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Statistical properties of actions of periodic orbits
Mitsusada M. Sanoa)
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We investigate statistical properties of unstable periodic orbits, especially actions for two simple
linear maps (p-adic Baker map and sawtooth map!. The action of periodic orbits for both maps is
written in terms of symbolic dynamics. As a result, the expression of action for both maps becomes
a Hamiltonian of one-dimensional spin systems with the exponential-type pair interaction.
Numerical work is done for enumerating periodic orbits. It is shown that after symmetry reduction,
the dyadic Baker map is close to generic systems, and thep-adic Baker map and sawtooth map with
nonintegerK are also close to generic systems. For the dyadic Baker map, the trace of the quantum
time-evolution operator is semiclassically evaluated by employing the method of Phys. Rev. E49,
R963~1994!. Finally, using the result of this and with a mathematical tool, it is shown that, indeed,
the actions of the periodic orbits for the dyadic Baker map with symmetry reduction obey the
uniform distribution modulo 1 asymptotically as the period goes to infinity. ©2000 American
Institute of Physics.@S1054-1500~00!02101-7#
-

s-
t

-

se
m
th
di
n
ni
he
n
iu
n

he
at

of
d as
the
on-
-
or
ter-
he
ical
ys-
om
il-
en
de-
ter-

al.
be

cal
Os
an-

ic
o-

d
and
e

gth
ss.
m
e

Recent development of semiclassical quantization of cha
otic systems has given us many fruitful results and has
been applied to mesoscopic systems, atom-molecular sy
tems, nuclear systems, etc. One of the most importan
goals of theoretical research is to elucidate the relation
between the prediction of random matrix theory and the
statistical behavior of quantized chaotic systems. To de
velop semiclassical reasoning for this, it is quite impor-
tant to know the statistical behavior of periodic orbits of
the classical counter part. In this paper, we investigate
the action of periodic orbits for simple two-dimensional
maps „Baker map and sawtooth map… theoretically and
numerically and report their statistical properties „e.g.,
Gaussian distribution and uniform distribution …. In par-
ticular, as a main result, for dyadic Baker map with sym-
metry reduction, mathematical discussion supports the
uniform distribution modulo 1 of actions of periodic or-
bits.

I. INTRODUCTION

Complex motion in chaotic dynamics is, in some sen
due to infinite number of variations of how a given syste
behaves. Infinite variations prevent us from forecasting
future of the system in detail. The set of unstable perio
orbits ~UPOs!, which is an countably infinite invariant set i
chaotic dynamics, is regarded as a generator of an infi
number of variations. In fact, the dynamical property of t
hyperbolic system is described by the dynamical zeta fu
tion ~or the Fredholm determinant of the Perron–Froben
operator!, which is expressed in terms of information o
UPOs.1,2 The dynamical zeta function provides us with t
dynamical characteristic quantities, such as decay r
Lyapunov exponent, topological entropy, etc.1

a!Electronic mail: sano@phys.h.kyoto-u.ac.jp
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The UPOs are also important objects for the purpose
quantizing chaotic systems. The eigen energies are forme
a result of complicated interference of waves along
UPOs, while for the regular system simple quantization c
dition, i.e., the Einstein–Brillouin–Keller quantization con
dition, is applied to the torus in classical dynamics. F
quantized chaotic systems, this complicated feature of in
ference is encoded in the Gutzwiller trace formula or t
associated Gutzwiller–Voros zeta function in a semiclass
way. The most striking property of a quantized chaotic s
tem is good agreement with the prediction of the rand
matrix theory~RMT!, which assumes an ensemble of Ham
tonian matrices according to the symmetry which a giv
system possesses. Even though the RMT gives us nice
scription for quantized chaotic systems, randomness de
ministically generated in such systems is highly nontrivi
The link between classical chaos and the RMT should
clarified. A recent detailed investigation by semiclassi
theory has shown that the statistical property of the UP
determines the statistical property of the corresponding qu
tum system.

Here we briefly comment on known statistics of period
orbits. The number of the periodic orbits exponentially pr
liferates with increasing their period,3

#$Tp<T%;
ehT

hT
, ~1!

where h is the topological entropy. For dispersing billiar
systems, a numerical calculation shows that the length
stability factor for the set of periodic orbits with the sam
number of bounces obey the Gaussian distribution.4 More-
over, the nearest neighbor spacing distribution for the len
of periodic orbits approximately obeys the Poisson proce4

In fact, this statistic explains linearity of the spectral for
factor for a quantum dispersing billiard in a short tim
regime.5
© 2000 American Institute of Physics
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For the correspondence between the behavior of a q
tized chaotic system and the prediction of the RMT, the tw
point level correlation functionR2(s) is the most suitable
characteristic function. For this quantity, MIT group,6 and
Bogomolny and Keating7 ~see Appendix A for a brief re-
view! have obtained an apparently complete answer. H
ever, their result has excellent agreement with the RMT p
diction for the class of time-broken symmetry for both lim
s→` and 0~it seems to be a complete answer!, but does not
reproduce the RMT result ins→0 for the class of time-
reversal symmetry. This failure is as follows: ass→0, the
diagonal partR2

(diag)(s) diverges. This divergence is due
the Hannay–Ozorio de Almeida~H–OdA! sum rule,8,9

which represents a tendency toward a unique equilibr
state in the corresponding classical dynamics. For tim
broken symmetry, the off-diagonal partR2

(off) (s) also di-
verges and cancels the divergence inR2

(diag)(s). For time-
reversal symmetry, this cancellation does not occur for th
result, because the order of divergence inR2

(diag)(s) mis-
matches that inR2

(off) (s) ~see Appendix A!. R2
(off) (s) contains

the information on the pair correlation of UPOs.10 This cor-
relation is highly nontrivial and shows the deviation fro
pure randomness. As shown for the Riemann zeta func
which is a mathematical test model of a quantized cha
system by Keating,11,12 the cancellation between the dive
gence inR2

(diag)(s) and that inR2
(off) (s) is essential to its

deviation. In order to improve their result, time-revers
symmetry breaking ofR2(s) has been considered in Ref. 1
by careful treatment of multiplicity of UPOs. The result
Ref. 7 has been partially improved but this problem s
remains.

In the analysis of Ref. 7, the crucial statistical assum
tion has been made: the distribution of actions obeys Ga
ian distribution and the distribution of actions modulo 1~in
the scale unit of\) obeys uniform distribution. In the presen
paper, we will investigate the statistical property of actio
of the UPOs for two simple examples of hyperbolic dynam
cal systems, a Baker map, and a sawtooth map. Our aim
is to check whether actions for both maps obey the assu
tions, which has been used in Ref. 7, or not. We use
recent numerical result by Tanner14 in which he applied the
result of Ref. 15 to the action correlation, and an extension
Weyl’s uniform distribution theorem. As a result, it will b
shown that a dyadic Baker map with a symmetry reduct
obeys the uniform distribution of actions modulo 1. Ap-adic
Baker map and a sawtooth map are also investigated num
cally. From the numerical result for these cases, it seems
for the p-adic Baker map and special cases of the sawto
map, actions of UPOs obey the uniform distribution modu
1.

