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Chapter 1

General introduction

Let us begin with a little long citation;

If, in some cataclysm, all of scientific knowledges were to be de-
stroyed, and only one sentence passed on to the next generations of
creatures, what statement would contain the most information in the
fewest words? I believe it is theatomic hypothesis(or the atomicfact,
or whatever you wish to call it) thatall things are made of atoms —
little particles that move around in perpetual motion, attracting each
other when they are a little distance apart, but repelling upon being
squeezed into one another.In that sentence, you will see, there is
an enormousamount of information about the world, if just a little
imagination and thinking are applied.

This famous statement of Richard Feynman in the opening chapter of his text-
book [1] perfectly describes the main theme of the science at the first half of this
century, and remains to be true in the materials science still now.

Diffusion problem is closely connected to the atomistic viewpoint of the ma-
terials by nature. Brownian motion, which is the elementary process of the diffu-
sion, was taken into a framework of the theory by Einstein [2] at the beginning of
this century, where he interpreted the motion as a molecular motion. This theory
established the basic foundation of the atomic theory of matter in the meaning that
it connects the heat with molecular motion [3] and this is an early example of the
fluctuation-dissipation theorem.1

1Einstein’s theory is also the beginning of the theory of stochastic process. Richard Feynman
made a great contribution to the quantum mechanics [4] with the theory of stochastic process.



In the context of the fluctuation-dissipation theorem, the formula known as
the Einstein relation gives the relation between the diffusion constantD of the
Brownian particle and the mobilityµ by

D = µkBT (1.1)

and states that the diffusion constant is proportional to a kind of the friction con-
stants (the ratio of the drift velocity to the external force) which determines the
energy dissipation. The diffusion constantD is written as

D =
1

3

∫ ∞

0
dt 〈v(t) · v(0)〉, (1.2)

which means that the zero frequency spectrum of the fluctuations of the velocity
in thermal equilibrium gives the diffusion constant.

The present dissertation accounts for the diffusion in materials from the atom-
istic point of view, which is driven by the random force that seems to act by chance
in our ordinary sense, and the origin of the random force itself and the frictional
force, chemical bondings between atoms2. This approach arises not only from the
theoretical necessity as we have seen below, but from the practical viewpoint. The
acceleration of the atomic transport in the solid state materials such as metals or
alloys is one of the central problems in energy conversion processes. Diffusion,
very often, determines the speed of the atomic transport, and therefore determines
the efficiency. The key to our understanding of the mechanism of the transport
process must be sought in the combination of the constituent elements or in the
complex interatomic interactions mediated by chemical bondings.

The present dissertation tackles these problems with the atomistic simulations,
molecular dynamics simulation of the self-diffusional dynamics in the transition-
metal intermetallic compounds, and the optimization of the semi-empirical poten-
tials descriptions of the bondings in d- and f-shell metals and their compounds,
by means of the hybridized nearly-free-electron–tight-binding-bond model poten-
tial. Overview of these methods are given in the following sections and aim of
this study is summarized in the last section in this chapter. Applications to each
problems are discussed from the next chapter.

2This is not the only origin of the force acts on Brownian particle. As we see later, the total
force from the potential can be divided into random force and frictional force together with the
random force from the heat bath.
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1.1 Molecular dynamics simulation

In the last few decades, wider and wider problems in the materials science have
come into the applicability of the atomistic simulations because of the rapid growth
of the computational power. At the same time, our understanding of the bonding
— the central problem in the atomistic simulations — also becomes deepened
and we can now express and calculate the same properties more simply and more
exactly compared with the decades ago. One of the most outstanding progress in
atomistic simulation is Car-Parrinello method [5], which calculates force acting
on an atom through the electronic structure calculation based on the density func-
tional method [6] and describes both atomic and electron density dynamics. This
method can be said as a kind of variation of the method to calculate the dynamical
structure of a system based on Newtonian dynamics, which is known as Molecular
Dynamics (MD) simulation.

The MD simulation, ranging from the purely classical dynamics to the first-
principles method such as Car-Parrinello method, has a wide variety of applica-
tions including structure optimization, mechanical properties simulation, lattice
dynamics, and so on. Transport properties simulation is one of the most natu-
ral selection of the application of this method, as it is directly connected to the
dynamical structure of a system to be calculated with MD simulation.

In the actual description of the time evolution in MD, a set of equations called
Nosé-Hoover equations of motion [7, 8] are commonly used to introduce temper-
ature for the simulated system.

miv̇i = F i − ζmivi (1.3)

ζ̇ = 2(K − K0)/Q, (1.4)

whereK is the kinetic energy of the system andK0 is the kinetic energy cor-
responding to the temperature of the system. This set of equations contains a
pseudofrictional force−ζmv in addition to the real forceF acting on an atom.
This force can be both positive and negative and the simulated system can ex-
change energy between heat bath throughζ to maintain constant temperature. We
can obtain canonical average of a physical quantity by calculating time average
of a physical quantity which is expressed by the coordinates generated by above
equations if the ergodic hypothesis is fulfilled.

For a realistic simulation, it is important to choose efficient and physically
appropriate interatomic potentials functions and also important to optimizeQ in
equation 1.4. The adjustable parameter,Q can be written asQ = 3(N −1)kBTτ 2

5



whereN is the number of atoms in system [9]. In this formula,τ is the adjustable
relaxation time for the system. If we set too large value toτ , the simulated system
is coupled to heat bath too weakly and reaches to equilibrium too slowly. If we
set too small value, the system is too closely coupled to heat bath and the natural
dynamics of the atoms is replaced by the highly constrained dynamics.

The determination ofQ has more or less empirical character, but some practi-
cal procedure is provided by Holian et al [10].

1.2 Hybridized nearly-free-electron–tight-binding -
bond model

Atomistic simulations, especially MD simulations, depend largely on the choice
of the interatomic potentials, because most of the computation time is consumed
with the calculation of the force acting on atoms, and because the constituent
atoms in the simulating materials are characterized by the bondings they form
with the surrounding atoms.

At the early stage of the development, empirical interatomic potentials func-
tion such as12-6 Lennard-Jones potentials or Tosi-Fumi potentials are used for
the molecular simulations for the limitations of the computational resources [11].
As the performance of the computers have been improved, the range of the field to
which molecular simulations can be applied has been increased with the improve-
ment of the description of the interatomic interactions through semi-empirical po-
tentials models [12]. The interactions in these models depend not only on the in-
teratomic separations but on the environment of the particular bond or the nature
of the bond itself. These improvements are essential for the metals and their com-
pounds as bondings in such materials have many-atom character and for the cova-
lent bond materials and semi-conductors as their bondings are strongly angular-
dependent because of the shape of the orbitals. Even though the first-principles
calculations have become applicable to the wider and wider materials in these
days, there still remains a great importance for the semi-empirical model of the
bondings especially for the large-scale and long time-scale simulations such as
those for dynamical and mechanical properties of the materials.

The present dissertation treats the bondings in the d- and f-shell metals and
their compounds. The valence electrons in these metals and compounds are di-
vided into free-electron-like sp- or spd-electrons and tight-binding d- or f-electrons.
Based on this picture, Wills and Harrison developed an interatomic interactions
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model and successfully predicted the trends in the cohesive properties of d- and
f-shell metals [13, 14, 15]. Hausleitner and Hafner developed a more realistic and
quantitative interatomic interactions model based on the same picture as the Wills
and Harrison’s model for transition-metals and their alloys [13] and transformed
it into the simple but exact semi-empirical potentials function for the molecular
dynamics simulation [16]. This model, which is known as the hybridized Nearly-
Free-Electron–Tight-Binding-Bond (NFE-TBB) model, basically results in pair-
wise potential including properties of the environment of a bond through Bethe
lattice approach. This is also the case for the widely-used embedded atom model
potential [17, 18], which includes properties of the environment through coordi-
nation number. As shown in the following chapters, the hybridized NFE-TBB
model potential can be a both efficient and physically appropriate potential model
that accounts for the many-atom non-pairwise character of the bonding, combined
with the bond order formulation by the Bond Order Potential (BOP) [19].

The hybridized NFE-TBB model potential divides a total potential energy
function into three parts;

Φtotal = ΦNFE + ΦTB,rep + ΦTB,bond. (1.5)

Namely, NFE part, TB repulsive part and TB bonding part. The TB bonding part
can be written as

ΦTB,bond = 2
∑
αβ

Hjβ,iαΘiα,jβ, (1.6)

and many-atom character enters from the bond orderΘ. The success of the po-
tential depends on the choice of the values for the adjustable parameters set in the
potential and the choice of the formulation of the bond order.

1.3 Aim of this study

The present dissertation accounts for the bonding and diffusional dynamics of
d- and f-shell metals and their compounds. The aim of this study is to reveal
the validity and the nature of the hybridized NFE-TBB model of the bondings in
these materials which have the principal crystal structures presented in figure 1.1
for the purpose of the application for the molecular dynamics simulations of the
dynamical structure study.
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(a) (c)

(d)

(b)

Figure 1.1 Schematics of the (a) fcc, (b) hcp, (c) dhcp and (d) C15 Laves phase
structures.
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A concrete example of the application for the molecular dynamics simulation
study on the self-diffusional dynamics in Ni-Y Laves phase intermetallic com-
pound is presented in chapter 2 with the known potential parameters.

Derivation and test of the hybridized NFE-TBB model potential is demon-
strated for particular systems from chapter 3 to 6.

The original model for the transition-metals and their alloys is extended to
light-actinide metals in chapter 3.

The model originally designed for the transition-metals is successfully applied
to aluminium metal in chapter 4 and to rare-earth metals in chapter 5.

A procedure for transferring potential parameters for pure metals obtained in
chapter 4 and 5 into aluminium–rare-earth Laves phase intermetallic compounds
is presented in chapter 6.

Conclusion of the present study is given in chapter 7.
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Chapter 2

Atomistic simulation of the bonding
and the self-diffusion in C15 Ni-Y
Laves phase structure intermetallic
compound

2.1 Introduction

The acceleration of the atomic transport in the solid state materials is often one of
the central problems in energy conversion processes. Diffusion, very often, deter-
mines the speed of the atomic transport, and therefore determines the efficiency.

Ni2Y is the transition-metal intermetallic compound with cubic Laves phase
structure and its anomalously high growth rate in electrolysis was found by elec-
trochemical experiments [1]. The Ni-Y intermetallic compound is formed by elec-
trodeposition of Y at the Ni electrode in the molten LiCl-KCl-NaCl-YCl3 and the
Ni2Y phase selectively grows among competing phases with the growth rate of
10µm h−1 at773K, which is600K below the melting point.

This high growth rate means that the speed of the atomic transport for the
atomic species in this intermetallic phase is of the order of10−12m2 s−1 as the
diffusion coefficient [1]. This is comparable to or only few order smaller than
those in the standard liquid phase, which are approximately10−9m2 s−1 as the
diffusion coefficient, or in the common solid phase near melting point, which are
10−11m2 s−1 [2].

How can such anomalously rapid growth of the intermetallic phase take place?



There are several models to describe the atomic diffusion in standard solids; dif-
fusion process via vacancy, dislocation, grain boundary and so on [3]. To which
model the diffusion process in this phase is ascribed?

This chapter presents a study of the microscopic dynamic structure of Ni2Y
phase through atomistic simulation, a molecular dynamics simulation, in the in-
vestigation of the high growth rate of this intermetallic phase.

Concerning the molecular dynamics technique, a semi-empirical method for
the interatomic potential calculation has recently been developed [4] and wide
range of materials has come into applicability of the atomistic simulation. Chemi-
cal bondings in transition-metal alloy compounds is well-described within the hy-
bridized NFE-TBB (Nearly-Free-Electron–Tight-Binding-Bond) framework [5]
and its TBB part can be calculated by the semi-empirical method exact enough to
express the many-atom character of interactions in transition-metal intermetallic
compounds and computationally fast enough to be used in the intensive molecular
dynamics run.

In the present chapter, the calculation of pair potential with the application of
the NFE-TBB many-atom interaction model is demonstrated and then used for the
calculation of the many-body forces in molecular dynamics calculation.

The computational methods used are outlined in section 2.2. The results of the
applications to the self-diffusive motion in vacancy, grain-boundary structures for
Ni2Y are shown in section 2.3. We present our conclusions in section 2.4.

2.2 Computational method

2.2.1 Interatomic potential

For the interatomic potential for Ni2Y, hybridized NFE-TBB expression devel-
oped by Hausleitner and Hafner [5] is used.

Φtot(r) = Φsp + Φd,rep + Φd,bond. (2.1)

The potential energy is divided into free-electron-like interaction, pairwise repul-
sive interaction and many-atom attractive bond energy.

