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§ 0. Introduction

In this paper we calculate the squaring operations in the mod 2 cohomology of the
irreducible Hermitian symmetric spaces of compact type. Each of them is obtained as a
quotient of an appropriate compact simple Lie group by the centralizer of an appropriate
1-dimensional torus, and they are divided into six classes :

AIII W (m,n) = U(m + n)/ (U(m)× U(n)) (m,n ≥ 1)

BDI Qn = SO(n + 2)/ (SO(2)× SO(n)) (n ≥ 3)

CI Sp(n)/U(n) (n ≥ 3)

DIII SO(2n)/U(n) (n ≥ 4)

EIII = E6/
(
Spin(10) · T 1

) (
Spin(10) ∩ T 1 ∼= Z4

)

EVII = E7/
(
E6 · T 1

) (
E6 ∩ T 1 ∼= Z3

)

Their cohomology rings have been obtained by several authors :

H∗ (W (m,n) ; Z) = Z a1, · · · , am, b1, · · · , bn

/( ∑

i+j=k

aibj ; k ≥ 1
)

;

H∗(Qn ; Z) =





Z t, e /
(
tm − 2e, e2

)
(n = 2m− 1),

Z t, s /
(
tm+1 − 2st, s2 − δmstm

)
(n = 2m) ;

H∗ (Sp(n)/U(n) ; Z) = Z c1, · · · , cn

/( ∑

i+j=2k

(−1)icicj ; k ≥ 1
)

;

H∗ (SO(2n)/U(n) ; Z) = Z e2, e4, · · · , e2n−2

/(
e4k +

2k−1∑

i=1

(−1)ie2ie4k−2i

)

(it should be understood that e2j = 0 if j ≥ n) ;

H∗(EIII ; Z) = Z t, w /
(
t9 − 3w2t, w3 + 15w2t4 − 9wt8

)
;

H∗(EVII ; Z) = Z u, v, w /
(
v2 − 2wu, u14 − 2A, w2 − 2B

)
,

where δm =
1 + (−1)m

2
, A and B are appropriate integral cohomology classes, and

| ai | = | bi | = | ci | = | e2i | = 2i, | t | = 2, | s | = | e | = 2m

|u | = 2, | v | = 10 and |w | = 8 for EIII ; = 18 for EVII.

For details see 1 , 6 , 7 , 9 and § 1.4 in this paper.
For AIII and CI the cohomology rings are generated by Chern classes and for DIII

by the suspension images of Stiefel-Whitney classes, whence the squaring operations are
obtained by the Wu formula.
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For BDI (n = 2m) we calculate in H∗
(

SO(2m + 2)
U(1)× U(m)

)
through the homomorphism

induced by the projection
SO(2m + 2)
U(1)× U(m)

→ Q2m, and obtain

Theorem 1.4. Sq2is =
(

m + 1
i

)
sti (i ≥ 0).

Corollary 1.5. Sq2ie =
(

m + 1
i

)
eti (i ≥ 0).

For the exceptional types EIII and EVII we calculate in G/T (T a maximal torus of

G) using the fibration G/T
ĩ→ BT̃ → BG̃, where BG̃ is the 4-connective cover of BG

and BT̃ is defined in a similar way (for details see 3 ). The results are

Theorem 2.5. ( i ) In EIII we have

Sq2w′ = w′t, Sq4w′ = t6, Sq8w′ = w′2 (where w′ = w + t4).

(ii) In EVII

Sq2v = 0, Sq4v = vu2 + u7, Sq8v = w + vu4 + u9 ;

Sq2w = u10, Sq4w = vu6 + u11, Sq8w = vu8 + u13, Sq16w = vu12.

As an application we give in the final section the Stiefel-Whitney classes of EIII and
EVII by use of the Wu classes.