The organization of this paper is as follows: In Sec.
we introduce dyadic Baker map and write the expression
action for UPOs into the form of a Hamiltonian of on
dimensional lattice gas system by using the binary symb
dynamics. In Sec. III, the quantized dyadic Baker map
introduced. We carry out the semiclassical theory to the tr
of its Floquet operator. The evaluation of the semiclass
trace is reduced to the evaluation of eigenvalues of so
operator. The behavior of this eigenvalues determines
ownloaded 01 Jul 2008 to 130.54.110.22. Redistribution subject to AIP lic
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statistical property of actions. The numerical results of act
distribution are displayed. It will be shown that the dyad
Baker map with a symmetry reduction seems to satisfy
assumption in Ref. 7. In Sec. IV, we consider the act
distribution of a dyadic Baker map rather mathematica
but not strictly rigorously. Using the similarity between th
semiclassical trace~the sum over periodic orbits! and the
sum which appears in Weyl’s uniform distribution theore
we will confirm that the actions of UPOs of a dyadic Bak
map with symmetry reduction obey the uniform distributio
modulo 1. In Sec. V, we will consider the case of the sa
tooth map. It is shown that the expression of actions
UPOs becomes the Hamiltonian of a one-dimensional P
model. In Sec. VI, we summarize the conclusions. In App
dix A, the result on the semiclassical expression ofR2(s) is
given. The validity of the semiclassical sum rule is check
for both time-reversal and time-broken cases. In Appen
B, we represent the resummation method to the dyadic Ba
map which is originally employed by Gutzwiller to the an
isotropic Kepler problem. In Appendix C, the extension
the p-adic Baker map is done.

II. DYADIC BAKER MAP

The dyadic Baker map is the area-preserving map o
unit square,

x852x2@2x#,
~2!

y85
y1@2x#

2
.

The orbit can be expressed in terms of the binary series

x5(
i 50

`

ai S 1

2D i 11

, y5(
i 50

`

bi S 1

2D i 11

, ~3!

whereai ,biP$0,1%. The bi-infinite symbolic sequence,

~•••bnbn21•••b2b1•a0a1a2•••an••• !, ~4!

specifies an actual orbit. This correspondence is one-to-
The generating function of the Baker map can be c

structed by the following way through the mixe
representation.16 Let us consider the generating function f
the T-step mapping. TheT-step mapping is given as

x852Tx2n,
~5!

y8522T~y1 n̄ !.

Therefore, the associated generating function is now

Fn~x,y8!52Ty8x2ny82 n̄x, ~6!

where

n5 (
i 50

T21

ai2
T2 i 21, n̄5 (

i 50

T21

ai2
i . ~7!

The mapping is expressed in terms of this generating fu
tion,

x85
]Fn

]y8
52Tx2n, y5

]Fn

]x
52Ty82 n̄. ~8!
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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For periodic orbits, we identify the initial point and fina
point, namelyx5x8, y5y8. Then, we get the position of th
periodic point,

x* 5
n

2T21
,

~9!

y* 5
n̄

2T21
.

We also denote the one-step shift bys and define here the
shifted periodic sequencesnn,

snn5 (
i 50

T21

a( i 1n)modT2T2 i 21. ~10!

There is an interesting property of periodic points: The su
of xn andyn are the sum of the symbolsan’s,

(
n50

T21

xn5 (
n50

T21

yn5 (
n50

T21

an . ~11!

A similar relation will appear for the sawtooth map later. T
action of the periodic orbit is obtained by the Legendre tra
formation of the generating functionFn ,

Sn5y8x82Fn~x,y8!ux* ,y* 5
nn̄

2T21
. ~12!

We denote the set of the actions of the periodic orbits w
period T by POT which includes all repetitions, namelyT
5rTp , wherer is the repetition andTp is the period of the
prime periodic orbits labeled byp. We also denote the set o
the actionsSn for the prime periodic orbits with periodT by
PT .

Subtracting some integer fromSn , the expression ofSn

is much more simplified. We defineSn[Sn2In , whereIn

5( j 50
T21aj2

T212 j ,

Sn[ (
i 50

T21

xiai5 (
i 50

T21

xi@2xi #, ~13!

where

xn5
snn

2T21
, ~14!

and

M n5 (
i 50

T21

ai ,
M n

2
<Sn,M n . ~15!

Obviously,Sn mod 15Sn mod 1. We use this expressionS̄n

rather than the originalSn , since in semiclassical analysis w
only need the fractional part ofSn , as we will see later. Here
we denote the set of the actionsS̄n with period T by PŌT

~for the prime periodic orbits,P̄T .). Sn can be written as
ownloaded 01 Jul 2008 to 130.54.110.22. Redistribution subject to AIP lic
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Sn5 (
i 50

T21

xiai

5
2T21

2T21
(
i 50

T21

(
j 50

T21

22 jaia( i 1 j )modT

5
elT/2

4 sinh~lT/2! H (
i 50

T21

ai
212e2lT/2(

i , j
aiaj

3coshFlS T

2
2u i 2 j u D G J , ~16!

wherel5 ln 2. Finally the actionSn can be rewritten into the
one-dimensional lattice gas Hamiltonian with system sizeT,

Sn5
elT/2

4 sinh~lT/2! H M n1e2lT/2(
iÞ j

aiaj

3coshFlS T

2
2u i 2 j u D G J , ~17!

whereM n denotes the number of particles~i.e., the number
of ‘‘1’’ !. This is very similar to the approximate action o
periodic orbits for the anisotropic Kepler problem which
an Ising spin system with exponentially decreasing p
interaction.17

Symmetry: The Baker map has the following two type
of symmetry. Under the following symmetry operation, t
action Sn is invariant. ~1! Time-reversal operation: This
symmetry operation is the exchange of the coordinatesx and
y, namelyx↔y. Let us represent this operation bysT . In
the symbolic representation, it is given a
a0a1•••aT21↔aT21aT22•••a0. ~2! Geometrical symme-
try „the reflection wrt the diagonal…: In the coordinate rep-
resentation (x,y), this operation is given asx→12x, y
→12y. Let us denote this operation bysR . In the symbolic
representation, this operation is the posi-nega transforma
a0a1•••aT21→(12a0)(12a1)•••(12aT21). By these
two symmetries, the multiplicityg of a given periodic orbit
can be, at most,g54, except accidental degeneracy~we will
observe accidental degeneracy in Fig. 5 and Fig. 6!. The
correspondence between the multiplicity and the symme
operation is depicted in Table I.

An example of g54 for period 7. Here we show an
example of degeneracy of prime periodic orbits withg54
~period 7). We list the symbols for an example case.~a!
0001011,~b! 0001101,~c! 0010111,~d! 0011101.~a! and
~b! @or ~c! and ~d!# are mutually transformed bysT . At the
same time,~a! and ~d! @or ~b! and ~c!# are mutually trans-
formed bysR .

TABLE I. Symmetry operations and minimum degeneracy.

sT sR g

3 3 1
3 s 2
s 3 2
s s 4
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp



te

-
e

n

h
it

o
W
c

ni

e
-
c

r-
-

ity

on,
ical

re-

and

198 Chaos, Vol. 10, No. 1, 2000 Mitsusada M. Sano

D

III. QUANTIZED BAKER MAP

The quantized version of the Baker map is construc
in the following way.18,19 Let us denote c
5(c0 ,c1 ,...,cN21)T the wave function in the position rep
resentation. The time-evolution of the wave function is d
scribed by the followingN3N-matrix BN (N: positive even
integer!,

BN5GN
21S GN/2 0

0 GN/2
D , ~18!

where

~GN!kn5^kun&5
1

AN
expF2

2p i

N S k1
1

2D S n1
1

2D G ,
k,n50,1,...,N21. ~19!

The phase space is now compact. This makes the Pla
constant be quantized to give\5 1/2pN, where N is the
integer which corresponds to the size of matrixBN . The
eigenvalue problem is now

BNc5eivc. ~20!

The quantized Baker map shows the level repulsion. T
nearest-neighbor level spacing distribution well agrees w
the Wigner distribution forNÞ2L.18 For the case ofN
52L, the accidental degeneracy of quasi-energies is
served. This curious property is not yet well understood.
will see later for the numerical result of a spectral form fa
tor. Since the eigenvalue is periodic with period 2p, then the
density of states is represented in terms of the sum of infi
number of delta functions,

d~v!5 (
n51

N

(
l 52`

1`

d~v2vn22p l !