The following NFE interaction formulation by Pettifor and Ward [6] is adopted
as the first term in equation 2.1;

Φsp(rij) =
2Ns,iNs,j

rij

3∑
n=1

An cos(knr + αn) exp(κnrij). (2.2)
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Ns,i is the number of sp-valence electrons for thei atom. Calculated parameters
for the perfect Ni2Y crystal are compiled in table 2.1. As in reference[6], Ashcroft
empty core pseudopotential [7] is used to calculate these parameters.

Table 2.1 NFE potential parameters for Ni2Y perfect crystal. The values are indi-
cated in atomic unit.

Ni-Ni Ni-Y Y-Y
n 1 2 3 1 2 3 1 2 3

kn 0.303 1.144 1.695 0.320 0.901 1.285 0.291 0.731 0.995
κn 1.415 1.227 0.494 1.134 0.897 0.371 0.919 0.671 0.283
An 8.586 1.533 0.039 5.818 1.566 0.045 2.567 0.948 0.026
αn −1.407 −3.785 1.154 −1.297 −3.470 1.346 −1.022 −2.651 2.543

The remaining two terms in equation 2.1 are described within the tight-binding
theory [8].

Repulsive interaction is known to be proportional tor−10, the square of hop-
ping integral, but in this study,r−8 form is used as in reference [9]. The following
is the repulsive interaction used;

Φrep(rij) =

√
Nd,iNd,j

7

h2
ijd

10
ij

r8
ij

. (2.3)

hij is the bond integral and it is calculated in the same way as in reference [10].dij

is the interatomic spacings. The calculatedhij values for the Ni2Y are as follows;
hNiNi = 0.019 64, hNiY = 0.029 38, hYY = 0.078 43 in Ry.

Bond energy expression is;

Φbond(rij) = 2
∑
αβ

Hjβ,iαΘiα,jβ. (2.4)

Hjβ,iα is the tight-binding Hamiltonian andΘiα,jβ is the bond order. Bond or-
der is calculated from the following simplified expression derived by Pettifor and
Aoki [11];

Θiα,jβ = 2
∞∑

n=2

χ̂n(Nd)ζ
r
n/b

n−1. (2.5)

χ̂n(Nd) is the reduced susceptibility,ζr
n is the interference term in the ring ap-

proximation andb is the square root of the second momentµ2, calculated from
the tight-binding Hamiltonian [12]. Calculated bond order for each bonding in
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perfect Ni2Y crystal with equation 2.5 within the second moment approximation
is compiled in table 2.2 and up to sixth moment approximation results are pre-
sented in figure 2.1.
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Figure 2.1 Dependence of the bond order for the bondings in the bulk structure to
the number of moment.

Table 2.2 Bond order for covalent d-d interactions in Ni2Y phase within angular
dependent second moment approximation.

σ π δ
ΘNiNi 0.4612 0.2906 0.0672
ΘNiY 0.3131 0.1908 0.0488
ΘYY 0.4901 0.4074 0.1434

Nd in the above expressions is derived using the rectangular band model for
d bands [13] andNs is derived regarding rest of the valence electrons as sp va-
lence electrons. Local charge neutrality is imposed upon each Ni and Y atoms
and the site-diagonal energy shift is calculated within tight-binding-Hartree-Fock
approximation following reference [5];

∆Ns,α + ∆Nd,α = 0, (α = Ni, Y) (2.6)

xNi∆Nd,Ni + xY∆Nd,Y = 0 (2.7)

∆Eα = udd∆Nd,α + usd∆Ns,α + V σZ(∆Nd,α + ∆Ns,α). (2.8)
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∆Ns and∆Nd are the shift of the number of s and d valence electrons from ar-
bitrary initial values. In this calculation,Ns,Ni = 1.40, Nd,Ni = 8.60, Ns,Y =
1.31, Nd,Y = 1.69 for pure Ni and Y [5] are used as initial values, andudd =
1.6eV, usd = 0.75eV, V = 0.25eV are used [14].xα is the concentration of
α atom. ∆Ns and∆Nd are determined such that equations from (2) to (4) are
self-consistent. The final values for Ni and Y in Ni2Y phase are as follows;
Ns,Ni = 1.65, Nd,Ni = 8.35, Ns,Y = 0.81, Nd,Y = 2.19.

For the calculations for Ni-Y interaction,
√

NNiNY is used instead ofNα

where needed.
Figure 2.2 shows the total hybridized NFE-TBB effective interatomic poten-

tials given by equation 2.1.

2.2.2 Molecular dynamics calculation

The constant temperature Nos´e-Hoover equations of motion are used for the present
molecular dynamics calculations, [15, 16];

miv̇i = F i − ζmivi (2.9)

ζ̇ = 2(K − K0)/Q, (2.10)

whereK is the kinetic energy of the system andK0 is the kinetic energy corre-
sponding to the desired temperature. The temperature is set to 773K throughout
the present study.

The molecular dynamics simulations for this chapter have the following initial
conditions:

• Perfect crystal;

• Crystal structure with vacancy;

• Crystal structure with grain-boundary;

Details of each condition is presented in the corresponding subsection in the sec-
tion 2.3.

For all conditions,Q is set to1.000 × 109 (atomic unit) except for the grain-
boundary conditions,Q = 1.189 × 105 (atomic unit). DeterminedQ is such that
the fluctuations of the total kinetic and potential energy are small, not to violate
the crystal structure by a sudden jump of the temperature of the simulated system.
As a result, the peaks in the radial distribution functions for the reference crystal
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Figure 2.2 Effective interatomic potential for Ni-Ni, Ni-Y and Y-Y interactions
(upper panel). The dashed line is for Ni-Ni interaction, the dotted line is for Ni-Y
interaction and the solid line is for Y-Y interaction. Interatomic potential for sp
and d interactions for Ni-Ni (lower panel). The dashed line is for sp interaction,
the thin solid line is for d interaction and the bold solid line is for total interaction.
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structure is reproduced. The adopted values are much larger than those character-
ized by Holianet al.[17]. Therefore, for conditions other than the grain-boundary
condition, the systems are weakly-coupled, although for the grain-boundary con-
dition, the simulated system is coupled to the thermostat with the response time
corresponding to the Einstein frequency.

For the calculation of the self-diffusion coefficient, Einstein relation for the
diffusion coefficient [18] is used;

D = lim
t→∞〈|r(t) − r(0)|〉/6t. (2.11)

Self-diffusion coefficients are evaluated from mean square displacement plots
against time.

The autocorrelation function and the spectral density of velocityv(t) are [18];

C(t) = 〈v(t) · v(0)〉 (2.12)

I(ω) = 2
∫ ∞

0
C(t) cosωt dt. (2.13)

2.3 Results and discussions

2.3.1 Perfect crystal calculation

For the initial configuration,3×3×3 crystallographic unit cells i.e.432 Ni atoms
and216 Y atoms are set in the simulation supercell. Bond order is calculated ap-
plying equation 2.5 to the initial reference crystallographic structure. Many-body
attractive force is then replaced by the sum of pairwise attractive force. Equations
of motions are integrated numerically with leap-frog method [19] over10 000
steps after5 000 equilibration steps with∆t = 1.0 × 10−15 s and the force calcu-
lation is cut off at7.181Å, which is the same as the lattice constant for Ni2Y.

Figure 2.3 shows the radial distribution function for Ni-Ni at 773K. Sharp
peaks show that the perfect crystal structure for Ni2Y is well reproduced by molec-
ular dynamics. Mean square displacements are given in figure 2.4 and spectral
density of velocity is given in figure 2.5. No diffusive motion is observed and
very small number of vibrational modes are visible. The frequencies of the modes
clearly visible are almost the same for both Ni and Y.
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Figure 2.3 Radial distribution functions for Ni-Ni at773K. The dashed line shows
the distribution in the perfect crystal and the solid line shows the distribution in
the Ni vacancy structure.
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Figure 2.4 Mean square displacements (MSD) at773K. The dashed line shows
the MSD in a perfect crystal and the solid line shows the MSD in a Ni vacancy
structure. The bold lines represent Ni and the thin lines represent Y.
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Figure 2.5 Spectral densities of velocity for (a) Ni and (b) Y at 773K. The dashed
line is for a perfect crystal and the solid line is for a Ni vacancy structure.
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2.3.2 Vacancy structure calculation

The structures same as presented in section 2.3.1 with a Ni vacancy and two Ni
vacancies in the unit cell at the centre are adopted, as the two initial configurations
for vacancy structure simulations. The choice of Ni vacancy is due to the results
of the estimation of the vacancy formation energy that show the formation energy
for Ni vacancy is half as small as those for Y vacancy (See appendix B). The
numerical conditions are the same as section 2.3.1 for both, except the number of
steps, which is18 000 for the two-vacancies structure.

The radial distribution function for Ni-Ni pair at773K for the one-vacancy
condition is shown in figure 2.3. Compared with the perfect crystal structure, there
are almost no differences observed in all of the Ni-Ni, Ni-Y and Y-Y distribution
curves. The reference crystallographic Ni2Y structure is also well reproduced in
the vacancy structure simulation. Mean square displacements are given in fig-
ure 2.4 for one vacancy condition and again no diffusive motion is observed. This
is also the case for two-vacancies condition. Spectral density curves are given
in figure 2.5 and figure 2.6. Both the one-vacancy and the two-vacancies struc-
tures have a similar sharp peaks structure but the frequency of the main peaks are
shifted from that of the perfect crystal in the two-vacancies condition. Again, no
diffusive mode is observed for two conditions.

Direct many-body attractive force calculation by equation 2.5 is also per-
formed for one Ni vacancy initial condition over7 000 time steps. Conditions
for this simulation is the same as in the pairwise force calculation. No diffusive
motions are observed again both in the mean square displacements and in the
spectral densities. An example of the atomic motions near Ni vacancy are shown
in figure 2.7. Both Ni and Y atoms fluctuates around their initial atomic position
and no jump motion is observed. Initial regular atomic arrangements is conserved
even for the atoms neighbouring the vacancy.

2.3.3 Grain-boundary structure calculation

In order to take the effect of the grain-boundary into account, a symmetric tilt
boundary model containing1 080 (720 Ni and360 Y) atoms withθ = 0.321 8 rad
is used for initial configuration. For initial coordinates, atoms are arranged as
shown in figure 2.8. The cell contains432 (288 Ni and144 Y) fixed atoms.

The computational conditions for this calculation are different in order to
achieve faster computation per atom. This is because more atoms are set in
the simulation unit cell and many-atom attractive force calculation is used for
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Figure 2.6 Spectral densities of velocity for Ni and Y at773K. The dashed line
is for a one-vacancy structure shown in figure 2.5 and the solid line is for a two-
vacancies structure. The bold lines represent Ni and the thin lines represent Y.

anisotropic and inhomogeneous atomic arrangements. The equations of motions
are integrated with Størmer algorithm [20] over10 000 time steps after5 000 equi-
libration steps with∆t = 1.0 × 10−15 s. Force cut off lengths are set to5.027Å
for Ni-Ni, 5.821Å for Ni-Y and 6.350Å for Y-Y ( 9.500, 11.00 and12.00 in atomic
unit respectively).

Data analysis in this condition is done using100 sample coordinates out of
10 000 time steps coordinates chosen at every 100th steps. Figure 2.9 shows the
horizontal and vertical mean square displacements in the following definitions of
the corresponding diffusion coefficients;

Dx2+y2 = lim
t→∞〈|x(t) − x(0)|2 + |y(t) − y(0)|2〉/4t (2.14)

Dz2 = lim
t→∞〈|z(t) − z(0)|2〉/2t (2.15)

Dx2+y2 , which characterizes the diffusivity of the horizontal motion in the plane
parallel to the grain-boundary, is the self-diffusion coefficient calculated from hor-
izontal mean square displacement andDz2, which characterizes the diffusivity of
the vertical motion to the grain-boundary plane, is the self-diffusion coefficient
calculated from vertical mean square displacement, for grain-boundary isz = 0.
Both horizontal and vertical mean square displacements increase monotonously
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with time and therefore diffusive motion can be clearly observed. Calculated self-
diffusion coefficients areDx2+y2 = 6.695×10−11 m2s−1 andDz2 = 7.349×10−11

m2s−1 for Ni andDx2+y2 = 2.902×10−10 m2s−1 andDz2 = 3.028×10−10 m2s−1

for Y. Against expectation, the horizontal and the vertical mean square displace-
ments does not differ from each other. The possible reason for this is that the
high rate diffusion does occur in the grain-boundary region, but that the range that
enables large diffusivity is wider than expected.
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Figure 2.9 Mean square displacements (MSD) at773K. The solid line shows a
horizontal MSD in the Ni, the dashed line shows a horizontal MSD for Y, thin
line shows a vertical MSD for Ni and thin line with open square markers shows a
vertical MSD for Y.

Additional 3 000 time steps calculation with higher sampling rates of coordi-
nates is performed for two reasons; to see the atomic arrangements after suffi-
ciently long time steps through radial distribution function, and to calculate the
spectral densities of velocity with sufficiently good precision.