Throughout the paper H∗( ) denotes exclusively the mod 2 cohomology (integral
cohomology is always denoted by H∗( ; Z) ). F2 denotes the prime field of character-
istic 2. For an integral element x its mod 2 reduction is denoted by ρ(x), or simply by x

unless there is danger of confusion. σi(x1, · · · , xn) denotes the i-th elementary symmetric
polynomial in x1, · · · , xn (i ≥ 0). ∆(a1, · · · , an) denotes an algebra with simple system
of generators a1, · · · , an.

§ 1. Classical types

First recall the Wu formula. Let x1, · · · , xn be elements of degree d with Sqixj =
0 (0 < i < d), and put cj = σj(x1, · · · , xn) (j ≥ 0). Then we have

(1.1) Sqdicj =
∑

0≤r≤i

(
j − i + r − 1

r

)
cj+rci−r.

1.1. The Grassmannian W (m,n). We have the fibration

W (m,n) ι−→BU(m)×BU(n)−→BU(m + n).

Put ai = ι∗(ci × 1) and bi = ι∗(1× ci), where ci is the i-th universal Chern class in
BU(m) or BU(n) (i ≥ 0). Then

H∗ (W (m,n) ; Z) = Z a1, · · · , am, b1, · · · , bn

/( ∑

i+j=k

aibj ; k ≥ 1
)
,

whence by the naturality the operation of Sqi is obtained from the Wu formula (1.1).
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1.2. The space Sp(n)/U(n). The operation of Sqi is again obtained from the Wu
formula since

H∗ (Sp(n)/U(n) ; Z) = Z c1, · · · , cn

/( ∑

i+j=2k

(−1)icicj ; k ≥ 1
)
,

where ci is the i-th Chern class (i ≥ 0).

1.3. The space SO(2n)/U(n). We extract from 6 , Chap. 3, § 6. Using the
fibration

SO(2n)/U(n) ι−→BU(n)−→BSO(2n),

we have unique elements e2i =
1
2
ι∗ci ∈ H2i (SO(2n)/U(n) ; Z) (1 ≤ i ≤ n − 1). Let

p : SO(2n) → SO(2n)/U(n) be the projection and σ : H∗ (BSO(2n)) → H∗ (SO(2n))
the suspension. Then

(1.2) p∗(e2i) = σ(w2i+1) (wj the Stiefel-Whitney classes) ;

(1.3) H∗ (SO(2n)/U(n)) = ∆(e2, e4, · · · , e2n−2), e2
2i = e4i

(it should be understood that e2j = 0 if j ≥ n).

It follows that p∗ is injective. So we calculate in SO(2n) :

p∗
(
Sq2ie2k

)
= σ

(
Sq2iw2k+1

)
= σ


 ∑

0≤r≤2i

( 2k − 2i + r

r

)
w2k+1+rw2i−r




by the Wu formula. Since σ annihilates decomposables, we have

Proposition 1.1. Sq2ie2k =
(

k

i

)
e2k+2i (i, k ≥ 0).

1.4. The complex quadric Qn = SO(n+2)/ (SO(2)× SO(n)). We have the fibration

Qn
ι−→ BSO(2)×BSO(n)−→BSO(n + 2).

Let t ∈ H2 (BSO(2) ; Z) be the canonical generator, and put t = ι∗(t× 1). Here
we distinguish the two cases (a) n is even, and (b) n is odd.

(a) n = 2m. Let χ ∈ H2m (BSO(2n); Z) be the Euler class and pi ∈ H2i (BSO(n); Z)
the i-th Pontrjagin class. Using the fibration above we see that

ι∗(t× χ) = 0. ι∗(1× pm) = (−1)mt2m and

ι∗(1× χ + tm × 1) ≡ 0 mod (2).

Since H∗ (Q2m ; Z) has no torsion we have a unique element s ∈ H2m (Q2m ; Z) with
2s = ι∗ (1× χ + tm × 1). Then the relations above yield

2st = tm+1 and 4s2 = 2 (1 + (−1)m) stm.