5
N

2p
1

1

p
R(

n51

`

Tr~BN
n !e2 inv. ~21!

The first term in the second line corresponds the mean d
sity of statesd̄5 N/2p. To characterize the statistical prop
erty of spectrum, we define the two-point correlation fun
tion R2(s),

R2~s![
1

d̄2 K d̃S v1
s

2d̄
D d̃S v2

s

2d̄
D L

v

5
1

2pd̄2E0

2p

dvd̃S v1
s

2d̄
D d̃S v2

s

2d̄
D , ~22!

where d̃(v)5d(v)2d̄ and ^•••& denotes the energy ave
age. The spectral form factorK(T;N) is defined as the Fou
rier transform of the two-point level correlation function,
ownloaded 01 Jul 2008 to 130.54.110.22. Redistribution subject to AIP lic
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K~T;N!5E
0

2pd̄
dseiTs/d̄R2~s!

5
1

2pd̄2E0

2pd̄
dseiTs/d̄E

0

2p

d̃S v1
s

2d̄
D d̃S v2

s

2d̄
D

5
1

N
uTr~BN

T !u22NdT0 . ~23!

The random matrix theory predicts the form ofK(T;N) for
time-reversal (g52) and for time-broken systems (g51),
respectively,

Kg52~T;N!5H 2t2t ln~112t !, 0,t<1,

12t lnS 2t11

2t21D , 1,t,
~24!

and

Kg51~T;N!5H t, 0,t<1,

1, 1,t,
~25!

where we take the scalet5T/N. In Fig. 1 and Fig. 2, the
numerical results of the spectral form factor for even par
are depicted forN51000 andN510245210, respectively.
Figure 1 shows good agreement with the COE predicti
while Fig. 2 seems to be rather Poisson, i.e., arithmet

FIG. 1. Spectral form factor of a quantized dyadic Baker map:N
5 1/2p\ 51000. We used half of the whole eigenvalues, which cor
sponds to the even parity. The horizontal axis is in scaleT/N. tH5T/N
51 is the Heisenberg time.~a! The spectral form factor.~b! The smoothed
spectral form factor which is obtained by smoothing~a! in a certain small
interval. The solid line is the quantized dyadic Baker map. The dashed
dotted lines are the COE and CUE statistics, respectively.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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chaos.20 This observation is consistent with the numeric
result of the level spacing distribution in Ref. 14. Thus w
must carefully treat the\-~or N-!dependence. If there is n
systematic degeneracy in eigenenergies, the following se
classical sum rule, Eq.~27!, should be satisfied which is
simple application of identity on the smoothed de
functions:8

lim
e→0

2peS 2
1

p
T

1

x1 i e D 2

5d~x!. ~26!

The semiclassical sum rule is

lim
e→0

2peR2
(e)~s50!5d̄, ~27!

where

R2
(e)~s!5

1

2pd̄2E0

2p

dvd̃(e)S v1
s

2d̄
D d̃(e)S v2

s

2d̄
D

~28!

and d̃(e)(v) is the oscillatory part of ane-Lorentzian
smoothed density of states. The relation, Eq.~27!, implies
the discreetness of eigenenergies. Inserting Eq.~21! into Eq.
~27!, we have

FIG. 2. Spectral form factor of a quantized Baker map~arithmetical case!:
N5 1/2p\ 521051024. We used half of the whole eigenvalues, whi
corresponds to the even parity. The horizontal axis is in scaleT/N. tH

5T/N51 is the Heisenberg time.~a! The spectral form factor forN
51024. ~b! The smoothed spectral form factor which is obtained
smoothing~a! in a certain small interval. The solid line is the Baker ma
The dashed and dotted lines are the COE and CUE statistics, respecti
ownloaded 01 Jul 2008 to 130.54.110.22. Redistribution subject to AIP lic
l

i-

lim
e→0

2e (
T51

`

K~T;N!e22eT51. ~29!

This implies that the spectral form factorK(T;N) saturates
to 1 asT→`.

The semiclassical trace can be evaluated as16,21

Tr(sc)~BN
T !5 (

SnPFix(T)
8

e2p iNSn

2 sinh~lT/2!
, ~30!

where the sum is taken over the fixed points of theT-times
map except0T and1T which lay on the discontinuous bound
ary. Fix(T) is the set of the actions of the fixed points wi
period T. We note that the Maslov index is absent for
quantized Baker map. The contribution from the period
orbits 0T and1T is of the order of log(\).21 In the semiclas-
sical limit \→0, this anomaly has a problem. One can avo
this problem by using the different Baker map.22 For the
Baker map of Ref. 22, the action is just1

4 of Sn and we can
enumerate all periodic orbits by the same binary symbo
dynamics. But in this paper, since we are interested in
statistics of the actions, we sum up all contributions from
symbols 0̄and 1̄. For the usual Baker map, we sum up a
contribution apart from the symbols. Semiclassically t
spectral form factor can be written as

K (sc)~T;N![
1

N
uTr(sc)~BN

T !u2

5
1

N$2 sinh~lT/2!%2

3@gT2T1~other contribution!#, ~31!

where the first term 2T in the bracket is the number of per
odic orbits with periodT and g is the degeneracy of the
periodic orbits. (g52 for a symmetry reduced Baker ma
g54 for the not symmetry reduced one!. The H–OdA sum
rule is satisfied.9 Considering the multiplicity of periodic or-
bits due to the time-reversal symmetry, the diagonal p
explains the slope ofK(T;N) in a short time limit, namely
the linearity inT.8 On the other hand, in the long time limi
however, the saturation ofK(T;N) needs the off-diagona
part which expresses the correlation of actions. Unfor
nately, the semiclassical spectral form factor exponentia
diverges.23,14So the semiclassical sum rule also breaks do
for the semiclassical two-point level correlation functio
R2(s). Although the semiclassical spectral form factor d
verges, it is worthwhile examining the explicit enumerati
of the off-diagonal part. In addition, as pointed out in Re
23, the divergence of the semiclassical spectral form facto
controlled by the imaginary part of the semiclassic
eigenenergies. The semiclassical trace Tr(sc)(BN

T) diverges as
;elT/2, wherehtop2 l/2(5l/2 in the present case! is the
topological barrier andl is the maximum Lyapunov expo
nent (5 ln 2 for the dyadic Baker map!. Conversely, in order
to obtain the semiclassical sum rule for the semiclass
two-point correlation or the saturation of the semiclassi
form factor inT→`, we need the energy smoothing with th
size ofl/2 at least. So if we have an explicit expression

ly.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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K (sc)(T;N), equivalently the trace Tr(sc)(BN
T), there is a pos-

sibility to control the imaginary part of eigenenergies, i.
exponential rate of divergence, by hand. The action corr
tion can be expressed by the following quantityP(y;n),10,14

P~y;T!5 (
N52`

`

uTr(sc)~BN
T !u2e2p iyN, ~32!

whereN5 1/2p\. From this expression, it is clear that th
\-~or N-!dependence ofK (sc)(T;N) is important. The RMT
prediction for the action correlation10,14 is as follows: for the
GUE,

PGUE~s!5
1

T2
PS s

TD5
P̄~T!

T2
2S sin~ps!

ps D 2

1Td~s!,

~33!

and for the GOE,

PGOE~s!5
1

T2
PS s

TD
5

P̄~T!

T2
22S sin~ps!

ps D 2

1
2

ps
$cos~2ps!„si~2ps!cos~2ps!

2Ci~2ps!sin~2ps!…1Ci~4ps!sin~4ps!