Figure 2.10 shows the radial distribution function for grain-boundary struc-
ture calculated for the additional3 000 time steps. The obtained curves are not
so smooth as those in figure 2.3, but sharp peaks structure can be observed for all
distributions except for Y-Y pair distribution. The distribution function for Y-Y
shows the structure of Y is disordered although we adopted largerrcut than those
for other two types of interactions. Most of the peaks observed are the same as
those observed for the perfect crystal structure, but one extra peak is visible for
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each distribution in the short range. For the perfect crystal structure, such short
interatomic separations are unfavourable because of the strong repulsive interac-
tions (see figure 2.2). This one extra peak is also observed for the preceding10 000
time steps simulation. This may be the one for the relaxed short separations set in
the initial configuration. As we see, they are not vanished even after 10ps, which
is characteristic for the atomic jump calculated with figure 2.9 and the crystallo-
graphic separations. This short interatomic separations can be possible probably
because we have used the direct many-body attractive force calculation.
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Figure 2.10 Radial distribution function for the grain-boundary structure at773K
calculated from1/10 sample coordinates in additional3 000 time steps simulation.
The dashed line shows Ni-Ni pair distribution, the bold solid line shows Ni-Y pair
distribution and the thin solid line shows Y-Y pair distribution.

The diffusive motion is also observed as the zero frequency mode in the spec-
tral densities shown in figure 2.11.

Presented in figure 2.12 are the plots of the self-diffusion coefficients of both
horizontal and vertical motions. It proves that the rate of the self-diffusion be-
comes higher when atoms are near the grain-boundary but the values themselves
remain high throughout the simulation cell size used in this model.
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Figure 2.11 Spectral densities of velocity for Ni and Y at773K in the grain-
boundary structure calculated from1/10 sample velocities in additional3 000 time
steps simulation. The solid line is for Ni and the dashed line is for Y.

2.4 Conclusions

A molecular dynamics simulation on Ni2Y intermetallic phase has been done
with a hybridized nearly-free-electron–tight-binding-bond interatomic interaction
model.

Ordered structure was reproduced for the several structure models for this in-
termetallic phase.

High rate self-diffusion phenomena has only been observed in the symmet-
rical grain-boundary model among three structure models, and the conclusion is
that the high growth rate of Ni2Y phase accomplished in the electrochemical ex-
periments is due to the high diffusion rate in and near the grain-boundaries.

The dynamical structure of Ni vacancy structure model made no significant
difference from a perfect crystal structure model. Therefore, it is difficult to as-
cribe the cause of the high growth rate to the standard vacancy model of diffusion.
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Chapter 3

Hybridized NFE-TBB model of the
bonding in the light-actinide metals

3.1 Introduction

The transport properties in the light-actinide metals and their compounds have
been one of the most important problems in the energy conversion process. To
study their detailed diffusional mechanism from the atomistic point of view, we
must very often use a theoretical method such as molecular dynamics simulation.
For the application of the molecular dynamics simulation to these problems, the
dynamic structure of a system must be simulated over considerably long time steps
and therefore the interatomic potentials used must be computationally efficient as
well as physically appropriate for these materials.

In the last few decades, several interatomic potential models for the light-
actinide metals have been developed.

Harrison [1] proposed a hybridized nearly-free-electron–tight-binding-bond
(NFE-TBB) model of the very simple two-body potential based on the two-fluid
model [2] and found that it can successfully predict the trends in the equilibrium
spacings and the bulk moduli of the light-actinide metals qualitatively.

This model was extended to be more realistic for the calculation of the phonon
spectra and the elastic constants ofα-Th at the cost of its simplicity [3].

Chen [4] developed a more efficient model using the local volume potential
(LVP), which is related to the embedded atom method (EAM) [5]. Their estima-
tion of the elastic constants forα-Th using LVP was shown to give a very good
agreement with the experimental data.



Although the hybridized NFE-TBB model by Harrison has a physically trans-
parent formulation and the LVP is a very efficient formulation for parameter fit-
ting, they usually need to include at least a few nearest-neighbours interaction to
reach a good agreement with the experimental value. To achieve a good agreement
with the experimental data by including long-range interactions may not always
be physical. Moreover, while the structures of the light-actinide elements are said
to be strongly affected by the complex spatial shape of the f spherical harmonics,
these models do not contain any directional character of the bonding.

Motivated by these facts, the aim of the present chapter is set as to demonstrate
how we can achieve a good agreement of the calculated elastic constants with the
experimental data by using angular-dependent short-range potential, not by using
long-range pairwise potential.

The hybridized NFE-TBB model for the description of the bondings in the
light-actinide metals is used but designed to model these metals through first-
nearest-neighbour interaction model by including a simplified bond-angle depen-
dence and by adjusting the tight-binding parameters.

The choice of the formulation for the hybridized NFE-TBB model corresponds
to that of Hausleitner and Hafner [6] for the transition-metal alloys. The points
new or different in this chapter are as follows; (1) Analytical expression [7] is used
for the NFE part, (2) TBB part is changed for the f-electron systems corresponding
to the f-f transfer integral and (3) expression for the bond order in the first-nearest-
neighbour bond order potential [8] is adopted for the bonding interactions instead
of the one using the Bethe lattice method. As a result of the last point, the bonding
interaction depends on the structure directly.

This choice of the formulation results in a non-pairwise first-nearest-neighbour
effective interaction potential determined by the arrangement of the atoms up to
the second-nearest-neighbour shell of an atom.

Unfortunately, this model is not enough to give the correct energy difference
between fcc and hcp structures, because there is no way to differentiate ener-
gies between these two structures only by their first- or second-nearest-neighbour
structures. But I have examined how this model can reproduce the experimen-
tal elastic constants, and confirmed that this model can give, at least, the correct
energy change against the atomic displacement near equilibrium.

In section 3.2, the method for the first-nearest-neighbour potential for the f-
electron system is outlined. Then, this potential is applied to fcc Th and Pu and
the results of the calculation of the elastic constants are given and then compared
with the experimental values in section 3.3. In section 3.4, conclusions for this
chapter are presented.
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3.2 Computational method

The hybridized NFE-TBB model of the interatomic potential is as follows:

Φtotal = ΦNFE + ΦTB,rep + ΦTB,bond. (3.1)

The first term treats the spd-electron gas as an sp-electron gas in simple metal.
The remaining terms are for the TBB part of the potential for the f-electron, but
the second term for the pairwise repulsive interaction differs from the standard
tight-binding model [1].

The following NFE interaction formulation by Pettifor and Ward [7] is adopted;

ΦNFE =
2Ns,iNs,j

rij

3∑
n=1

An cos(knr + αn) exp(κnrij). (3.2)

Ns,i is the number of spd-valence electrons for thei atom. This parameter is set as
3 for Pu and also for Th, as in the Harrison’s study [1]. As in the model of Singh
et al.[3], Heine-Abarenkov model potential is used to calculate the parametersAn,
αn, kn andκn [9] and all of them are determined byrc andD.

The following is the repulsive interaction used;

ΦTB,rep =

√
Nf,iNf,j

11

h2
ijd

14
ij

r12
ij

. (3.3)

Nf,i is the number of f-valence electrons for thei atom and is determined as the
number of total valence electrons minusNs,i. dij is the equilibrium interatomic
separation. The interatomic matrix elements form by Harrison [1] is used and the
all matrix elements and their averageh are determined by a single parameter,rf .

Bond energy expression is;

ΦTB,bond = 2
∑
αβ

Hjβ,iαΘiα,jβ. (3.4)

Hjβ,iα is the tight-binding Hamiltonian andΘiα,jβ is the bond order. Bond order
is calculated from the following simplified expression [8], [10];

Θα
i,j = χ̂(Nf)

/1 +
1

2

∑
k 6=i,j

(hα(rik)

hα(rij)

)2

gα(θjik) +

(
hα(rjk)

hα(rij)

)2

gα(θijk)


1/2

.

(3.5)
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The suffixα denotesσ, π, δ andφ andhα corresponds to the interatomic element
linking α orbital at each atom.̂χ(Nf) is the reduced susceptibility.g(θ) is an
angularly dependent embedding function for each type of the bond.

Note that the sum fork is taken only for the atoms which are in the first-
nearest-neighbours positions of the bothi andj in this case.

The form for g as a function of bond angleθ is given in the same way as
in the reference of Pettifor [11], but here, the table of matrix elements given by
Sharma [12] is used instead of the Slater-Koster table [13] as the f-f matrix ele-
ments are treated now. The following form is derived forg(θ) and the coefficients
for eachα are compiled in table 3.1.

gα(θ) = F0,α + F2,α cos(2θ) + F4,α cos(4θ) + F6,α cos(6θ). (3.6)

The resultingg(θ) curves are shown in figure 3.1.

Table 3.1 Calculated coefficients for the angularly dependent embedding function.

α F0 F2 F4 F6

σ 0.458594 0.352734 0.147656 0.041016
π 0.719028 0.233333 0.043750 −0.058333
δ 3.278646 −0.865885 −1.549479 0.136719
φ 94.515625 −117.304690 24.609375 −0.820313

The hybridized NFE-TBB potential used in this chapter is determined by three
adjustable parameters,rc, D andrf . These parameters are set as the interatomic
spacingd and the bulk modulusB to be reproduced.

The elastic constants are derived as follows. First, the change of the binding
energy per atomU for a certain deformation of the lattice structure is assumed
to be written as the sum of the change of the interatomic potential. Then,C ′ =
1/2(C11 − C12) andC44 are given by the second derivative of the binding energy
with appropriate deformations:

Cλ =
1

12Ω

d2U(γλ)

dγ2
λ

(λ = 1, 2), (3.7)

whereCλ (λ = 1, 2) correspond toC ′ andC44 andΩ is the atomic volume. The
deformationγλ are taken as the strain matrix elements introduced in the litera-
ture [8]. The bulk modulusB is derived from

B = Ω

(
d2U

dΩ2

)
Ω=Ω0

, (3.8)
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Figure 3.1 Schematic of the bonding (left panel) and the schematic of the bond
angles and the angular dependence of the embedding functiong(θ) (right panel).

whereΩ0 is the equilibrium atomic volume.

3.3 Results

3.3.1 Potentials for fcc Th

The fcc structure for Th is stable at room temperature. The experimental crystal-
lographic structure ofα-Th [14] is used for calculations. The data used for the
lattice constant isa = 5.0842Å.

As this potential function has a non-pairwise interaction term in the TBB part,
it is not trivial how to set the uniform cut off lengthrcut between first and second
nearest-neighbour distances. The cut off length for fcc Th is set asrcut = 4.5195Å
(8.5406a.u.), which givesφ(rcut) = 0 if we fix all variablesr andθ in equation 3.5
and 3.6 to the interatomic separation and the bond angle of the non-strained crys-
tallographic structure respectively. In this case, the potentialφ results in a pairwise
interaction.

The results of the fitting to the experimental data ford andB are compiled in
table 3.2 and the adjusted parameters are as follows;rc = 1.1472Å, D = 0.9109
andrf = 0.5766Å. As the experimental data ford in table 3.2 has only two figures
after decimal point, a calculated interatomic spacingd = 3.5951Å from the lattice
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constant data [14] is used for the fitting.
The resulting interatomic potential calculated using these parameters is given

in figure 3.2. The potential curve shown in figure 3.2 is derived with the bond
orders for the bonding with the first-nearest-neighbour atom and it shows the
angular-dependent non-pairwise potential describing first-nearest-neighbour bond
direction and the angular-independent pairwise potential at the same time.

6.5 7 7.5 8 8.5

−0.002

0.002

0.004

0.006

r / a.u.

Φ
 /

R
y

Figure 3.2 Interatomic potential for fcc Th at 0K. Potential energy curve toward
first-nearest-neighbour bond direction.

A U−γ curve calculated from this potential is given in figure 3.3. The second-
order polynomial fit shown in the figure is obtained by a least-square fitting to the
plotted binding energy.

The calculated elastic constants forα-Th at 0K are given in table 3.2. The
Cauchy pressureC12 − C44 for this crystal is calculated to be positive (2.64GPa)
though negative for experimental0K data (−0.15GPa). This negative Cauchy
pressure is only observed at temperatures below40K. At room temperature, Cauchy
pressure is measured to be positive (5.34GPa,300K) also for experimental data [15].

The elastic constants with the above mentioned pairwise potential have also
been calculated. In this potential, the bond order for each type of bond becomes
a constant and fixed to its value at the non-strained structure. Therefore it be-
comes to have a pairwise and angular-independent character. The pairwise and
non-pairwise potentials are identical for the bonding direction from an atom at a
equilibrium crystallographic structure. A same set of parameters is used as non-
pairwise potential. By choosing same parameters, the samed andB are obtained
because they depend only onr. The calculated elastic constants are also given in
table 3.2.
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Figure 3.3 Binding energy per atom as function ofγ for tetragonally and trigonally
deformed fcc Th. The curves are second-order polynomial fits.

