\}\(l) t ?t as o s_ervIT r?r tkeh ya '.p'é dI'C) 'ba e cal operator introduced by Ref. 15 with a mathematical tool,
maps. We also numerically check the action distribution Ine ghowed that the actions modulo 1 are asymptotically uni-
r_nodulo 1ltis showr_1 in Fig. 1Q and su_ggt_—:tsts th"_’u the fra_cformly distributed in the unit interval a§—co. Therefore,
tional parts of the action are uniformly distributed in the unit,, assumption in Ref. 7 is valid for the dyadic Baker map
'r?ter"a'- We al§o depmted the distribution O,f t.he PaAI™ Lowever, mathematical rigor is not complete. Actions take
difference of actions. First, we show the bare distribution of ational values. We do not know whether the set of actions is
the pair-difference of actiqhs in Fig. 11 for the case O,f pe_'riOd(rjense in the unit interval or not which is the need for uni-
8. W.e o.nly'sho_w the po_smve part of the who!e dlgtrlla_uthn. form distribution. Therefore, we worry about a possibility of
Its distribution is approximated by the Gaussian d'smbunonanomaly like the spectral form factor for the cage 2"
very well. Seco_nd, we ?hOW the distribution of the_ p"?‘ir' Sawtooth mapSimilarly, we have shown that the action
difference of actions in Fig. 12. It suggests that the dlstnbu-mc periodic orbits for sawtooth maps has the form of the

tion tends to the uniform distribution. Hamiltonian of a one-dimensional Potts spin model with ex-
ponentially decreasing pair-interaction. Unfortunately, the
VI. CONCLUSIONS resummation method used for a dyadic Baker map cannot be

We have investigated the statistics of actions of periodi@PPplied to the sawtooth map, because of severe pruning.

orbits for the p-adic Baker map and the sawtooth map. We Therefore, we only checked the distribution of actions by
summarize the results below. numerical calculation. We did not show for the case #at

Dyadic Baker mapFirst, the expression of the action of & integer value. For this case, the action systematically
the Baker map is the Hamiltonian of a one-dimensional latd€generates. From the numerical observation, in the case

tice gas system. This is very similar to the case of the aniso-

1.2
14
1
12
1 g 08 +
g 5
2 08 - 2 0.6 -
3 06 | a 04 |
a
04 | ] 0z |
02 |
0 L 1 I L
0 : 0 02 04 06 08 1

0 0.2 0.4 0.6 0.8 1 Pair-difference of actions mod 1

Action mod 1
FIG. 12. Distribution ofS;—S, mod 1 (p#p’) for prime periodic orbits

FIG. 10. Action distribution modulo 1 for the sawtooth map with period 9 (sawtooth map We only plot the pairs of prime UPOs with period & (

(K=3.385756): Approximately, the actions in mod 1 are uniformly dis- =3.385756). The approximate distribution is uniform distribution. But we
tributed in the unit interval. can clearly see the structure of the fluctuation on the uniform distribution.
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thatkK i§ not in.teg_er, t_he distribution of action_s seems to obey  R,(x)=R{)(x)+RPM (x), (A1)
the uniform distribution modulo 1. But the rigorous discus-
sion is still unknown. (dieg) g

Concerning the Riemann zeta function case, the viola- Ry (X)=— 4—#@"1 D(x), (A2)

tion of uniform distribution of actions may be a not so sur-

prising fact. The corresponding period now has the form of cog27X)

Inp, wherep is prime. The question here is whether the R(ZOﬂ)(x):—zDg(x), (A3)
periods satisfy the uniform distribution modulo 1. The inter- ¢
esting result was already obtain&d:The sequence of
{Inp}—, where p; is the i-th prime, does not satisfy the
uniform distribution modulo 1. If we change the order of the
summation of Irp;, we do not know a possibility that a given
sequence satisfies the uniform distribution moduldltLis
known that if a given sequend@;};_, is dense in the unit
interval, one can obtain a sequence which satisfies the uni-

form distribution modulo 1 by changing the order of the (ﬁtp)(f)=f S(r—®'(r")p(r")dr’, (Ad)
summation(Ref. 34.] Irrationality of the actions will be im-

portant for the uniform distribution modulo 1. The difference Wherer =(x,p) and® is the flow of the classical dynamics.
of the statistics of actions between our model consideredts Fredholm determinarZ(z)=det(1-e°L) has the zeros
here and other models such as dispersing billiards or consta@é eigenvalues of. For two-dimensional systemz(z) be-