2si~4ps!s~4ps!%12d~s!, ~34!

where we used the scalingy5s/T andP̄(y) corresponds the
mean part of the weighted periodic orbit action p
density.14

Recently in Ref. 14, using the weighted Perron
Frobenius operator~WPF operator! UN for the Baker map
introduced in Ref. 15, the action correlation has been inv
tigated. The definition ofUN is

UN~q,q8;N!5A2d~q2~2q82@2q8# !!e2p iNS(q8), ~35!

where

S~q8!5q8@2q8#2 1
2 ~@2q8#1q8!. ~36!

The most striking thing is that the semiclassical trace of
Baker map can be replaced by the trace of the WPF oper
UN and the evaluation of the semiclassical trace is now
evaluation of eigenvalues ofUN .24 Thanks to this nice prop
erty, he could enumerate the semiclassical trace up to pe
500. The semiclassical trace is given by

Tr(sc)~BT!5 (
SnPFix(T)

e2pNSn i

2 sinh~lT/2!
5Tr~UN

T !5(
i 50

`

L i
T~N!,

~37!

where$L i(N)% i 50
1` is the set of eigenvalues ofUN . He has

also shown that~1! the symmetry reduction~i.e., geometrical
symmetry! is important;~2! to see the action correlation, th
sum should be truncated; and~3! the unitarity enforced by
using the bootstrap method7 is important for the action cor
relation. The symmetry reduced semiclassical trace is gi
as
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Tr~B6,N
T !5

1

2 F 1

2 sinh~lT/2! (
SnPFix(T)

e2p iNSn

7
1

2 cosh~lT/2! (
SnPFix8(T)

e2p iNSn8G , ~38!

whereSn8 corresponds to half action of an orbit with leng
2T whose symbol sequence is given as (a0 ,•••,aT21,1
2a0 ,•••,12aT21) and Fix8(T) is the set of the actionsSn8
of the fixed points with period 2T. 1 ~and2) corresponds
to even~and odd! parity, respectively. In the next subsectio
we will show the action distribution before symmetry redu
tion and after symmetry reduction.

What is the most important for us is that the numeric
observation of the leading eigenvalue~i.e., maximum modu-
lus! of UN for each irreducible symmetry.14 Assigning two
irreducible representations by1 and 2, the leading eigen-
values ofUN ~i.e., the eigenvalue with the maximum abs
lute value! is greater than 1 and behave like

loguL0
(6)~N!u.

C

AN
, ~39!

whereC'0.29.15 The asymptotic behavior of the semicla
sical trace and the spectral form factor. This fact will be us
for a mathematical discussion in the next section.

We can also consider another quasiclassical operator
UN , i.e., the Gutzwiller’s operator17 in Appendix B. How-
ever, this method fails in the semiclassical limit. See App
dix B in details.

A. Numerical observation of action distribution

In this subsection, we show the numerical results for
action distribution of the periodic orbits for Baker map
First, we depict the actual action distribution for the expre
sion S̄n without symmetry reduction in Fig. 3@bare distribu-
tion (Sn)] and Fig. 4 (S̄n mod 1! for the prime periodic
orbits. At first sight, the distribution has an oscillation
period;1. It looks like the binomial distribution. Remembe
the assumption on the action distribution of the periodic
bits for their semiclassical analysis in Ref. 7. They assum

FIG. 3. Action distribution (S̄n5(xi@2xi #) for the prime periodic orbits
with period 20 without symmetry reduction: The distribution is appro
mately Gaussian. The distribution has a periodic oscillation. Each pea
assigned by the numberM n .
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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that ~1! the bare action of periodic orbits obeys Gaussian
~2! the actions modulo\ of periodic orbits are uniformly
distributed. From Figs. 3 and 4, the assumption seems t
invalid for Baker maps without symmetry reduction. In a
dition, at present, we do not know whether these peaks h
the remarkable hierarchical structure as the case of the t
domain approach in Ref. 25.

Next we examine the degeneracy of the action of p
odic orbits without symmetry reduction, which is extreme
important for the behavior of the spectrum of the correspo
ing quantum system. We remember the symmetry relatio
the actionSn. ~a! Time reversal operation:SsTn5Sn; ~b!

posi-nega reverse operation:SsRn5Sn1T22M ; ~c! shift by

one-step:Ssn5Sn, In Figs. 5 and 6, we represent the dist
bution of the multiplicity of actions. Each spike correspon
to the value of actions. Its height represents the multiplic
Figure 5 is bare distribution for period 20. Higher degene
cies thang54 are observed. In Fig. 6, we depict the dist
bution of the multiplicity of actions modulo 1. After th
modulo operation, multiplicity becomes much higher. It
numerically confirmed that the higher period has higher
generacy. We summarize that the Baker map without s
metry reduction has the tendency of high degeneracy of
tions.

FIG. 4. Action distribution (S̄n modulo 1! without symmetry reduction: for
the prime periodic orbits with period 20. A remarkable feature is that
distribution has an oscillation in the unit interval.

FIG. 5. Multiplicity distribution of the actions for prime periodic orbits wit
period 20 without symmetry reduction: The vertical axis represents the m
tiplicity. Higher degeneracies thang54 are observed.
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The distribution of the pair-difference of the action

@S̄n2S̄n8(nÞn8)# is depicted in Fig. 7~a! ~bare distribution!
and Fig. 7~b! ~in modulo 1). For generic systems, the dist
bution of the pair-difference of the actions can be expecte
be approximately Gaussian, since the action distribution
approximately Gaussian as assumed in Ref. 7. In Fig. 7~a!,
we depict the bare distribution of the pair-difference of t
actions for period 17. Only the positive axis is shown. The
exist some peaks in the distribution. The envelope funct
of the distribution seems to be Gaussian. Figure 7~b! shows

e

l-

FIG. 6. Multiplicity distribution of actions modulo 1 for the prime periodi
orbits with period 20 without symmetry reduction: The vertical axis rep
sents the multiplicity of actions. For a higher period, we observe high m
tiplicity.

FIG. 7. Distribution ofSn2Sn8(nÞn8) for prime periodic orbits~period
17) without symmetry reduction:~a! Bare distribution. We only showSn

2Sn8.0. The distribution has the periodic peaks as well as in the ac
distribution. ~b! Distribution modulo 1. The distribution has the period
oscillation as well as in the action distribution with modulo operation.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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the distribution after the modulo 1 operation is depicted. R
flecting the tendency of the degeneracy of actions, the di
bution is not uniform distribution. In summary, the dyad
Baker map has the tendency of high degeneracy of act
without symmetry reduction.

Finally, we depict the action distribution modulo 1 aft
symmetry reduction~odd parity! in Fig. 8 ~period 22). Com-
pared with Fig. 4, it seems that the distribution tends to
uniform distribution as increasing periodT, although it still
has modulation. In the next section, this point will be ma
ematically confirmed.

IV. DISTRIBUTION OF ACTIONS: MATHEMATICAL
DISCUSSION

The expression of semiclassical trace for the dya
Baker map is very similar to the sum which appears
Weyl’s uniform distribution theorem. This manifests that f
a dyadic Baker map, whether the distribution of actions
uniform or not is closely related to the value of its semicla
sical trace. First, we introduce the definition of uniform d
tribution.

Definition: If the following condition is satisfied for
given infinite sequence of real number$an%, we say that it
has uniform distribution modulo1: for a given interval E
5@a,b#,I 5@0,1#,

lim
M→`

A~E,M !

M
5b2a, ~40!

where

A~E,M !5#$an :$an%PE for n51,2,... ,M %, ~41!

and $an% is the fractional part of an .
The uniform distribution is characterized by the follow

ing theorem.
Theorem: The necessary and sufficient condition for t

uniform distribution modulo 1 is the following: for an arb
trary Riemann integrable real function f(x),

lim
M→`

1

M (
n51

M

f ~$an%!5E
0

1

f ~x!dx. ~42!