A better agreement of the calculatedC ′ with the experimental data is enabled

Table 3.2 Calculated and experimentally determined elastic constants ofα-Th at
0K. The elastic constants are listed in GPa. Calculated also are the elastic con-
stants by a pairwise potential with fixed bond order. The parameters used are the
same for two calculations.

Calculated Experimental
non-pairwise pairwise

C11 86.84 93.55 81.03a

C12 49.70 46.34 50.31a

C44 47.06 47.38 50.46a

C ′ 18.57 23.61 15.36b

B 62.08 62.08 60.55b

d [Å] 3.5982 3.5982 3.60c

a: Ref. [15],b: Calculated fromCij, c: Ref. [16].
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by including angular character. As is also the case for the sp-valent systems [8],
we have found that the tetragonal shear is largely dependent on the angular char-
acter of the bondings.

3.3.2 Potentials for fcc Pu

The fcc structure for Pu is stable at elevated temperatures. This is called asδ-Pu
and stable between 592K and 724K. The present hybridized NFE-TBB potential
has also been tested for fcc structure of Pu with the lattice constant ofδ-Pu,a =
4.6371Å at 713K [14], but we have done our calculations at0K.

Cut off length is chosen asrcut = 3.8943Å (7.3592a.u.) in the same way
as for fcc Th. The results of the fitting ofd andB to the experimental data are
compiled in table 3.3. The adjusted parameters arerc = 0.9413Å, D = 0.7951
andrf = 0.4044Å. The resulting potential energy curve is given in figure 3.4.
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Figure 3.4 Interatomic potential for fcc Pu at 0K. Potential energy curve toward
first-nearest-neighbour bond direction.

The calculated elastic constants using this potential is also given in table 3.3.
The tabulated experimental elastic constants are those measured using a 1wt.%
Ga-stabilized fcc Pu at room temperature [17]. Our choice of parameters repro-
duces bothB andC ′ very well, therefore it reproducesC11 andC12 very well,
but it does not reproduces unusually large value of the experimentalC44 for this
phase.
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Table 3.3 Calculated and experimentally determined elastic constants of fcc Pu at
room temperature. The elastic constants are listed in GPa. Calculated also are the
elastic constants by a pairwise potential with fixed bond order. The parameters
used are the same for two calculations.

Calculated Experimental
non-pairwise pairwise

C11 34.90 44.11 36.28a

C12 26.47 21.86 26.73a

C44 21.87 22.32 33.59a

C ′ 4.21 11.13 4.78a

B 29.28 29.28 29.91a

d [Å] 3.2814 3.2814 3.2772b

a: Ref. [17],b: Calculated from lattice constant in ref. [14].

Compared with the pairwise potential data, the agreement of the calculatedC ′

with the experimental data has greatly improved as is also the case for fcc Th.
The present model yield positiveC ′ for fcc Pu, which means that this phase is
stable towards a tetragonal shear. On the other hand, the first-principles calcula-
tion by Söderlind et al. [18] yields negativeC ′, which means that this phase is
unstable towards a tetragonal shear. They suggest that this phase is (and other
high-temperature phases of U, Np and Pu are) stabilized by a thermal contribu-
tion to the energy, but I believe thatC ′ for 0K must be also positive, because
the temperature-dependence of the interatomic interactions are only comes into
expression as a damping factor,exp(−πTr/vF) [19], wherevF is the Fermi ve-
locity, and the sign of theC ′ is not changed. As forC44, however, no improvement
is observed. This may be because the experimental data are those of Ga-stabilized
alloy, or because the present calculation is done for0K and the sign of the Cauchy
pressure has been changed as is also the case for fcc Th, or because our choice of
the formula for the angular-dependence of the bonding is still too simplified.

3.4 Conclusions

Presented in this chapter is a first-nearest-neighbour hybridized nearly-free-electron–
tight-binding-bond interatomic potential model for the light-actinide metals. Pa-
rameters in both NFE and TBB potential are adjusted to reproduce the experi-
mentally known elastic constants for the fcc Th and Pu phase. In the present
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scheme for deriving potential energy curves, some effects not included explicitly
in the model, say, further-nearest-neighbour interactions or relativistic effects, are
absorbed in the fitting parameters.

The results of the fitting to the bulk modulus and the equilibrium interatomic
separation is good for both fcc Th and Pu. The derived potential with parameters
adjusted by this fitting has shown very good agreement with the experimental data
for the all three elastic constants for the cubic Th. The same procedure for fitting
gives a very good agreement of the tetragonal shear constantC ′ and therefore
good agreement ofC11 andC12 with experimental data also for fcc Pu, but does
not give good result for the trigonal shear constantC44.

Angular-character of the bonding has greatly improved the reproducibility of
the tetragonal shear constantC ′ compared with the angular-independent calcula-
tion. I have proved that by including angular-character of the bonding, we can
describe at least the energy change against the fundamental shear strains for the
cubic crystal structure even within first-nearest neighbour model of the bonding
for the fcc light-actinide metals.

For the application of this model to the more complex structures of the light-
actinides stable at room temperature, we may have to include higher moment
terms in the calculation of the bond order.

42



References

[1] W. A. Harrison,Phys. Rev.B28, 550 (1983).

[2] M. S. S. Brooks, B. Johansson, and H. L. Skriver, inHandbook on the Physics
and Chemistry of the Actinides, Vol. 1, edited by A. J. Freeman and G. H.
Lander (North-Holland, Amsterdam, 1984), p. 153.

[3] N. Singh, and S. P. Singh,Phys. Rev.B42, 1652 (1990).

[4] S. P. Chen,J. Alloys Compounds185, 353 (1992).

[5] M. S. Daw and M. I. Baskes,Phys. Rev.B29, 6443 (1984).

[6] Ch. Hausleitner and J. Hafner,Phys. Rev.B45, 115 (1992).

[7] D. G. Pettifor and M. A. Ward,Solid State Commun.49, 291 (1984).

[8] P. Alinaghian, S. R. Nishitani and D. G. Pettifor,Phil. Mag.B69, 889 (1994).

[9] N. Singh, N. S. Banger and S. P. Singh,Phys. Rev.B39, 3097 (1989).

[10] S. R. Nishitani, P. Alinaghian, C. Hausleitner and D. G. Pettifor,Phil. Mag.
Lett.69, 177 (1994).

[11] D. G. Pettifor,Many-Atom Interactions in Solids, edited by R. M. Nieminen,
M. J. Puska and M. J. Manninen (Springer-Verlag, Berlin, 1990) p 64.

[12] R. R. Sharma,Phys. RevB19, 2813 (1979).

[13] J. C. Slater and G. F. Koster,Phys. Rev.94, 1498 (1954).

[14] P. Villars and L. D. Calvert,Pearson’s Handbook of Crystallographic Data
for Intermetallic Phases, 2nd ed.(ASM International, Materials Park, 1991).

43



[15] J. D. Greiner, D. T. Peterson and J. F. Smith,J. Appl. Phys.48, 3357 (1977).

[16] C. Kittel, Introduction to Solid State Physics, 7th ed.(Wiley, New York,
1996).

[17] H. M. Ledbetter and R. L. Moment,Acta Metall.24, 891 (1976).
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Chapter 4

Hybridized NFE-TBB model of the
bonding in the aluminium metals

4.1 Introduction

The Al metal is known for its relatively low value of Young’s modulus compared
with Ti, Fe or Ni for example, which are known as the structural materials. Its
alloys also can be used as light and highly elastic materials, such as Al-Li alloys,
which are considered to be suitable for the aircraft structure material for saving
fuel expenses. Studies of the dynamic structures of these materials must provide
much useful knowledge for understanding or optimizing formation processes of
these alloys.

For decades, molecular dynamics simulation is used for the detailed investiga-
tion of the atomistic process of the diffusion or the sputtering, which are essential
for the investigations of the alloy formation or the investigations of the phenomena
which largely determine the mechanical properties, such as the dynamic structures
of the defects or the dislocations. To simulate dynamical properties by an atom-
istic simulation, it is essential to use both physically proper and efficient model
of the interatomic potentials for the calculations of the interatomic forces to treat
sufficiently long time scale for a system.

In this chapter, an hybridized NFE-TBB model of the potential have been ex-
amined for pure Al metal, a combination of the pairwise interaction potential for
the NFE-like sp-electrons and the non-pairwise many-atom interaction potential
for the d-electrons. The major advantages of the present model are that it accounts
for the local structure more explicitly compared with the original hybridized NFE-



TBB model of the potential [1, 2] and that it is less complicated compared with the
full many-atom calculation of the bonding interactions in the bond order poten-
tial [3] at the long-range interaction region which corresponds to the higher mo-
ment levels of the bond order potential. The former advantage is enabled because
the present TBB part of the potential is characterized by the angular-dependent
second-moment approximation of the bond order [4] instead of the one calculated
with the Bethe lattice [2] or only with the coordination number [1], and the latter
is because the present hybridized NFE-TBB potential is just a pairwise potential
in that region.

As stated above, the bondings in the Al metal is treated as the coupling of
the free-electron-like interactions due to the sp-electrons and the tight-binding
interactions due to the d-electrons. That is, the d contribution to the bonding
is not neglected. The inclusion of the d-state contributions, combined with the
inclusion of its dependence on the bond angles, leads to the good agreement of
the calculated elastic constants with the experimental data as we see later on.

In section 4.2, the choice of the potential model and the computational proce-
dure for the fitting of its adjustable parameters are described, and the derivation of
the data to be compared with the experimental ones is also described. The calcu-
lated data are given in section 4.3. Conclusions are also described in section 4.4.

4.2 Potential model and computational method

The hybridized NFE-TBB model of the interatomic potential is as follows:

Φtotal = ΦNFE + ΦTB,rep + ΦTB,bond. (4.1)

The first term treats the sp-electron gas in simple metal. The remaining terms are
for the TBB part of the potential for the d-electrons.

The following NFE interaction formulation by Pettifor and Ward [5] is adopted;

ΦNFE =
2N2

s

rij

3∑
n=1

An cos(knr + αn) exp(κnrij). (4.2)

Ns is the number of sp-valence electrons. Heine-Abarenkov model potential is
used to calculate the parametersAn, αn, kn andκn [6] and all of them are deter-
mined byrc andD.

The following is the repulsive interaction used;

ΦTB,rep =
Nd

7

h2
ijd

10
ij

r8
ij

. (4.3)
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Nd is the number of d-valence electrons and is determined as the number of total
valence electrons minusNs. dij is the equilibrium interatomic separation. The
interatomic matrix elements form obtained by Wills and Harrison [1] is used and
the all matrix elements and their averageh are determined by a single parameter,
rd.

Bond energy expression is;

ΦTB,bond = 2
∑
αβ

Hjβ,iαΘiα,jβ. (4.4)

Hjβ,iα is the tight-binding Hamiltonian andΘiα,jβ is the bond order. Bond order
is calculated from the following simplified expression [7];

Θα
i,j = χ̂(Nd)

/1 +
1

2

∑
k 6=i,j

(hα(rik)

hα(rij)

)2

gα(θjik) +

(
hα(rjk)

hα(rij)

)2

gα(θijk)


1/2

.

(4.5)
The suffixα denotesσ, π andδ orbitals, andhα corresponds to the interatomic
element linkingα orbital at each atom.̂χ(Nd) is the reduced susceptibility.g(θ) is
an angularly dependent embedding function for each type of the bond. The form
for g as a function of bond angleθ and the procedure for the calculation of the
coefficients is given in the reference by Pettifor [4] and the resulting embedding
function curves for d are presented in the literature by Nishitani et al [7].

The TBB interactions for the fcc structure of Al are assumed to be negligi-
ble except for the first-nearest-neighbour, as the contributions from the further
nearest-neighbours are expected to be small in the case of TBB interactions. The
contributions from the second-, third- and fourth- nearest-neighbours are 3.28,
0.41 and 0.11% of the first-nearest-neighbour interaction respectively. They are
easily absorbed by adjusting fitting parameters.

Ns andNd are set as 2.62 and 0.38 respectively. These values are taken from
the LMTO calculation of the electronic structure [8].

The hybridized NFE-TBB potential used in the present study is determined
by three adjustable parameters,rc, D and rd. These parameters are set as the
interatomic spacingd, the bulk modulusB and the trigonal shear constantC44 to
be reproduced.

The elastic constants are derived as follows. The second derivative of the bind-
ing energy per atomU for a certain deformation of the lattice structure is assumed
to be written as the sum of the second derivatives of the interatomic potential.
Then,C ′ = 1/2(C11 − C12) andC44, which are given by the second derivative
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of the binding energy with appropriate deformations, can be evaluated from the
interatomic potentials. These constants are given by the following relations.