wherefi=1, d=1. g=1 and 2 correspond to time-broken
symmetry and the time-reversal symmetry classes, respec-
tively. D(x) is defined by the Perron—Frobenius operafor

for the corresponding classical dynamics. The time-evolution
of the density in phase space is determined by

negative curvature space, should be investigated. comes

The expression of actions of the UPOs for @ddic) o oty |\ K1
Baker map and sawtooth map has a similar form of one, ) — _ 1— =TI c (z—
dimensional spin systems. Also the anisotropic Kepler prob- ) {(2) l_p[ kE[O |AplAg 1;:[ w277,
lem (AKP) which was investigated by GutzwilfErhas an (A5)

approximate expression of actions in terms of the Symbo“%vhere/\p is the maximum eigenvalue of the monodromy

dynamics derived from a certain hypothesis on symmetr){natrix M, and {y,} is the Pollicott—Ruelle resonances
M

and numerical observation. His hypothetical requirement tg, . . o -
the expression of actions is that the action is invariant unde _{e m}:{ |ts theR elgerllvailhuets fozﬂ) a_n(_JI %0=0 ,:S the ?qlilg}
the shift and the time-reversal operation. The expression Q%umjoa;. emar ba or mixing systems, 1pr7%,
action of the UPOs for the AKP is very similar to the case of 7,=0.D(x) is given by

the dyadic Baker map. Here, we speculate that the expression A2

of actions of the UPOs of a given hyperbolic system, which ~ D(x)=|Nz(ix)|2=] 1 5 “ > (AB6)
has a well-defined symbolic dynamics, has the form of the R

Hamiltonian of the one-dimensional spin system. Since th%vhere/\f
Baker map and sawtooth map are linear, therefore, the eXsiion fa
pression of actions is just quadratic in symbols. We expect

that in general, for nonuniformly hyperbolic systems, the ex- 1, u=0,
pression of actions has higher-order terms wrt symbols. Au= [ TE)

is the normalization factor and, is the regular-
ctor,

(A7)

In Ref. 7, they derived the correction from the repetition of
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=lim2m7eR5(x=0)
APPENDIX A: SEMICLASSICAL EXPRESSION OF e—0
R,(S) (Refs. 6 and 7)

_ 1 (1 yo+4e?
MIT group® derived the semiclassical expression of the =lim 2776; — 7t N
two-point level correlation functioR,(s). Later Bogomolny e=0 7o 4e” w70 (y,—4€%)
and Keating refined the result of Ref. 6 and derived the
. . ) 1 1
off-diagonal part by using the bootstrap density of states. — ——(1—4mdge+---) - -
The result of Ref. 7 includes the contribution from the rep- € p#0 1— 462/72

etition of periodic orbits. Here we show that their result for q
time-broken symmetry classes satisfies the semiclassical sum - |imi{D +0( 60)} =dg=(d(E)). (A8)
rule. First, we introduce the result 6f, e—0T | €
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Therefore, the semiclassical sum rule is satisfied. This is «a B 0O - 0 B
rather astonishing result, since it is believed that the semi- B a B 0
classical theory does not explain the limit ¢f>o (s
—0). (Remark that there is no need for the contribution B 0 B «a BS
from the repetition of periodic orbits.For time-reversal - o\’ (BS)
symmetry classes, we get 0 a B
lim2me((d(E))?) B 0 0 B «a
0 where
= lim2meR5(x=0)
e—0 — —
; _ a=2cothA) and B SN (B6)
im2 1 )/M—(Zle)2
=lmzsmel — —| — : The determinants de&) and detB) are given as
€0 w2\ (2i€)? w70 ((2ie)?+ 'yi)z oA ®) g

1

N coshidme) 1 2
1+ (2i6)2/7i

27 (2ie)*i#0

=00,

(A9)

It fails the semiclassical sum rule. In Ref. 13, the time-

reversal symmetry breaking &,(s) was considered. But in
no AB-flux limit (time-reversal limi}, it still has a problem.

APPENDIX B: GUTZWILLER'S RESUMMATION
METHOD

In order to evaluate the semiclassical trac&{BT),
we employ the Gutzwiller's resummation metfbtb quan-

tized dyadic Baker’'s maps, which was used for the AKP. His

method is essentially the use of Kac's metfiod to the

—\T

e Sinh(\T)

2 [entNTI2T2 and detB)=de(A) L.