Fortunately, one can set the functionf (x) to exp(2pimx)
(m: integer!.

FIG. 8. Action distribution (Sn modulo 1) for the Baker map with symme
try reduction~odd parity! with period 22: The distribution is close to uni
form distribution.
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Weyl’s uniform distribution theorem:26 Consider a se-
quence of real number$an%n51

` . The necessary and sufficien
condition that the fractional part$an% of an is distributed
uniformly in the interval@0,1# is

lim
M→`

1

M (
n51

M

exp@2pmian#50, ~43!

for an arbitrary natural number m.
The sum in Eq.~43! is very similar to the semiclassica

expression of the trace for quantized chaotic linear maps.
have to extend the above Weyl’s uniform distribution the
rem to an appropriate form, i.e., the case of a sequenc
sets of real numbers. We define the uniform distributi
modulo 1 for this case.

Definition: For a given sequence of sets of real numbe
say,$S%n51

` such thatuSnu,uSn11u and uSnu→`, if the fol-
lowing condition is satisfied, we say that the elements of
setSn has uniform distribution modulo 1 asymptotically: fo
an arbitrary interval E5@a,b#,I 5@0,1#,

lim
n→`

A~E,uSnu,Sn!

uSnu
5b2a, ~44!

and

A~E,uSnu,Sn!5#$x:xPE, xPSn%. ~45!

Weyl’s uniform distribution theorem is extended to th
case of a sequence of sets of real numbers in the follow
way.

Proposition 1: Consider a sequence of the set of r
numbers $Sn%n51

` such that uSnu,uSn11u and uSnu→`,
whereuSnu is the number of elements ofSn . The necessary
and sufficient condition that the real numbers xPSn is uni-
formly distributed asymptotically in the interval@0,1# as n
→`:

lim
n→`

1

uSnu (
xPSn

exp@2pmix#50, ~46!

for an arbitrary natural number m.
Proof: The proof is the same line for that of Weyl’

uniform distribution theorem.
The condition in Weyl’s uniform distribution theorem

can be interpreted as

lim
n→`

1

uTnu (
xPTn

exp@2p imx#50,

for any natural numberm. ~47!

Here we definedTn5ø i 51
n Si and uTnu is the number of ele-

ments ofTn . The order of the summation over action can
arranged by the symbolic dynamics. For instance, the
creasing order of the value of the corresponding digit
given binary sequences is taken. IfuTnu.uSnu and uSnu/uTnu
→const asn→`, we can easily show that Eq.~47! implies

lim
n→`

1

uSnu (
xPSn

exp@2p imx#50,

for any natural numberm. ~48!
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Proof: We set An5(xPTn
exp@2pmix# and Bn

5(xPSn
exp@2pmix#. By the triangular inequality, we have

uBnu2uAn21u
uTnu

<
uAnu
uTnu

. ~49!

Thus

uSnu
uTnu

uBnu
uSnu

<
uAnu1uAn21u

uTnu
,

uAnu
uTnu

1
uAn21u
uTn21u

. ~50!

The right hand side of Eq.~47! goes to zero. Furthermore
t
,

di

e
d
e

lu
he
ow

a
ei
s

fo
n

-

t
f

l-
di

ap
s
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uSnu/uTnu tends to a constant value. Therefore,uBnu/uSnu tends
to zero.

Let us consider the case of actions of UPOs for the
adic Baker maps. First, we defineQT[ø i 51

T Fix( i ). We
identify the setTT ~or ST) with QT @or Fix(T)]. We have
uFix(T)u/uQTu→const, since the proliferation of periodic o
bits is asymptotically determined by the topological entrop
Obviously, uQnu.uFix(n)u. Therefore, we have the follow
ing.

Proposition 2: If the actions oføT51
` Fix(T) have uni-

form distribution modulo 1, then actions of Fix(T) has uni-
form distribution modulo 1 asymptotically.

We have for odd parity,
1

2uFix~T!u U (
SnPFix(T)

exp@2pmiSn#1 (
SnPFix8(T)

exp@2pmiSn8#U
5

1

2uFix~T!u U2 sinh~lT/2!
1

2 sinh~lT/2! (
SnPFix(T)

exp@2pmiSn#12 cosh~lT/2!
1

2 cosh~lT/2! (
SnPFix8(T)

exp@2pmiSn8#U
.

1

2

1

2T
2 sinh~lT/2!uTr~U2,m

T !u5
1

2

1

2T
2 sinh~lT/2!U(

i 50

`

L i
T~N!U. 1

2

1

2T/2U(i 50

`

L i
T~N!U. 1

2UexpF S 2
l

2
1

C

Am
D TGU

→0 asT→`, ~51!
we
ap
bits
the

the
a

d

ng

for
wherel5 ln 250.693 14 . . . andC'0.29. We used the fac
that uFix(T)u52T. By the numerical observation of Ref. 14
this sum converges to 0 asT→`. Thus for a dyadic Baker
map with symmetry reduction, the actions of the perio
orbits are asymptotically uniform modulo 1 asT→`. This
fact is consistent with the assumption of Ref. 7. For ev
parity, we have to change the sign which can be include
the actionsSn8 . After same calculation, we might conclud
asymptotically uniformity modulo 1 asT→`. However, we
think that mathematical rigor is still needed, since the eva
ation is crude. To get the uniform distribution modulo 1, t
whole of actions should be dense in the unit interval. N
the actions takes rational values. For the dyadic Baker m
without symmetry reduction, the behavior of the leading
genvalues ofUN

(6) for even and odd space is important. A
mentioned in Ref. 14, the leading eigenvalues ofUN

(6) for
even and odd space have values of different order. There
we should still carefully discuss about uniform distributio
modulo 1 for the case without symmetry reduction.

The extension for ap-adic Baker map is done in Appen
dix C. The actions of UPOs for ap-adic Baker map is also
rational. If accidental degeneracy often occurs~this probably
depends on the value ofp!, by the result of Appendix C, a
the present, we cannot say whether the actions of UPOs
the p-adic Baker map obey uniform distribution or not, a
though the numerical observation suggests the uniform
tribution modulo 1.

In the next section, we consider the sawtooth m
whose actions can take irrational values for some value
the perturbation parameterK.
c

n
in

-

p
-

re,

or

s-

,
of

V. SAWTOOTH MAP

In this section, we consider the sawtooth map. First,
quickly review the classical dynamics of the sawtooth m
and show that the expression of the action for periodic or
has a similar form to that for the Baker maps, namely
one-dimensional Potts spin systems.

Let us start considering the classical dynamics of
sawtooth maps.27–29 The sawtooth map is defined on
2-torus. The Hamiltonian is given by

H5
y2

2
2K

x2

2 (
n52`

`

d~ t2n!, ~52!

whereD5@2 1
2,

1
2) and x,yPD. The dynamics is describe

by the following equation of motion:

xn115xn1yn11 , mod 1 in D,
~53!

yn115yn1Kxn , mod 1 in D.

Without modulo operation, we have to introduce the windi
numberwx ~or wy) PZ along thex- ~or y-! direction, respec-
tively. The mapping now becomes

xn115xn1yn112wx
(n) ,

~54!
yn115yn1Kxn2wy

(n) .