Cλ =
1

12Ω

d2U(γλ)

dγ2
λ

(λ = 1, 2), (4.6)

whereCλ (λ = 1, 2) correspond toC ′ andC44 andΩ is the atomic volume. The
deformationγλ are taken as the strain matrix elements introduced in the litera-
ture [9]. The bulk modulusB is derived from

B =
1

12πd

(
d2U

dr2

)
r=d

, (4.7)

whered is the equilibrium interatomic spacing.
The energy term which depends only on the atomic volume is not treated in

addition to the present formulation of the effective interatomic potential even in
our calculations of the bulk modulus. The validity of this assumption is argued in
section VIII of the reference [1].

4.3 Results

If we fix all variablesr andθ in equation 4.5 to the interatomic separation and the
bond angle of the non-strained crystallographic structure respectively, the poten-
tial functionφ results in a pairwise interaction. This pairwise interaction potential
is used for the parameters fitting, as the interatomic separations and the bulk mod-
uli are the same for the non-pairwise and the pairwise potential, for they depend
only on r originated from an atom. The pairwise potential is also used for the
fitting to the experimentalC44, but the agreements of the calculatedC44 with the
experimental data was very poor as we see later on. The same parameters sets
showed much better agreements with the experimentalC44 with the non-pairwise
potentials.

The results of the fitting of the parameters in the potential functions are com-
piled in table 4.1 and 4.2. We adjusted parameters for the interactions model
which includes the interactions up to first-, second-, third- or fourth-nearest neigh-
bours respectively. The parameters do not vary very much with the interactions
model.

The resulting interatomic potential calculated using the parameters set for the
fourth-nearest-neighbour interactions model is given in figure 4.1. The potential
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Table 4.1 The results of the fitting of the adjustable parameters. The numbers
given in the first column are the number of the outermost nearest neighbour shell
included.

Nearest rc D rd

Neighbour Å Å
1 0.7629 0.3827 1.2086
2 0.7515 0.3631 1.2396
3 0.7682 0.4025 1.1864
4 0.7659 0.3871 1.2075

Table 4.2 Calculated and experimentally determined elastic constantsCij, the re-
sult of the fitting and the experimental data for the interatomic separationsd and
the bulk moduliB for the fcc Al at 0K. The experimental data ford is calculated
from the experimental lattice constant [10] andB is taken from the literature [11].
Calculated also are the elastic constants obtained by the pairwise potentials with
fixed bond order. Model ‘n’ and ‘p’ stand for the non-pairwise and the pairwise
potential respectively. The parameters used are those compiled in table 4.1 and
the same for the present two models. Experimental data are taken from the litera-
ture [11]. The numbers given in the first column are the number of the outermost
nearest neighbour shell included.

Nearest Model C11 C12 C44 B C′ C12 − C44 d
Neighbour GPa GPa GPa GPa GPa GPa Å

1 n 102.62 69.34 42.20 80.43 16.64 27.15 2.8605
p 120.12 60.59 59.18 80.43 29.77 1.41 2.8605

2 n 110.30 66.18 36.60 80.89 22.06 29.58 2.8595
p 129.19 56.74 54.92 80.89 36.23 1.81 2.8595

3 n 111.43 65.02 39.22 80.49 23.20 25.80 2.8608
p 127.99 56.74 55.29 80.49 35.62 1.45 2.8608

4 n 110.17 65.04 38.26 80.08 22.57 26.78 2.8614
p 127.63 56.31 55.20 80.08 35.66 1.11 2.8614

Experimental 114.30 61.92 31.62 79.38 26.19 30.30 2.8634

49



curve shown in figure 4.1 is derived with the bond orders for the bonding with
the first-nearest-neighbour atom and the same curve shows the angular-dependent
non-pairwise potential describing first-nearest-neighbour bond direction and the
angular-independent pairwise potential at the same time.
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Figure 4.1 Interatomic potential for Al at 0K. Potential energy curve toward first-
nearest-neighbour bond direction. The parameters set used is that for the fourth-
nearest-neighbour interactions model.

The change of the binding energy versus tetragonal or trigonal strain calcu-
lated from the non-pairwise fourth-nearest-neighbour interactions model inter-
atomic potential is given in figure 4.2. The second-order polynomial fit shown
in the figure is obtained by a least-square fitting to the plotted binding energy
change.

The elastic constants calculated using these parameters set is also given in ta-
ble 4.2. The non-pairwise and the pairwise potentials show remarkable difference
in agreements between the calculated and the experimental data for tetragonal
shear constantsC ′. Combined with the good agreements accomplished in the
fitting to the experimental trigonal constantsC44, we can say that the angular-
dependence of the d-bonding interactions in the non-pairwise potential model
have greatly improved the reproducibility of the experimental elastic constants
data. On the other hand, the inclusion of the long-range interactions does not
improve the reproducibility much. This fact that the angular-dependence of the
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bonding is more important in determining the elastic constants than the long-range
interactions is also observed for the light-actinide metals [12].

The bcc-fcc and the hcp-fcc energy difference are also evaluated for each
nearest-neighbour interactions model and the results are given in table 4.3. For
bcc case, TBB interactions are included up to the second-nearest neighbours. The
binding energies for the fcc and the hcp structures are exactly the same for the
first- and the second-nearest-neighbour interactions model. The relative structural
stability of the fcc structure of Al compared with bcc or hcp structures are recov-
ered by including the long-range interactions just like the original NFE potential
for Al by Pettifor and Ward [5]. In the present case, this is accomplished by the
fourth-nearest-neighbour interactions for fcc structure.

Table 4.3 Energy differences for bcc and hcp structures compared with fcc struc-
ture. The numbers given in the first column are the number of the outermost
nearest neighbour shell included.

Nearest ∆Ebcc ∆Ehcp

Neighbour mRy/atom mRy/atom
1 14.07 0
2 10.63 0
3 3.22 −0.10
4 3.28 0.68

4.4 Conclusions

Presented in this chapter is a hybridized NFE-TBB interatomic potential model
for Al. By including the short-range d-electrons angular-dependent bonding in-
teractions, very good agreements of the calculated elastic constants with the ex-
perimental data are accomplished, which are not accomplished with the NFE
pair-potential only. With the NFE pair-potential only, I have derived the calcu-
lated elastic constants data as follows by the same procedure:C ′ = 27.12GPa,
C44 = 32.86GPa andB = 44.00GPa withrc = 0.6917Å, D =0. These data
clearly mean that I cannot fit to the experimental elastic constants data with the
pair-potential only in this case.

Obtained also is a correct structural stability order in bcc, fcc and hcp struc-
tures for Al. This is accomplished by including the long-range interactions, at
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least, up to the fourth-nearest-neighbours, as was shown by the NFE pair-potential
calculations [5] or more detailed calculations [3, 13].

With these two results, one can derive both efficient and proper interatomic
potential function that can be used in the intensive molecular dynamics simula-
tions within the angular-dependent hybridized NFE-TBB interaction framework,
for the present model have the non-pairwise (i.e. slow to calculate) but short-
range TBB part that can determineCij correctly and the long-range but pairwise
(i.e fast to calculate) NFE part that can determine relative structural stability order
correctly.

53





References

[1] J. M. Wills and W. A. Harrison,Phys. Rev.B284363 (1983).

[2] Ch. Hausleitner and J. Hafner,Phys. Rev.B45115 (1992).

[3] S. R. Nishitani,J. Phase Equilibria18 546 (1997).

[4] D. G. Pettifor,Many-Atom Interactions in Solids, edited by R. M. Nieminen,
M. J. Puska and M. J. Manninen ( Springer-Verlag, Berlin, 1990) p 64.

[5] D. G. Pettifor and M. A. Ward,Solid State Comm.49 291 (1984).

[6] N. Singh, N. S. Banger and S. P. Singh,Phys. Rev.B393097 (1989).

[7] S. R. Nishitani, P. Alinaghian, C. Hausleitner and D. G. Pettifor,Phil. Mag.
Lett.69177 (1994).

[8] J. Hafner and S. S. Jaswal,Phys. Rev.B387320 (1988).

[9] P. Alinaghian, S. R. Nishitani and D. G. Pettifor,Phil. Mag.B69889 (1994).

[10] P. Villars and L. D. Calvert,Pearson’s Handbook of Crystallographic Data
for Intermetallic Phases, 2nd ed.(ASM International, Materials Park, 1991).

[11] G. N. Kamm and G. A. Alers,J. Appl. Phys.35 327 (1964).

[12] K. Hachiya and Y. Ito,PhysicaB, in printing.

[13] A. K. McMahan and J. A. Moriarty,Phys. Rev.B273235 (1983).

55





Chapter 5

Hybridized NFE-TBB model of the
bonding in the rare-earth metals

5.1 Introduction

For a few decades, bondings in simple metals have been successfully treated the-
oretically [1]. Harrison [2] applied one of the most simplified theory (Thomas-
Fermi theory) for the simple metals and extended for the bondings in lanthanides
and heavy actinides and made success in predicting the trends in some proper-
ties of these metals. His model treats the spd-electrons for all the f-shell metals
as the sp-electrons for the simple metals and all f-bands are localized except for
light-actinides. In this treatment, the interatomic interaction can be written as the
single-term pairwise screened Coulomb potential same as the one for the simple
metals by himself [3].

Based on the success of this model, Singh [4] applied the hybridized nearly-
free-electron–tight-binding-bond (NFE-TBB) model of the two-body interaction
on some of the fcc rare-earth metals originally developed by Wills and Harrison [5,
2] and attempted to make more realistic description of the bondings by treating the
effect of the d-bands and f-bands explicitly. Using this model, they calculated the
elastic constants and compared with the experimental data and showed reasonable
accord.

Nevertheless, f-bands for the lanthanides and heavy-actinides can be seen as
localized to a large extent [6] and it is questionable to treat the effect of the f-
bands explicitly at this level of the approximation. Besides, although the model by
Singh [4] has acquired some accuracy, no optimization of the tight-binding param-



eters are done and the accord with the experimental data are seems to be achieved
through including many-nearest-neighbours interactions. Requiring many-nearest-
neighbours bears problems as follows at least: (1) not always physical to include
further neighbour interactions instead of the angular dependence of the bond-
ings [8], and (2) hard to be used as interatomic potential functions in molecular
dynamics simulations.

Motivated by these facts, the aim of this chapter is set to apply a simplified
but realistic enough and physically appropriate interatomic potentials function
for rare-earth metals and their compounds. The same formula using combined
fourth-nearest-neighbour NFE and first-nearest-neighbour bond-angle-dependent
TBB model is used as have already been tested for aluminium in chapter 4. By
using such potential functions, we can model such as long time-scale dynamical
properties or large-scale atomistic motions which is important for the understand-
ing of the mechanical properties through molecular dynamics simulation.

The model and procedure used for the estimations of the elastic constants to be
compared with the experimental data are described in the next section. Results of
the derived elastic constants and the comparison with the available experimental
data are presented in section 5.3. Conclusions are shown in section 5.4.

5.2 Computational method

The hybridized NFE-TBB model of the interatomic potential is as follows [9]:

Φtotal = ΦNFE + ΦTB,rep + ΦTB,bond. (5.1)

The first term treats the sp-electron gas in simple metal. The remaining terms are
for the TBB part of the potential for the d-electrons in the present study, for I have
assumed f-bands to be fully localized. This is a good approximation except for
the low temperature phase of Ce. Thus, the interatomic potential mode used for
the rare-earth metals is the same as the one for the transition metals.

The following NFE interaction formulation by Pettifor and Ward [10] is adopted;

ΦNFE =
2N2

s

rij

3∑
n=1

An cos(knr + αn) exp(κnrij). (5.2)

Ns is the number of sp-valence electrons. Heine-Abarenkov model potential is
used to calculate the parametersAn, αn, kn andκn [11] and all of them are deter-
mined byrc andD.
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The following is the repulsive interaction used;

ΦTB,rep =
Nd

7

h2
ijd

10
ij

r8
ij

. (5.3)

Nd is the number of d-valence electrons and is determined as the number of total
valence electrons minusNs. dij is the equilibrium interatomic separation. The
interatomic matrix elements form obtained by Wills and Harrison [5] is used. All
matrix elements and their averageh are determined by a single parameter,rd.

Bond energy expression is;

ΦTB,bond = 2
∑
αβ

Hjβ,iαΘiα,jβ. (5.4)

Hjβ,iα is the tight-binding Hamiltonian andΘiα,jβ is the bond order. Bond order
is calculated from the following simplified expression [13];

Θα
i,j = χ̂(Nd)

/1 +
1

2

∑
k 6=i,j

(hα(rik)

hα(rij)

)2

gα(θjik) +

(
hα(rjk)

hα(rij)

)2

gα(θijk)


1/2

.