(B7)

detA)=

Here we rewrite the actiog,, in terms of the variables,
e{—1,1}, instead of the variables; ,

x,=3(1+o) and o=(0y,...,01_7)" and1=(1,...,D".
(B8)

Then we have
S,=31T-A-1+ 20T A1+ 0" A0 (B9)

We can easily check that

T 3 T T
JZlAiJ:E and;lA”:JZlAi,j for i#i’. (B10)

one-dimensional Ising spin problem with the interaction of Thus we can omiLt the first two terms in E@9) for suffi-
exponentially decreasing function. The action for the dyadicciently largeN=2". After all, we arrive at

Baker's map has been already given in ELy). We rewrite
this into the following form:

¥ 4 sSinA\T/2) i 1% E 2 |I J|) '
(B1)

§_1
"7

Since the phase factors in the trace appear as eXN$H2),
we can drop;M ,, for sufficiently largeN with N=2". Then
we have

_ 1 T

SV=EXV-A'X,,, (B2)
where

XV:(ao,al, P ,aT,]_)T, (BS)

and the matrix elementd;; is given as

1 T . .
Aij:mcosl‘(x(z—h—”)). (B4)

Here we denot8= A~ the inverse ofA. One can show that

i§ 1, 4
RS A
where A= (s/4)A and s=i/k. Therefore, forN=2(L;
sufficiently large, we have

(B11)

>

2sinh(AT/2) 5

1
ex;{—o-T-.A- o

Tr(BT) = 5

. (B12)

Now we apply the following Hubbard—Stratonovich trans-
form to Eq.(B12),

1TA
ex EO" T

©

dzy

=(27T)—T/2(dew))1’2fw dz--- f

1
xexr{——zT-Coz exdo'-z], (B13)

2

where A and C are real positive definite symmetriex T
matrices and4 ~1=C. Here we suppose thaiis a real posi-
tive number. After the transformation, we analytically con-
tinue the result in the complex domain as done in Ref. 17.
Employing the Hubbard—Stratonovich transform, we have
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0 o T
Tf(sc)(BT)=f(T,N)f_md21'"J_deT 2,1 _é tanl‘(% (Z2+ 7%, 1) +cosechiN)(z,—z 4 1)?
1 T
X exp{ — EZT-C- z+ Z,l In(cosr(zi))}, +In cost(zi)] . (B16)
(B14)  We scalezj=R¢;, whereR= \/s/8. Then we have
where TrSYBT) =G(T)Tr(KT), (B17)
T where
AT.N)= m&w)*m(d(’.‘(c))llz- (B15) @ Sinh)\))T}llz -
The argument of the exponential function in the integrand of =13 sinf(A T) (519
Eq. (B14) is rewritten as and

(1/4) {tanh(\/2)(£2+ 5?) + coseclN ) (£— 7)?}]

(22 S yecoshR7), (B19)

K(£,m) = JoosiRE -

and , ,_y+tIpx]
T X'=px=[px], Yy ==

KT = J_ngl' = fldfTi[[l K(&,&41). (B20)

(CD

wherep=2eN. In a similar way to the dyadic Baker map,
Here we impose the periodic boundary conditign,,  We have the action for the periodic orbit with peridd

=¢,. The expression obtained has the same form as that for
the anisotropic Kepler problem except some coefficients. Re-

vy

mark that the factog(T) asymptotically behaves as siP= Iy (C2
G(T)~eM, as T, (B21)
The eigenvalue problem of the kern€(¢, ») is where
w T-1 T-1
J_w’C(X.Y) lﬁ()’) dy=,u¢(x). (822) y= ;’ a, pT_i_l7 v= ;} aipi, (Cg)
We denote{u;};—, the set of eigenvalues of the kernel _
K(¢,7) and assume thdfu;};, are ordered as anda; ,b;€{0,1,..,p—1}. Since we take the modulo opera-
tion, for simplicity, we can remove some integer frtﬁﬁ),
| ol > pa = [ o= - ->0. (B23)  and thus define
Then we have
THABN=G(T) 2, i . (B24) 0.1 e
=0 0.09 | ¥ Numerical — |
\ Gaussian ~——
Therefore, our next task is to evaluate the leading eigenvalue 0.08 - oA ]
o of the kernelXC(¢,7). However, unfortunately, the ob- g 0.07 ¢
tained kernel diverges in the semiclassical lirit-0. See € 006
Eq. (B19). Thus, we cannot use for the analysis unlike the £ 0057
quasiclassical operatdaty .1>* Zz2 004
Y
0.02 +
0.01
APPENDIX C: EXTENSION TO p-ADIC BAKER MAP