Due to the linearity of the sawtooth map, the tangent map
one-step is simply given as

M5FK11 1

K 1G . ~55!
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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We define the following quantities for later use:

D5K~K14!, g5
K121AD

2
, ~56!

whereg is the largest eigenvalue ofM. The dynamics of the
sawtooth map is characterized by the following way:~1!
24,K,0: The mapping is elliptic.~2! K,24, 0,K:
The mapping is hyperbolic. The dynamics is totally chao
~2-a! K: Integer(K,24,K.0); the sawtooth map become
Arnold’s cat map~Anosov diffeomorphism!. It is ergodic.
~2-b! K: Noninteger; the mapping is discontinuous. Th
breaks some nice properties which are observed in Arno
cat maps. However, the system is still ergodic. Even
decay of correlation is exponential. By periodicity,xn andyn

should be confined in the interval@2 1
2,

1
2#. This enforces the

winding number to be bounded byK @see Eq.~54!#. The
winding number gives us a natural symbolic description
the trajectory.27 We define the symbol setA as A
5$2amax(K),2amax(K)11,...,21,0,1,...,amax(K)%, where

amax~K !5F21
K

2 G , ~57!

and@•••# represents the integer part of the argument. For
periodic symbolic sequences5s1s2•••sT21sT, the location
of periodic points is given by

xn5
g

~g221!~gT21!
(
r 51

T

gT2r~gsn1r 211sn2r !, ~58!

wheresiPA. Here we note that in this symbolic descriptio
the mapping from the symbolic sequence$sn% to the position
$xn% is one to, at most, one. This property affects the analy
of the quantized maps. The winding numbers of a given
riodic orbit along bothx- andy-directions can be represente
as the sum of the values of positions for the conjugate co
dinate, namely

wx5 (
n50

T21

wx
(n)5 (

n50

T21

yn , ~59!

wy5 (
n50

T21

wy
(n)5K (

n50

T21

xn . ~60!

The action for the periodic orbit with periodT is given as30

S5 (
i 50

T21 H 2S yi
2

2
2

Kxi
2

2 D 1yi 11~xi 112xi !

2wy
( i )xi1wx

( i 21)yi J . ~61!

Using Eq.~54! and considering the periodicity carefully, w
can show

S5
1

2 (
i 50

T21

~wx
( i 21)yi2wy

( i )xi !5
1

2 (
i 50

T21

xiÃwi , ~62!

where the symbolÃ is the exterior product and we define th
vectors
ownloaded 01 Jul 2008 to 130.54.110.22. Redistribution subject to AIP lic
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xi[S xi

yi
D and wi[S wx

( i 21)

wy
( i ) D . ~63!

So the action is the sum of area of triangle with sign. T
expression of periodic points can be rewritten into a differ
form. Here we seta5 ln g. Then the periodic pointxn is
given by

xn5J~a,T! (
r 50

T21

coshS aS T

2
2r D D sn1r , ~64!

where

J~a,T!5
1

2 sinh~a!sinh~aT/2!
. ~65!

The conjugate coordinate for the periodic point becomes

yn5J~a,T! (
r 50

T21

coshS aS T

2
2r D D ~sn1r2sn1r 21!1wx

(n21) .

~66!

sn is expressed in terms ofwx
(n) andwy

(n) ,

sn5wy
(n)1~wx

(n)2wx
(n21)!. ~67!

We have an obvious relation,

(
i 50

T21

si5 (
i

T21

wy
( i ) . ~68!

Inserting Eq.~64! and Eq.~66! into Eq. ~62! and using Eq.
~68!, we finally obtain

S5
1

2
J~a,T!T(

i 50

T21

~wx
( i )!2

2
1

2
J~a,T! (

i 50

T21

(
j 50

T21

sisj coshS aS T

2
2u i 2 j u D D .

~69!

Equations~62! and ~69! are the main result of this section
Compared with the expression, Eq.~12!, of the action for the
Baker maps, Eq.~69! of the sawtooth maps is the one
dimensional multi-state spin model. Equation~62! expresses
the sum of the area of triangles determined by the vec
xi ’s andwi ’s. We also note that the symbolic dynamics f
the sawtooth map is not complete, namely there is prun
These are main differences between the Baker and sawt
maps. Severe pruning prevents us from carrying out the s
procedure of the WPF or Appendix B, since the construct
of the integral kernel is impossible. Therefore, we only n
merically check the distribution of actions of UPOs.

Action Distribution for Sawtooth Map:We show the re-
sults of the numerical studies on action distribution for t
sawtooth maps. In order to avoid the number theoret
anomaly, we set the parameterK to be a noninteger. We hav
done the numerical check of the action distribution for se
eral values. Although we did not find the number theoreti
peculiarity for the case thatK is a rational value, here we
comment that the corresponding quantized map has s
anomalous behavior for some rational values ofK, such as
accidental degeneracy.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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First, we examine the bare action distribution. In Fig.
the bare action distribution is depicted forK53.385 756 with
period from 4 to 9. A remarkable feature is that the distrib
tion is approximately Gaussian with periodic oscillatio
similar to that as observed for the dyadic (p-adic! Baker
maps. We also numerically check the action distribution
modulo 1. It is shown in Fig. 10 and suggests that the fr
tional parts of the action are uniformly distributed in the u
interval. We also depicted the distribution of the pa
difference of actions. First, we show the bare distribution
the pair-difference of actions in Fig. 11 for the case of per
8. We only show the positive part of the whole distributio
Its distribution is approximated by the Gaussian distribut
very well. Second, we show the distribution of the pa
difference of actions in Fig. 12. It suggests that the distri
tion tends to the uniform distribution.

VI. CONCLUSIONS

We have investigated the statistics of actions of perio
orbits for the (p-adic! Baker map and the sawtooth map. W
summarize the results below.

Dyadic Baker map:First, the expression of the action o
the Baker map is the Hamiltonian of a one-dimensional
tice gas system. This is very similar to the case of the an

FIG. 9. Action distribution for the sawtooth map with period 9 (K
53.385756): For higher periods, we can clearly see a periodic oscillatio
Gaussian distribution.

FIG. 10. Action distribution modulo 1 for the sawtooth map with period
(K53.385756): Approximately, the actions in mod 1 are uniformly d
tributed in the unit interval.
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tropic Kepler problem.17 Reducing geometrical symmetry
we numerically showed that the actions modulo 1 are dist
uted asymptotically uniformly in the unit interval. Furthe
more, replacing the semiclassical trace by some quasicla
cal operator introduced by Ref. 15 with a mathematical to
we showed that the actions modulo 1 are asymptotically u
formly distributed in the unit interval asT→`. Therefore,
the assumption in Ref. 7 is valid for the dyadic Baker ma
However, mathematical rigor is not complete. Actions ta
rational values. We do not know whether the set of action
dense in the unit interval or not which is the need for u
form distribution. Therefore, we worry about a possibility
anomaly, like the spectral form factor for the caseN52L.

Sawtooth map:Similarly, we have shown that the actio
of periodic orbits for sawtooth maps has the form of t
Hamiltonian of a one-dimensional Potts spin model with e
ponentially decreasing pair-interaction. Unfortunately, t
resummation method used for a dyadic Baker map canno
applied to the sawtooth map, because of severe prun
Therefore, we only checked the distribution of actions
numerical calculation. We did not show for the case thatK is
an integer value. For this case, the action systematic
degenerates.31,32From the numerical observation, in the ca

n
FIG. 11. Distribution ofSp2Sp8 (pÞp8) for prime periodic orbits~saw-
tooth map!: We only plot the pairs of prime UPOs with period 8 (K
53.385756). The approximate distribution is Gaussian.

FIG. 12. Distribution ofSp2Sp8 mod 1 (pÞp8) for prime periodic orbits
~sawtooth map!: We only plot the pairs of prime UPOs with period 8 (K
53.385756). The approximate distribution is uniform distribution. But w
can clearly see the structure of the fluctuation on the uniform distributio
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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thatK is not integer, the distribution of actions seems to ob
the uniform distribution modulo 1. But the rigorous discu
sion is still unknown.