(5.5)
The suffixα denotesσ, π andδ orbitals, andhα corresponds to the interatomic
element linkingα orbital at each atom.̂χ(Nd) is the reduced susceptibility.g(θ)
is an angularly dependent embedding function for each type of the bond. The
form for g as a function of bond angleθ and the procedure for the calculation
of the coefficients are given in the reference by Pettifor [12] and the resulting
embedding function curves for d are presented in the literature by Nishitani et
al [13].

The TBB interactions are assumed to be negligible except for the first-nearest-
neighbour as is done for the fcc structure of Al in chapter 4.

The NFE-TBB potential used in the present study is determined by three ad-
justable parameters,rc, D andrd if we fix Ns or Nd. These parameters are set as
the interatomic spacingd and the bulk modulusB to be reproduced by the least-
square fitting. Several starting values are taken for these parameters set for each
atom around the final values reported in the literature [4] and chose one which
gained the best accord with experimental elastic constants data. Total numbers of
valence electrons are3 for all metals except the one for Yb which is2. Numbers
for Nd is 1 except for those forγ-Ce andβ-Yb, which are0.5 and0.1 respectively.
The valueNd = 1 for these two metals gives a very poor results forC ′.
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If we fix all variablesr andθ in equation 5.5 to the interatomic separations
and the bond angles of the non-strained crystallographic structure respectively,
the potential functionφ results in a pairwise interaction. This pairwise interaction
potential is used for the parameters fitting, as the interatomic separations and the
bulk moduli are assumed to be the same for the non-pairwise and the pairwise
potential. This is true for the cubic crystals and approximately true for the hexag-
onal crystals. The error arises from this assumption for the hexagonal crystals
is less than1% for all hexagonal metals, which is evaluated using homogenous
strain matrix [7] and the equation corresponding to equation 5.6 which will be
introduced later on.

The elastic constants are derived as follows. The second derivative of the
binding energy per atomU for a certain deformation of the lattice structure is
assumed to be written as the sum of the second derivatives of the interatomic
potential. Then, for cubic crystals,C ′ = 1/2(C11−C12) andC44, which are given
by the second derivative of the binding energy with appropriate deformations, can
be evaluated from the interatomic potentials. These constants are given by the
following relations.

Cλ =
1

12Ω

d2U(γλ)

dγ2
λ

(λ = 1, 2), (5.6)

whereCλ (λ = 1, 2) correspond toC ′ andC44, andΩ is the atomic volume.
The deformationγλ are taken as the strain matrix elements introduced in the liter-
ature [8]. The bulk moduliB are derived from

B =
1

12πd

(
d2U

dr2

)
r=d

, (5.7)

whered is the equilibrium interatomic spacing.
For hexagonal crystals, elastic constants can be evaluated using the strain ma-

trices introduced by Cohen, Stixrude and Wasserman [14], for example. Their
matrices forC66, C44 andCS are used in this calculations, butC33 is determined
instead ofR using the following strain matrix

ε =

 0 0 0
0 0 0
0 0 γ

 , (5.8)

which givesC33 as

C33 =
1

Ω

d2U(γ)

dγ2
. (5.9)
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The bulk moduliB for hexagonal crystals are derived in the same way as for cubic
crystals.C11, C12 andC13 are calculated from the following relations:

C11 =
1

2
CS + C33 −

√
2CS(C33 − B) + C66, (5.10)

C12 =
1

2
CS + C33 −

√
2CS(C33 − B) − C66, (5.11)

C13 = C33 −
√

1

2
CS(C33 − B). (5.12)

5.3 Results

Room temperature phases of the rare earth metals (Sc, Y, Ce, Pr, Nd, Gd, Tb, Dy,
Ho, Er, Yb, Lu) and high temperature cubic phase of La (fcc La,β-phase) are cho-
sen for fitting parameters for the interatomic potentials because of the availability
of the experimental elastic constants data as far as I know.

The final values for the parameters set for each metal is compiled in table 5.1
and the interatomic potentials calculated using the final parameters set forβ-La are
present in figure 5.1. The potential curve shown in figure 5.1 is derived with the
bond orders for the bonding with the first-nearest-neighbour atoms. Consequently,
the same curve shows the angular-dependent non-pairwise potential describing
first-nearest-neighbour bond axis direction and the angular-independent pairwise
potential for all directions at the same time.

The change of the binding energy versus tetragonal or trigonal shear strain
calculated with the non-pairwise interactions potential model forβ-La is given in
figure 5.2. The second-order polynomial fit shown in the figure is obtained by a
least-square fitting to the plotted binding energy change.

The elastic constants calculated using these binding energy curves are given
in table 5.2 and 5.3 with the experimental data. The calculated and experimen-
tal elastic constants data show good agreements for all the rare-earth metals as a
whole as shown in figure 5.3, but the data forC44 do not show good accord as
the other constants. Our choice of the model and the parameters almost always
result in the too much lower calculated values. The non-pairwise and the pair-
wise potentials show some difference in agreements between the calculated and
the experimental data for tetragonal shear constantsC ′ for cubic metals orC66 for
hexagonal metals. The difference is also shown inC44. The non-pairwise poten-
tials give lower values ofC44 compared with those with the pairwise potentials.
This means that the effect of the non-pairwise interactions do exist, but it is more
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Table 5.1 Number of valence electron used in the present calculations and the final
values of the interatomic potential parameters for the rare-earth metals derived
by fitting to the experimental data of the elastic constants. Also shown are the
crystal structure for each phase. The names of the element without any phase
specifications are room-temperature phases.

N Ns Nd rc [Å] D rd [Å] Structure
Sc 3 2 1 0.9009 0.1989 0.9898 hcp
Y 3 2 1 0.9145 0.0289 0.5132 hcp

β-La 3 2 1 1.1679 0.5826 0.8830 fcc
γ-Ce 3 2.5 0.5 1.1689 0.7861 0.8389 fcc

Pr 3 2 1 1.0210 0.3776 0.6283 dhcp
Nd 3 2 1 1.0225 0.3540 0.7406 dhcp
Gd 3 2 1 0.9666 0.1688 0.7955 hcp
Tb 3 2 1 0.9397 0.1656 0.6906 hcp
Dy 3 2 1 0.9266 0.1209 0.7005 hcp
Ho 3 2 1 0.9016 0.0843 0.5869 hcp
Er 3 2 1 0.9029 0.0536 0.7186 hcp

β-Yb 2 1.9 0.1 1.2036 0.6764 0.7291 fcc
Lu 3 2 1 0.9170 0.1989 0.8397 hcp
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Figure 5.1 Interatomic potential forβ-La calculated with the final set of parame-
ters.

complicated than I have assumed. There may be higher moments to be included
in the evaluation of the bond orders of the bondings in these metals.

Although the effect of the angular-dependence of the d-bond is revealed, it
is not so evident as the transition metals or the light-actinide metals, for example.
The relatively weak dependence on the angular-dependent d-bond in the rare-earth
metals corresponds to the small values ofrd in table 5.1 compared with those of
the transition metals [9]. This means that the d-bands in the rare-earth metals are
narrow compared with those in the transition metals. Therefore, the d-bondings
in the rare-earth metals play a non-negligible but relatively small role.

For the practical use as a potential function in molecular dynamics simula-
tions, the pairwise model may be used instead of the non-pairwise model as the
calculated data show the better accord with experimental data compared with the
case of the transition metals. In addition, one may be able to adopt shorter cutoff
radii of the potentials. As shown for Al in chapter 4, we can easily fit to the equi-
librium interatomic separations and the elastic constants (i.e. the second derivative
of the potential) are insensitive to the number of the nearest-neighbours included.
Therefore, we can expect that the force acts, at least, near the equilibrium atomic
positions can be calculated exactly enough.
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Table 5.2 Calculated and experimentally determined elastic constantsCij [GPa],
the result of the fitting and the experimental data for the interatomic separations
d [a.u.] and the bulk moduliB [GPa] for the cubic crystals. The experimental
data ford are calculated from the experimental lattice constant [15]. Calculated
also are the elastic constants obtained by the pairwise potentials with fixed bond
order. Model ‘n’ and ‘p’ stand for the non-pairwise and the pairwise potential
respectively. The parameters used are those compiled in table 5.1 and the same
for the present two models.

C11 C12 C44 B C ′ d
β-La n 30.66 19.32 16.37 23.10 5.67 7.0705

p 32.57 18.37 18.22 23.10 7.10 7.0705
Expt.a 28.46 20.41 16.53 23.09 4.03 7.0707

γ-Ce n 26.87 13.67 12.08 18.07 6.60 6.8913
p 27.96 13.13 13.14 18.07 7.42 6.8913

Expt.b 26.01 14.26 17.30 18.18 5.88 6.8891
β-Yb n 18.59 10.26 10.04 13.04 4.17 7.3297

p 18.73 10.19 10.18 13.04 4.27 7.3297
Expt.c 18.62 10.36 17.72 13.11 4.13 7.3270

a : Elastic constants data from [16] (660K), b : Elastic constants data from [17],
c : Elastic constants data from [18].
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Table 5.3 Calculated and experimentally determined elastic constantsCij [GPa],
the result of the fitting and the experimental data for the interatomic separations
d [a.u.] and the bulk moduliB [GPa] for the hexagonal crystals. The experimen-
tal data ford andc/a are calculated from the experimental lattice constant [15].
Calculated also are the elastic constants obtained by the pairwise potentials with
fixed bond order. Model ‘n’ and ‘p’ stand for the non-pairwise and the pairwise
potential respectively. The parameters used are those compiled in table 5.1 and
the same for the present two models.

C11 C12 C13 C33 C44 B C66 d c/a
Sc n 103.0 40.4 31.0 100.9 21.9 56.72 31.3 6.251 1.584

p 109.4 33.8 27.0 116.1 30.1 56.72 37.8 6.251 1.584
Expt.a 98.6 44.8 29.5 106.2 27.5 56.72 26.9 6.251 1.592

Y n 76.60 27.41 21.09 80.59 19.71 41.43 24.59 6.90036 1.61334
p 77.06 27.01 20.83 81.47 20.18 41.43 25.02 6.90036 1.61334

Expt.b 77.90 28.50 21.00 76.90 24.31 41.43 24.70 6.90038 1.57399
Pr n 54.19 21.18 14.58 51.55 11.06 28.80 16.50 6.9400 1.6275

p 55.10 20.59 14.09 52.72 11.46 28.80 17.26 6.9400 1.6275
Expt.c 49.35 22.95 14.3 57.40 13.60 28.80 13.20 6.9400 1.6114

Nd n 59.47 23.63 16.40 56.02 12.17 31.78 17.92 6.9131 1.6264
p 60.88 22.52 15.41 58.83 12.94 31.78 19.18 6.9131 1.6264

Expt.d 54.82 24.62 16.6 60.86 15.03 31.79 15.10 6.9130 1.6124
Gd n 69.73 25.44 19.41 72.62 17.11 37.83 22.15 6.8654 1.6179

p 70.86 24.48 18.78 74.73 18.26 37.83 23.19 6.8654 1.6179
Expt.b 66.67 24.99 21.32 71.91 20.69 37.83 20.84 6.8654 1.5893

Tb n 71.25 26.55 19.97 73.28 17.34 38.72 22.35 6.80496 1.61906
p 72.51 25.47 19.26 75.62 18.63 38.72 23.52 6.80496 1.61906

Expt.e 67.88 24.32 22.99 72.25 21.40 38.78 21.78 6.80496 1.58111
Dy n 75.94 25.39 21.01 83.08 28.09 41.07 25.28 6.7896 1.5842

p 69.63 16.64 29.08 110.97 29.49 41.07 26.49 6.7896 1.5842
Expt.b 74.66 26.16 22.33 78.71 24.27 41.07 24.25 6.7896 1.5732

Ho n 71.16 23.48 24.41 82.08 20.15 40.81 23.84 6.7601 1.5808
p 71.93 22.76 24.02 83.89 21.09 40.81 24.58 6.7601 1.5808

Expt.f 76.12 26.00 20.72 80.15 25.92 40.81 25.06 6.7601 1.5698
Er n 82.70 30.22 24.38 85.99 21.73 45.47 26.24 6.7252 1.5810

p 82.35 27.02 25.38 89.31 23.51 45.47 27.66 6.7252 1.5810
Expt.b 86.34 30.50 22.70 85.54 28.09 45.47 27.92 6.7252 1.5700

Lu n 87.00 33.05 24.94 88.87 26.97 47.59 26.97 6.6326 1.5860
p 86.72 27.77 25.24 100.36 30.11 47.59 29.48 6.6326 1.5860

Expt.g 86.23 32.03 28.0 80.86 26.79 47.59 27.10 6.6326 1.5860
a : Elastic constants data from [19] (303K), b : Elastic constants data from [20] (298.0K),

c : Elastic constants data from [21] (300K), d : Elastic constants data from [22] (300K),

e : Elastic constants data from [23] (300K), f : Elastic constants data from [24] (300K),

g : Elastic constants data from [25] (300.1K).
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Figure 5.3 Plots of the experimental versus calculated elastic constants forC66

(upper left panel),C44 (lower left panel),CS (upper right panel) andC33 (lower
right panel).
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5.4 Conclusions

Presented in this chapter are the hybridized NFE-TBB potentials for the rare-
earth metals and their compounds and tested through the comparison between
calculated and experimental elastic constants data.