0 I 4»1"', L ! L 1 R L

: . . , 10 -5 0 5 10 15 20 25 30 35
In this section, we consider the case phdic Baker Action

maps and examine the behavior of the action distribution

; ; - F
compared with the case of dyadlc Baker maps. The eXtensm{_daker map p=>5): for the prime periodic orbits with period 9. Clearly, the

to the p—adic Baker map is Straightforward- The mapping iSapproximate distribution is Gaussian. The distribution has a periodic oscil-
now given as lation.

G. 13. Action distribution of the expressidh,=ZXx;a; for the p-adic
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1.2 : T — T 0.1 ; . : .
il el Ly ol ‘H PRIF 0.09 Numerical — |
1 Al : ‘ “\“\:“‘ Jt 0.08 | Gaussian |
! 0.07
£E " £ 006!
H =
2 0.6 £ 005
z Z 004}
=] 04 a 0.03 |
02 | 0.02 |
0.01
0 ‘ : : : 0 : : ‘
0 0.2 04 0.6 0.8 1 0 5 10 15 20 25
(a) Pair-difference of Actions

Action mod 1

14
FIG. 14. Action distribution in modulo 1 for the-adic Baker map [§=5):
for the prime periodic orbits with period 9. Clearly, the limiting distribution 1.2 | Ol
is uniform distribution. I ‘ ‘“ \

I
g I“‘ ‘ M‘H‘H\‘ ‘\\“
2 \‘ I ‘ LY
S 08 + 1
=
et
Z 0.6 -
- =)
<@ 04 ¢
sP= E
=0 0.2 |
ehpl(T72) —1] T-1 0 ‘ ‘ : :
= a +e N T/2 a a; 0 0.2 04 0.6 0.8 1
2 sinh(\,T/2) 2 ! (b) Pair-difference of actions mod 1
T . FIG. 15. Distribution of the pair-difference of actiof§{® — S (v+ v')]
X coshAa 2 || J | ) (CH of prime periodic orbits for g-adic Baker map |§=5, periodT=6): (a)
The bare distribution of the pair-difference of actions. We only show the

positive part of the whole distribution. The envelope function seems to be
the Gaussian distributioiib) The distribution in modulo 1. The approximate
where\ ,=In p. The expression of the actiﬁ,m is now the distribution is uniform distribution.
Hamiltonian of the one-dimensional multi-state lattice gas.
In Fig. 13, the action distribution for the expression, Eq.
(C4) is depicted for the casp=5 with period from 6 to 9.
Compared with the dyadic case, the distribution ofkedic
case with a larger value gi(p=3) tends to the Gaussian
distribution more smoothly, since the gap between peaks is
narrower for large. Then we speculate that the dyadic case
is very anomalous. Remember that the number 2 is a special r(sc)(B )= — E
integer in number theory. We also numerically check the 2 sinf(\pT/2) 5
action distribution in modulo 1 for the expression, EG4)
(Fig. 14. It seems that the limiting distribution is the uni-
form distribution. The pair-difference of the actions is alsowhere\,=Inp. In a similar way to the dyadic Baker map,
numerically checked. It seems that the bare distribution ohfter a cumbersome calculation due to the Hubbard—
the pair-difference of the actions tends to the Gaussian disStratonovich transform, we have the semiclassical ttéare
tribution [Fig. 15a)] and that in modulo 1 tends to the uni- 16p|N),
form distribution [Fig. 15b)]. At present, we do not find
number theoretical peculiarities fo= 3.
The quantizedp-adic Baker map and its semiclassical Tr(SC)(B;)zgp(T)Tr(ICE), (C?)
analysis are also similarly constructed,

whereN e pN. The semiclassical trace &, is given as

exg27NisP?],  (C6)

where
GN,p 0
0 G 0 2 sinh(\,))T]¥?
. Go(T)= @) "))} ehe’ (C8)
BpZGﬁl : : ’ (C5) 2 smI‘()\pT)
0 - GN/p 0
0 0  Gup and
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exf — (1/4) {tanh(\ ,/2)(£2+ n?) + cosechir ) (£~ 7)?}]

Kp(&,m)=Vh(Rp&;p) . h(Rp7;p), (C9
V212 sinh(\ )
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