Concerning the Riemann zeta function case, the vio
tion of uniform distribution of actions may be a not so su
prising fact. The corresponding period now has the form
ln p, where p is prime. The question here is whether t
periods satisfy the uniform distribution modulo 1. The inte
esting result was already obtained:33 The sequence o
$ ln pi%i51

` where pi is the i-th prime, does not satisfy th
uniform distribution modulo 1. If we change the order of t
summation of lnpi , we do not know a possibility that a give
sequence satisfies the uniform distribution modulo 1.@It is
known that if a given sequence$ai% i 50

` is dense in the unit
interval, one can obtain a sequence which satisfies the
form distribution modulo 1 by changing the order of th
summation~Ref. 34!.# Irrationality of the actions will be im-
portant for the uniform distribution modulo 1. The differen
of the statistics of actions between our model conside
here and other models such as dispersing billiards or cons
negative curvature space, should be investigated.

The expression of actions of the UPOs for a (p-adic!
Baker map and sawtooth map has a similar form of o
dimensional spin systems. Also the anisotropic Kepler pr
lem ~AKP! which was investigated by Gutzwiller17 has an
approximate expression of actions in terms of the symb
dynamics derived from a certain hypothesis on symme
and numerical observation. His hypothetical requiremen
the expression of actions is that the action is invariant un
the shift and the time-reversal operation. The expressio
action of the UPOs for the AKP is very similar to the case
the dyadic Baker map. Here, we speculate that the expres
of actions of the UPOs of a given hyperbolic system, wh
has a well-defined symbolic dynamics, has the form of
Hamiltonian of the one-dimensional spin system. Since
Baker map and sawtooth map are linear, therefore, the
pression of actions is just quadratic in symbols. We exp
that in general, for nonuniformly hyperbolic systems, the
pression of actions has higher-order terms wrt symbols.
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APPENDIX A: SEMICLASSICAL EXPRESSION OF
R2„S… „Refs. 6 and 7 …

MIT group6 derived the semiclassical expression of t
two-point level correlation functionR2(s). Later Bogomolny
and Keating7 refined the result of Ref. 6 and derived th
off-diagonal part by using the bootstrap density of stat
The result of Ref. 7 includes the contribution from the re
etition of periodic orbits. Here we show that their result f
time-broken symmetry classes satisfies the semiclassical
rule. First, we introduce the result of,7
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um

R2~x!5R2
(diag)~x!1R2

(off)~x!, ~A1!

R2
(diag)~x!52

g

4p2

]2

]x2
ln D~x!, ~A2!

R2
(off)~x!5

cos~2px!

2p2g
D g~x!, ~A3!

where\51, d̄51. g51 and 2 correspond to time-broke
symmetry and the time-reversal symmetry classes, res
tively. D(x) is defined by the Perron–Frobenius operatorL
for the corresponding classical dynamics. The time-evolut
of the density in phase space is determined by

~L tr!~r !5E d~r2F t~r 8!!r~r 8!dr 8, ~A4!

wherer5(x,p) andF is the flow of the classical dynamics
Its Fredholm determinantZ(z)[det(12ezL) has the zeros
as eigenvalues ofL. For two-dimensional systems,Z(z) be-
comes

Z~z!5
1

z~z!
5)

p
)
k50

` S 12
ezTp

uLpuLp
k D k11

5)
m

Cm~z2gm!,

~A5!

where Lp is the maximum eigenvalue of the monodrom
matrix M p and $gm% is the Pollicott–Ruelle resonance
($e2gm% is the eigenvalues ofL) and g050 is the equilib-
rium state. Remark that for mixing systems, formÞ0,
Rgm.0. D(x) is given by

D~x!5uNz~ ix !u25)
m

Am
2

x21gm
2

, ~A6!

whereN is the normalization factor andAm is the regular-
ization factor,

Am5H 1, m50,

gm , mÞ0.
~A7!

In Ref. 7, they derived the correction from the repetition
periodic orbits for the above MIT result.

Next we check the validity of the semiclassical sum ru
for the above semiclassical expression ofR2(s). For time-
broken symmetry classes, we have

lim
e→0

2pe^~de~E!!2&

5 lim
e→0

2peR2
e~x50!

5 lim
e→0

2pe
1

2p2 H 1

4e2
1 (

mÞ0

gm
2 14e2

~gm
2 24e2!2

2
1

4e2
~124pd0e1••• ! )

mÞ0

1

12 4e2/gm
2 J

5 lim
e→0

e

p H pd0

e
1O~e0!J 5d05^d~E!&. ~A8!
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Therefore, the semiclassical sum rule is satisfied. This
rather astonishing result, since it is believed that the se
classical theory does not explain the limit oft→` (s
→0). ~Remark that there is no need for the contributi
from the repetition of periodic orbits.! For time-reversal
symmetry classes, we get

lim
e→0

2pe^~de~E!!2&

5 lim
e→0

2peR2
e~x50!

5 lim
e→0

2peF2
1

p2 S 1

~2i e!2
1 (

mÞ0

gm
2 2~2i e!2

~~2i e!21gm
2 !2D

1
cosh~4pe!

2p4

1

~2i e!4 )mÞ0
S 1

11 ~2i e!2/gm
2 D 2G5`.

~A9!

It fails the semiclassical sum rule. In Ref. 13, the tim
reversal symmetry breaking ofR2(s) was considered. But in
no AB-flux limit ~time-reversal limit!, it still has a problem.

APPENDIX B: GUTZWILLER’S RESUMMATION
METHOD

In order to evaluate the semiclassical trace Tr(sc)(BT),
we employ the Gutzwiller’s resummation method17 to quan-
tized dyadic Baker’s maps, which was used for the AKP. H
method is essentially the use of Kac’s method35,36 to the
one-dimensional Ising spin problem with the interaction
exponentially decreasing function. The action for the dya
Baker’s map has been already given in Eq.~17!. We rewrite
this into the following form:

S̄n5
1

4
M n1

1

4 sinh~lT/2! (
i , j

aiaj coshS lS T

2
2u i 2 j u D D .

~B1!

Since the phase factors in the trace appear as exp(2pNSni),
we can drop1

4M n for sufficiently largeN with N52L. Then
we have

S̄n5
1

2
xn

T
•A"xn , ~B2!

where

xn5~a0 ,a1 , . . . ,aT21!T, ~B3!

and the matrix elementsA i j is given as

A i j 5
1

2 sinh~lT/2!
coshS lS T

2
2u i 2 j u D D . ~B4!

Here we denoteB5A21 the inverse ofA. One can show tha
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i-

-

s

f
c

B5S a b 0 ••• 0 b

b a b 0

0 b a � A

A � � � 0

0 � a b

b 0 ••• 0 b a

D , ~B5!

where

a52 coth~l! and b52
1

sinh~l!
. ~B6!

The determinants det(A) and det(B) are given as

det~A!5
e2lT

2

sinh~lT!

@sinh~lT/2!#2
and det~B!5det~A!21.

~B7!

Here we rewrite the actionS̄n in terms of the variabless i

P$21, 1%, instead of the variablesai ,

xn5 1
2 ~11s! and s5~s0,...,sT21!T and 15~1,...,1!T.

~B8!

Then we have

S̄n5 1
8 1T

•A"11 1
4sT

•A"11 1
8sT

•A"s. ~B9!

We can easily check that

(
j 51

T

Ai j 5
3

2
and (

j 51

T

Ai j 5(
j 51

T

Ai 8 j for iÞ i 8. ~B10!