We can successfully fit to or reproduce the experimental data for the equilib-
rium interatomic separations, bulk moduli and elastic constants for the cubic and
the hexagonal crystals, andc/a ratio for the hexagonal crystals with the present
potentials model.

The bondings in the rare-earth metals are proved to depend on the angular-
dependence of the d-bond, but they are obscure compared with those in the tran-
sition metals.

The interatomic interactions model used in the present study based on the
angular-dependent second-moment approximation of the bond order, but the higher
orders of moment may be needed especially for the prediction of theC44 of the
cubic crystals which have highly negative Cauchy pressure (C12 − C44), such as
γ-Ce orβ-Yb.

The model presented and tested in the present study must be easily extended
to the rare-earth compounds as has been demonstrated for the transition metals [9,
26].
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Chapter 6

Hybridized NFE-TBB model of the
bonding in C15 Laves phase
structure Al–rare-earth
intermetallic compounds

6.1 Introduction

Among the structures of the intermetallic phase, many compounds have the struc-
tures which are known as Laves phase. This is one of the most common structures
of the binary intermetallic compounds. Half of them have the cubic phase struc-
ture, which is called as Cu2Mg-type or C15 structure.

The elastic constants are both fundamentally and practically useful physical
properties not only as themselves but as those closely related to lattice dynamics,
phase stability, etc., as they determine the curvature of the binding energy toward
a certain direction. Although the experimental data available for the elastic con-
stants of the intermetallic compounds at present are limited compared with their
enormous number of the combination of the elements which can form binary in-
termetallic compounds, the data are continuously accumulated. As for C15 Laves
phase compounds, some data are available including the series of data for Al2M
(M = rare earth elements) [1].

In the present chapter, this type of the intermetallic compounds is chosen as a
test of the interatomic potentials functions for the binary intermetallic compounds
which are determined from those of the component elements metals because of



the availability of the experimental data to be compared with the calculated elastic
constants.

The interatomic potentials model used in this chapter is the hybridized nearly-
free-electron–tight-binding-bond (NFE-TBB) model potential developed by Hausleit-
ner and Hafner [2]. Here, a procedure for constructing a hybridized NFE-TBB
model potential for Al-M (M = Nd, Pr) intermetallic compounds is presented
using tight-binding (TB) parameters already derived for the same potential model
for pure Al and rare-earth metals in chapter 4 and 5. The major difference between
the model used in this chapter and the original model by Hausleitner and Hafner is
the inclusion of the explicit angular-dependence of the bonding in the bond order.
The bond order in the original model has an expression with the Bethe lattice, as
it is designed for the disordered alloy. The simplified formula for the bond order
derived by Pettifor and co-workers [3, 4] is used and shown that the bondings in
the metals depend more on the angular-dependence of the bonding than on the
range of the interatomic interactions.

The purpose of the present chapter is to show the validity of the model used
for the pure metals to the intermetallic compounds and the transferability of the
TB parameters derived for the pure metals. As we will see later on, once param-
eters for metals A and B are known, we can construct a potential for the A-B
compounds if the data of the structures and the d-state energies for A, B and A-B
compounds are available.

The potential model used and the procedure for deriving parameters for bi-
nary compounds are given in the next section. Results are shown in section 6.2.
Conclusions are presented in section 6.4.

6.2 Computational method

The hybridized NFE-TBB model of the interatomic potential is as follows [2]:

Φtotal = ΦNFE + ΦTB,rep + ΦTB,bond. (6.1)

The first term treats the sp-electron gas in simple metal. The remaining terms are
for the TBB part of the potential for the d-electrons in the present study. As the f-
bands in all rare-earth atoms are assumed to be fully localized and the effect of the
d-band in aluminium is assumed to be non-negligible, we can treat all interatomic
interactions in Al-M as those in transition-metal intermetallic compounds.
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The following NFE interaction formulation by Pettifor and Ward [5] is adopted;

ΦNFE =
2Ns,iNs,j

rij

3∑
n=1

An cos(knr + αn) exp(κnrij). (6.2)

Ns is the number of sp-valence electrons. Heine-Abarenkov model potential is
used to calculate the parametersAn, αn, kn andκn [6] and all of them are deter-
mined byrc andD.

The following is the repulsive interaction used;

ΦTB,rep =

√
Nd,iNd,j

7

h2
ijd

10
ij

r8
ij

. (6.3)

Nd is the number of d-valence electrons and is determined as the number of total
valence electrons minusNs. dij is the equilibrium interatomic separation. The
interatomic matrix elements form obtained by Wills and Harrison [7] is used. All
matrix elements and their averageh are determined by a single parameter,rd.

Bond energy expression is;

ΦTB,bond = 2
∑
αβ

Hjβ,iαΘiα,jβ. (6.4)

Hjβ,iα is the tight-binding Hamiltonian andΘiα,jβ is the bond order. Bond order
is calculated from the following simplified expression [4];

Θα
i,j = χ̂(

√
Nd,iNd,j)

/1 +
1

2

∑
k 6=i,j

(hα(rik)

hα(rij)

)2

gα(θjik) +

(
hα(rjk)

hα(rij)

)2

gα(θijk)


1/2

.

(6.5)
The suffixα denotesσ, π andδ orbitals, andhα corresponds to the interatomic
element linkingα orbital at each atom.̂χ is the reduced susceptibility.g(θ) is an
angularly dependent embedding function for each type of the bond [4].

The TBB interactions are assumed to be negligible except for the first-nearest-
neighbour as is done for the pure metals in chapter 4 and 5.

The hybridized NFE-TBB potential used in the present study is determined by
three adjustable parameters,rc, D andrd if we fix Ns or Nd. These parameters
are determined by fitting calculated interatomic separationsd and bulk modulus
B to the experimental data. For Al-Al andM-M interactions, the values derived
for pure Al andM metals respectively forrd andD are used. The remaining
parameter,rc was determined by fitting to the experimentaldAl−Al or dM−M . The
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parameters for Al-M interaction was determined by fitting to experimentaldAl−M

andB. First, rd is derived for Al-M as a geometric mean of those for Al-Al
and M-M . Then, rc and D are determined by fitting todAl−M using ΦAl−M

and by fitting toB using second derivative of the total binding energy calculated
from determined Al-Al,M-M interactions potentials and undetermined Al-M
interactions potential.

The numbers of valence electrons,Ns andNd, for binary intermetallic com-
pounds can be readily determined from the numbers of valence electrons for the
pure metals [10] using a procedure described by Hausleitner and Hafner [2] and
a simplified approximation for the d-band shape such as the rectangular band
model [8], if the data for the d-state energies are available. (See Appendix A.)
Here,Ns andNd are determined by changingNs for Al by 0.05 step under the
following constraints.

∆Ns,α + ∆Nd,α = 0, α = Al, M, (6.6)

xAl∆Nd,Al + xM∆Nd,M = 0, (6.7)

wherexAl andxM are the concentrations of Al andM .
If we fix all variablesr andθ in equation 6.5 to the interatomic separations

and the bond angles of the non-strained crystallographic structure respectively,
the potential functionΦ results in a pairwise interaction. This pairwise interaction
potential is used for the parameters fitting, as the interatomic separations and the
bulk moduli are exactly the same for the non-pairwise and the pairwise potential
with the same parameters set.

The elastic constants are derived as follows. The second derivative of the
binding energy per unit cellU for a certain deformation of the lattice structure
is assumed to be written as the sum of the second derivatives of the interatomic
potential. Then, for cubic crystals,C ′ = 1/2(C11−C12) andC44, which are given
by the second derivative of the binding energy with appropriate deformations, can
be evaluated from the interatomic potentials. These constants are given by the
following relations.

Cλ =
1

12V

d2U(γλ)

dγ2
λ

(λ = 1, 2), (6.8)

whereCλ (λ = 1, 2) correspond toC ′ andC44, andV is the volume of the unit
cell. The deformationγλ are taken as the strain matrix elements introduced in the
literature [9]. The bulk moduliB are derived from

B =
1

12πd

(
d2U

dr2

)
r=d

, (6.9)
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whered is the equilibrium interatomic separations.

6.3 Results

6.3.1 Interatomic Potentials for Al2Nd

As have been mentioned in the preceding sections, we can determine the numbers
of valence electrons for the Al-M intermetallic compounds from those for the
pure metals, if we fixNs for Al, for example. OnceNs andNd are derived, we
can adjust all potential parameters by fitting. Here,Ns,Al is set as2.72 and derived
Nd,Al = 0.28, Ns,Nd = 1.80 andNd,Nd = 1.20 by the equations 6.6 and 6.7.

The adjusted parameters are compiled in table 6.1 and results of the fittings to
the interatomic separations and the bulk modulus are compiled in table 6.2. The
experimental data used are those at room temperature. The interatomic potentials
derived with these final set of parameters are shown in figure 6.1.

Table 6.1 Adjusted interatomic potential parameters for Al2Nd phase at300K.

Al-Al Al-Nd Nd-Nd
rc [Å] 0.75891 0.86133 0.91427

D 0.40489 0.15030 0.35395
rd [Å] 1.19346 0.94018 0.74065

The calculated elastic constants data are compiled in table 6.2. These data
are obtained from the second derivatives of the second-order polynomial fits at
γ = 0. The changes of the binding energy against deformations are shown in fig-
ure 6.2. The equilibrium position toward the trigonal shear deformation is shifted
approximately±0.2% in each cases. The reproducibility of theC ′ was very good
especially for the non-pairwise interactions potential. Along with the perfect fit-
ting to the bulk modulus, a very good agreement of the calculated and the ex-
perimentalC11 andC12 is achieved. Compared with the results obtained by the
pairwise potential with the same parameters set, we can see thatC ′ is lowered by
the angular-dependence of the d-bonding. The values obtained forC44 are lower
than the experimental data in both cases. This results forC44 indicate that the
effect of the angular-dependence of the bonding must exists but should be more
complex than I have expected.
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Table 6.2 Calculated elastic constants and results of the fitting of the bulk modulus
and the interatomic separations for Al2Nd at300K obtained by non-pairwise and
pairwise potentials using a same parameters set shown in table 6.1. Presented
also are the experimental data for the elastic constants [1] and the interatomic
separations calculated from the experimental lattice constant data [11].

non-pairwise pairwise experimental
C11 [GPa] 141 150 141
C12 [GPa] 47.2 42.6 47.0
C44 [GPa] 36.9 39.3 42.8
B [GPa] 78.3 78.3 78.3
C ′ [GPa] 46.7 53.5 47.0

dAl−Al [a.u.] 5.3453 5.3453 5.3453
dAl−Nd [a.u.] 6.2679 6.2679 6.2679
dNd−Nd [a.u.] 6.5465 6.5465 6.5466

6 8 10 12 14

−0.008

−0.006

−0.004

−0.002

0.002

0.004

Al-Al

Al-Nd

Nd-Nd

Φ
 / 

R
y

r / a.u.

Figure 6.1 Interatomic potential for Al2Nd calculated with the final set of param-
eters.
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6.3.2 Interatomic Potentials for Al2Pr

For Al2Pr case, the values set for the numbers of valence electrons areNs,Al as
2.77 and derivedNd,Al = 0.23, Ns,Nd = 1.70 andNd,Nd = 1.30.

The adjusted parameters are compiled in table 6.3 and results of the fittings are
compiled in table 6.4. The experimental data used are those at room temperature.

Table 6.3 Adjusted interatomic potential parameters for Al2Pr phase at300K.

Al-Al Al-Nd Nd-Nd
rc [Å] 0.74258 0.84392 0.91063

D 0.40489 0.08549 0.37764
rd [Å] 1.19346 0.86592 0.62827

Table 6.4 Calculated elastic constants and results of the fitting of the bulk modulus
and the interatomic separations for Al2Pr at300K obtained by non-pairwise and
pairwise potentials using a same parameters set shown in table 6.3. Presented
also are the experimental data for the elastic constants [1] and the interatomic
separations calculated from the experimental lattice constant data [11].

non-pairwise pairwise experimental
C11 [GPa] 136 143 138
C12 [GPa] 42.7 39.5 41.8
C44 [GPa] 34.7 36.0 45.2
B [GPa] 73.9 73.9 73.9
C ′ [GPa] 46.8 51.6 48.1

dAl−Al [a.u.] 5.361 5.361 5.361
dAl−Pr [a.u.] 6.286 6.286 6.286
dPr−Pr [a.u.] 6.566 6.566 6.566

The calculated elastic constants data are also compiled in table 6.4 and the
changes of the binding energy curve against deformations used for the evaluations
of the elastic constants are shown in figure 6.3.

The discrepancies between the calculated and the experimentalC44 is more
clearly seen compared with the Al2Nd case as shown in table 6.4. As the experi-
mental elastic constants data for the most of the aluminium–rare-earth cubic Laves
phase intermetallic compounds highly negative Cauchy pressures are reported at
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room temperature [1], the angular-dependence of the bondings in these phases
must have a considerable many-atom character including Al2Pr case.

6.4 Conclusions

Presented in this chapter is a procedure for constructing hybridized NFE-TBB
potentials for binary intermetallic compounds from those for the constituent ele-
ments metals, taking Al-M (M =Nd, Pr) cubic Laves phase as an example.

The agreements of the calculated and the experimental data for the elastic
constants are successfully achieved through fitting to the bulk moduli and the
interatomic separations, using tight-binding parameters for the pure metals and
adjusting pseudopotential parameters.

The reproducibility of theC ′ shows that the angular-dependent d-bond mod-
els used in the present study is physically appropriate for the bondings between
aluminium atoms and rare-earth atoms in the intermetallic compounds also, and
suggests at the same time that the bondings must have a considerable many-atom
character.

I believe that the very simplified angular-dependent interatomic potentials
model like this can be used in the intensive molecular dynamics simulations if
we choose appropriate materials to study.
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Chapter 7

General conclusion

The present dissertation has accounted for the bonding and diffusional dynam-
ics of d- and f-shell metals and their compounds through hybridized nearly-free-
electron tight-binding-bond model.

Present in chapter 2 is a molecular dynamics study of the diffusion phenomena
in Ni2Y, transition-metal intermetallic phase via hybridized NFE-TBB interatomic
interaction model. Interpretations of the dynamic structures from the calculations
of the mean square displacements and spectral densities of velocity showed that
the rapid growth of this intermetallic phase found in the experimental study is
mainly due to the high-rate self-diffusion in and near the grain-boundaries and in-
dependent to the vacancy. Therefore the standard vacancy-based diffusion process
is found to be not essential in this phase.

Presented in chapter 3 are first-nearest-neighbour interatomic potentials within
a framework of the hybridized NFE-TBB model. Angular-dependence of the po-
tential is included as a very simple form to account for the directional f-bonding
interactions. Parameters are adjusted to reproduce the experimental interatomic
separation and the bulk modulus of the fcc Th (α phase) and Pu (δ phase). Elas-
tic constants are calculated and compared with the available experimental data.
The derived potential gives a very good agreement with the experimental data for
all the calculated elastic constants for fcc Th, and for the bulk modulus and the
tetragonal shear modulus for fcc Pu.

Presented in chapter 4 is a procedure for deriving a simple but realistic angular-
dependent hybridized NFE-TBB potential for Al. Including the properties of the
d-state for the first-nearest-neighbour interactions only, very good agreements
of the calculated elastic constants with the experimental data are accomplished.
The reproducibility of the elastic constants has proved to depend strongly on the



angular-dependence of the d-bonding, not on the range of the interatomic inter-
actions, while the energy difference between the different structure type depend
on the range of the interactions. The NFE part of the potential, which describes
the bonding properties of the sp-state and prevails over a distance, gives the cor-
rect order of the structural stability among bcc, hcp and fcc, if we take up to the
fourth-nearest-neighbour interactions into account.

Presented in chapter 5 are semi-empirical interatomic potentials for the rare-
earth metals (Sc, Y, La and lanthanides) and their compounds within a frame-
work of the hybridized NFE-TBB model. Potential parameters are adjusted to
reproduce the experimental data for interatomic spacings and elastic constants.
The derived potentials are found to provide good agreement with the experimen-
tal data for the fcc, hcp and dhcp elemental rare-earth metals. Comparison is
also made between the bond-angle dependent tight-binding d-bond model and the
bond-angle independent model. The bondings in the rare-earth metals have found
to do depend on the bond angles, but this is not so clearly shown as those in the
transition metals.

Presented in chapter 6 is a procedure for deriving interatomic potentials for
Al 2M (M =Nd, Pr) Laves phase intermetallic compounds within the framework
of the hybridized NFE-TBB model. TB parameters are transferred from pure met-
als and pseudopotential parameters are adjusted and the total interatomic poten-
tials with the final set of the parameters can reproduce the experimentally observed
interatomic separations and bulk moduli. The three cubic elastic constants are also
evaluated and compared with the experimental single-crystal data. The agreement
of the calculated and the experimental data is achieved through the redistribution
of the valence electrons in each atom.

As shown in these chapters, bondings in d- and f-shell metals and their com-
pounds, described by the same or similar interatomic interaction model for the
transition-metals or alloys, are largely determined by the short-range detailed
structure around them, as the equilibrium interatomic separations which are deter-
mined by the first-derivative of the potential, and the elastic constants which are
determined by the second-derivative of the potential, are reproduced by the short-
ranged potentials. The exception for this fact is the structural energy difference,
which is determined by the weak but long-ranged Friedel oscillation [1].

The short-range structure which affects the cohesive properties of these ma-
terials is not only the coordination number, but the bond-angles, as I have shown
through the comparison between the angular-dependent non-pairwise potentials
and the pairwise potentials depend only on the coordination numbers and the
bond-angles only at the equilibrium arrangements of the nearest-neighbours.
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I believe that the results and the knowledges accumulated in the present study
are important for the modelling of the dynamics and the mechanical properties of
the variety of materials through atomistic simulations. As the scale of the system
studied through the atomistic simulations is getting larger and larger [2, 3], the
importance of the semi-empirical potentials study of such large systems must be-
come greater together with the first-principles simulations of the smaller systems.
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Appendix A

Distribution of the valence electrons
in binary transition-metal alloys

On alloying with two metal elements, the change in the electronic structure of the
system takes place and this is characterized by the shift of the energy levels and
the change in the band shape of each atom.

Before we start the calculation of the interatomic interactions, we must con-
sider the redistribution of the valence electrons due to the change in the electronic
structure, which is accompanied by the intra-atomic or inter-atomic electron trans-
fer. Here, a procedure is presented for evaluating the number of the valence elec-
trons of the constituent elements in binaryA-B transition-metal alloys from those
of theA andB pure metals by the set of constraints and the equation presented in
the literature by Hausleitner and Hafner [1], combined with the application of the
simplified approximation to the shape of the d-bands.

The rectangular band model of Friedel [2] is used for the shape of the d-bands.
This is the drastic simplification of the shape of the d-bands, which assumes that
the density of states are constant throughout the band width, though it is suffi-
cient for the evaluation of the d-band occupancy (number of valence electrons in
d-band) as is shown by Harrison [3]. Even with this simplified model, the trend
in the variation in some properties can be explained along with the d-band occu-
pancy, such as cohesive energy, bulk modulus, Wigner-Seitz radius, for example,
especially successfully for4d transition-metals [3].

Within this model, the change in the band shape corresponds to the change in
the band width due to the change in the bondings of an atom.

The shift in the number of valence electrons∆Nl,α (= Nl,α−N0
l,α, l = s, d)



is evaluated under the following constraints:

∆Ns,α + ∆Nd,α = 0 (α = A, B), (A.1)

xA∆Nd,A + xB∆Nd,B = 0. (A.2)

Under these constraints, shift in the d-band energy (site-diagonal energy)∆Eα(=
εd,α − ε0

d,α) and the difference between theA-B energy level∆E(= εd,A − εd,B)
are given as follows:

∆Eα = udd∆Nd,α + usd∆Ns,α (α = A, B), (A.3)

∆E = ∆E0 + ∆EA + ∆EB, (A.4)

where values forudd and usd are given in the literature [4]. Variables with a
superscript,0, are those for the pure metals elements and without a superscript are
the variables for the elements in an alloy.

Schematic for the alloy d-band formation process within the rectangular d-
band model is given th figure A.1. As we see from the figure,∆E is written by
the band width and the number of valence electrons as follows:

∆E =
1

2
Wd,A −

(
1

2
Wd,B +

Nd,A

10
Wd,A − Nd,B

10
Wd,B

)
=

1

2
(Wd,A − Wd,B) +

1

10
(Wd,ANd,A + Wd,BNd,B) , (A.5)

whereWd is the d-band width.
Band width is expressed with the d-d matrix elements and their formulation is

given by Wills and Harrison [5]. The d-d matrixddm is determined by the single
parameterrd and given as follows as a function of the interatomic separation.

ddm(rij) = ηddm
h̄2

m

r3
d

r5
ij

, (A.6)

whereηddm = (−45/π, 30/π,−15/2π) for m = (0, 1, 2) = (σ, π, δ). Usingddm,
Wd is estimated as follows:

Wd =
(

12

Na

)1/2
∑

i

∑
j 6=i

1

5

∑
m

ddm2(rij)

1/2

, (A.7)

whereNa is the number of atoms. If all sites are equivalent,

Wd =
(

12

5

)1/2
∑

j 6=i

∑
m

ddm2(rij)

1/2

. (A.8)
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Figure A.1 Schematic of the rectangular d-band model of the binary transition-
metal alloy formation.
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From equations A.4 and A.5,∆Nd,A can be derived as follows with the con-
straint given as equation A.2.

∆Nd,A =

1

2
(Wd,A − Wd,B) +

1

10
(Wd,AN0

d,A + Wd,BN0
d,B) − ∆E0(

1 − xA

xB

)
(udd − usd) − 1

10

(
Wd,A − xA

xB
Wd,B

) . (A.9)

This can be evaluated once we derive the d-band width. The remaining numbers
of electrons,∆Nd,B, ∆Ns,A and∆Ns,B, are determined from equation A.1 and
equation A.2, and the numbers of the valence electrons for theA andB elements
in an A-B alloy, Nl,α, are given as the sum of the pure metal numbers of the
valence electrons,N0

l,α, and the shift in the numbers of valence electrons,∆Nl,α.
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Appendix B

Tight-binding approximations of the
vacancy formation energy in binary
transition-metal alloys

It is well known that the binding energy for the metallic bond system exhibits
the square-root dependence on the coordination number. Vacancy formation en-
ergy, also, is affected by this fact because it is directly connected to the change in
the binding energy near the vacancy and this is interpreted by a simplified semi-
empirical theory [1] using such as the embedded atom potential [2]. Here, a sim-
plified formulation for the vacancy formation energy in pure metal is extended to
the alloy system straightly and demonstrate an application to the Ni2Y intermetal-
lic phase using hybridized nearly-free-electron–tight-binding-bond (NFE-TBB)
potential.

Vacancy formation energy for binary AB compounds is estimated within near-
est neighbour interaction approximation by following equation;

EV,A = −1

2
(zAAUAA + zABUAB)

−2
∑
α

[ZAAhAA∆Θα
AA + ZBBhBB∆Θα

BB + ZABhAB∆Θα
AB] (B.1)

(∆Θα
ij ≡ Θα,V

ij − Θα
ij, i, j = A, B)

EV,A is the formation energy of the A atom vacancy,h is the bond integral,Z is
the coordination number,Θα is the bond order forα bond andΘα with superscript
V is for the vacancy structure. Hybridized NFE-TBB interatomic potential is used
for U .



In fact, the straightforward extension of the formulation for the pure metals
does not give a exact estimate for the binary alloy. It is usually calculated with the
chemical potentials of the species [3] to obtain vacancy concentration. The for-
mulation presented here serves as a simple theory for the intuitive understanding
of the direct connection between the vacancy formation and the bondings near the
vacancy, and as a test for the convergence of the bond order.

Bond orders are calculated using the crystallographic structure of Ni2Y (C15).
The supercell for calculation contains3 × 3 × 3 unit cells and the bondings in
the single unit cell at the centre of the supercell are used for the calculations. The
atomic positions are fixed for all calculations and no relaxation is done. Calculated
EV,A for Ni and Y are tabulated in table B.1 up to sixth moment. Both Ni and Y
vacancy have large formation energy and it is shown that more energy is needed
for Y vacancy formation than for Ni vacancy formation at any approximation
level.

Table B.1 Vacancy formation energy for Ni and Y in Ni2Y phase for theM-th
moment approximation.

M 2 3 4 4 6
EV,Ni 0.2302 0.1667 0.1695 0.1891 0.1376
EV,Y 0.4547 0.3117 0.1978 0.1629 0.5865

As for Ni vacancy formation energy, these values approximately corresponds
to the concentrations of10−15 at 773K in thermal equilibrium and therefore there
are virtually very little, especially Y, vacancies.

Bond order change before and after the Ni or Y formation for the bondings
near vacancies within second moment approximation is shown in figure B.1. No
changes are observed for the back bondings and only bondings surrounding va-
cancies are strengthened.
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Ni Vacancy

0.4612
0.4612V
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Y Vacancy
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Figure B.1 Bond order change for the bondings near Ni and Y vacancy within
second moment approximation. The values headed by ‘V’ are the bond order
after vacancy formation.
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