Thus we can omit the first two terms in Eq.~B9! for suffi-
ciently largeN52L. After all, we arrive at

i

\
S̄n5

1

2
sT

•A•s, ~B11!

where A5 (s/4) A and s5 i /\. Therefore, forN52L(L;
sufficiently large!, we have

Tr(sc)~BT!5
1

2 sinh~lT/2! (
n

expF1

2
sT

•A•sG . ~B12!

Now we apply the following Hubbard–Stratonovich tran
form to Eq.~B12!,

expF1

2
sT

•A•sG
5~2p!2T/2

„det~C!…1/2E
2`

`

dz1•••E
2`

`

dzT

3expF2
1

2
zT
•C•zGexp@sT

•z#, ~B13!

where A and C are real positive definite symmetricT3T
matrices andA 215C. Here we suppose thats is a real posi-
tive number. After the transformation, we analytically co
tinue the result in the complex domain as done in Ref.
Employing the Hubbard–Stratonovich transform, we hav
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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Tr(sc)~BT!5F~T,N!E
2`

`

dz1•••E
2`

`

dzT

3expF2
1

2
zT
•C•z1(

i 51

T

ln„cosh~zi !…G ,

~B14!

where

F~T,N!5
2T

2 sinh~lT/2!
~2p!2T/2

„det~C!…1/2. ~B15!

The argument of the exponential function in the integrand
Eq. ~B14! is rewritten as
t f
R

el

al
-

he

io
si
is
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f

(
i 51

T H 2
2

s F tanhS l

2D ~zi
21zi 11

2 !1cosech~l!~zi2zi 11!2G
1 ln cosh~zi !J . ~B16!

We scalezi5Rj i , whereR5As/8. Then we have

Tr(sc)~BT!5G~T!Tr~K T!, ~B17!

where

G~T!5F „2 sinh~l!…T

2 sinh~lT! G1/2

elT ~B18!

and
K~j,h!5Acosh~Rj!
exp@2 ~1/4! $tanh~l/2!~j21h2!1cosech~l!~j2h!2%#

A2p2 sinh~l!
Acosh~Rh!, ~B19!
,

-

e
scil-
and

Tr~K T!5E
2`

`

dj1•••E
2`

`

djT)
i 51

T

K~j i ,j i 11!. ~B20!

Here we impose the periodic boundary conditionjT11

5j1 . The expression obtained has the same form as tha
the anisotropic Kepler problem except some coefficients.
mark that the factorG(T) asymptotically behaves as

G~T!;elT, as T→`. ~B21!

The eigenvalue problem of the kernelK(j,h) is

E
2`

`

K~x,y!c~y! dy5mc~x!. ~B22!

We denote$m i% i 51
` the set of eigenvalues of the kern

K(j,h) and assume that$m i% i 50
` are ordered as

um0u.um1u>um2u>•••.0. ~B23!

Then we have

Tr(sc)~BT!5G~T!(
i 50

`

m i
T . ~B24!

Therefore, our next task is to evaluate the leading eigenv
m0 of the kernelK(j,h). However, unfortunately, the ob
tained kernel diverges in the semiclassical limit\→0. See
Eq. ~B19!. Thus, we cannot use for the analysis unlike t
quasiclassical operatorUN .15,14

APPENDIX C: EXTENSION TO p-ADIC BAKER MAP

In this section, we consider the case ofp-adic Baker
maps and examine the behavior of the action distribut
compared with the case of dyadic Baker maps. The exten
to thep-adic Baker map is straightforward. The mapping
now given as
or
e-

ue

n
on

x85px2@px#, y85
y1@px#

p
, ~C1!

wherep>2PN. In a similar way to the dyadic Baker map
we have the action for the periodic orbit with periodT,

Sn
(p)5

nn̄

pT21
, ~C2!

where

n5 (
i 50

T21

aip
T2 i 21, n̄5 (

i 50

T21

aip
i , ~C3!

andai ,biP$0,1,...,p21%. Since we take the modulo opera
tion, for simplicity, we can remove some integer fromSn

(p) ,
and thus define

FIG. 13. Action distribution of the expressionSn5(xiai for the p-adic
Baker map (p55!: for the prime periodic orbits with period 9. Clearly, th
approximate distribution is Gaussian. The distribution has a periodic o
lation.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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Sn
(p)5 (

i 50

T21

xiai

5
elp[ ~T/2! 21]

2 sinh~lpT/2! H (
i 50

T21

ai
21e2lpT/2(

iÞ j
aiaj

3coshFlpS T

2
2u i 2 j u D G J , ~C4!

wherelp5 ln p. The expression of the actionSn
(p) is now the

Hamiltonian of the one-dimensional multi-state lattice ga
In Fig. 13, the action distribution for the expression, E

~C4! is depicted for the casep55 with period from 6 to 9.
Compared with the dyadic case, the distribution of thep-adic
case with a larger value ofp(p>3) tends to the Gaussia
distribution more smoothly, since the gap between peak
narrower for largep. Then we speculate that the dyadic ca
is very anomalous. Remember that the number 2 is a spe
integer in number theory. We also numerically check
action distribution in modulo 1 for the expression, Eq.~C4!
~Fig. 14!. It seems that the limiting distribution is the un
form distribution. The pair-difference of the actions is al
numerically checked. It seems that the bare distribution
the pair-difference of the actions tends to the Gaussian
tribution @Fig. 15~a!# and that in modulo 1 tends to the un
form distribution @Fig. 15~b!#. At present, we do not find
number theoretical peculiarities forp>3.

The quantizedp-adic Baker map and its semiclassic
analysis are also similarly constructed,

Bp5GN
21S GN/p 0 ••• ••• 0

0 GN/p � ••• 0

A � � � A

0 ••• � GN/p 0

0 ••• ••• 0 GN/p

D , ~C5!

FIG. 14. Action distribution in modulo 1 for thep-adic Baker map (p55!:
for the prime periodic orbits with period 9. Clearly, the limiting distributio
is uniform distribution.
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whereNPpN. The semiclassical trace ofBp is given as

Tr(sc)~Bp
T!5

1

2 sinh~lpT/2! (
n

exp@2pNiSn
(p)#, ~C6!

wherelp5 ln p. In a similar way to the dyadic Baker map
after a cumbersome calculation due to the Hubbar
Stratonovich transform, we have the semiclassical trace~for
16puN),

Tr(sc)~Bp
T!5Gp~T!Tr~K p

T!, ~C7!

where

Gp~T!5F „2 sinh~lp!…T

2 sinh~lpT! G1/2

elpT ~C8!

and

FIG. 15. Distribution of the pair-difference of actions@Sn
(p)2Sn8

(p)(nÞn8)#
of prime periodic orbits for ap-adic Baker map (p55, periodT56): ~a!
The bare distribution of the pair-difference of actions. We only show
positive part of the whole distribution. The envelope function seems to
the Gaussian distribution.~b! The distribution in modulo 1. The approximat
distribution is uniform distribution.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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Kp~j,h!5Ah~Rpj;p!
exp@2 ~1/4! $tanh~lp/2!~j21h2!1cosech~lp!~j2h!2%#

A2p2 sinh~lp!
Ah~Rph;p!, ~C9!
l
no

it
as

n

n,
.

ky

ys.

tion
’s
and

h~z;p!55 (
r 50

l 21

cosh„~2l 22r 21!z…, p52l : even,

(
r 50

l 21

cosh„2~ l 2r !z…1 ~1/2!, p52l 11: odd,

~C10!

and Rp5As/8. In view of the field theory, the potentia
which comes from the sum over all spin configurations is
ln cosh(Rpj). This and the value oflp are the main differ-
ences between the dyadic Baker map andp-adic Baker map.
This kernelKp(j,h) also diverges in the semiclassical lim
\→0. Thus, we cannot employ the analysis unlike the c
of the quasiclassical operator introduced by Ref. 15.
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