Considering the Serre spectral sequence for the fibration SO(2m + 2)/SO(2m) →
Q2m → BSO(2), we obtain

Theorem 1.2. H∗ (Q2m ; Z) = Z t, s /
(
tm+1 − 2st, s2 − δmstm

)
.
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Now consider the diagram :

(1,4)

SO(2m)/U(m)

?

Pm(C) =
U(m + 1)

U(1)× U(m)
j- SO(2m + 2)

U(1)× U(m)
q- SO(2m + 2)/U(m + 1)

p

?

ι′
Q

Q
Q

Q
QQs

Q
Q

Q
Q

QQs
BU(1)×BU(m)

q′- BU(m + 1)

?
Q2m =

SO(2m + 2)
SO(2)× SO(2m)

ι- BSO(2)×BSO(2m)

Define t, e2i (i ≥ 1) and e ∈ H∗
(

SO(2m + 2)
U(1)× U(m)

; Z
)

by

t = p∗(t) = ι′∗(c1 × 1), e2i = q∗(e2i) and e =
m∑

i=1

(−1)ie2it
m−i.

Then

Lemma 1.3. ( i ) q∗ induces an isomorphism of algebras

H∗
(

SO(2m + 2)
U(1)× U(m)

; Z
)

∼= H∗
(

SO(2m + 2)
U(m + 1)

; Z
)

t
/ (

tm+1 + 2te
)

.

(ii) p∗(s) = δmtm + (−1)me.

Proof. By the definition of t we see that j∗t generates the ring H∗ (Pm(C) ; Z).
Since the spectral sequence for the row in (1.4) collapses, ( i ) holds as an isomorphism of
modules. Let c, c′ and c′′ be the total Chern classes of BU(m), BU(1) and BU(m + 1),
respectively. Then q′∗(c′′) = c′ × c. Applying ι′∗ we have

1 + 2e2 + 2e4 + · · ·+ 2e2m =
(
ι′∗(1× c)

) · (1 + t),

whence
ι′∗(1× cm) = (−1)m (tm + 2e) .

Then (tm + 2e) t = (−1)m (ι′∗(1× cm)) · t = 0, which completes the proof of ( i ).
Next from the diagram (1.4) we have

2p∗(s) = ι′∗(cm × 1) + tm = 2δmtm + (−1)m2e,

which proves (ii) since H∗
(

SO(2m + 2)
U(1)× U(m)

; Z
)

is torsion free. q.e.d.

Theorem 1.4. Sq2is =
(

m + 1
i

)
sti (i ≥ 0).

Proof. As is well known Sq = 1 + Sq1 + Sq2 + · · · is an algebra homomorphism,
and by 1.2 we can put Sq(s) = s

(
1 + ε1t + ε2t

2 + · · ·) (εi ∈ F2). Applying p∗ we have
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(1.5) Sq (δmtm + e) = (δmtm + e)
(
1 + ε1t + ε2t

2 + · · ·).

Now put A = H∗ (Pm(C)× Pm(C)) = F2 a, b /
(
am+1, bm+1

)
. Then the cor-

respondence t 7→ a, e2i 7→ bi (i ≥ 1) extends to an algebra homomorphism ϕ :

H∗
(

SO(2m + 2)
U(1)× U(m)

)
→ A, which commutes with the squaring operations. Apply ϕ

to (1.5) :

(1.6) Sq ((δm + 1)am + c) = ((δm + 1)am + c)
(
1 + ε1a + ε2a

2 + · · ·),

where c = am + am−1b + · · ·+ bm. First calculating in the quotient field of F2 a, b ,
we obtain

Sq(c) =
m∑

i=o

(
m + 1

i

) (
am+i + am+i−1b + · · ·+ bm+i

)
·
∑

j≥0

(a + b)j ,

and then in A using the equalities am+i + am+i−1b + · · ·+ bm+i = cai and c(a + b) = 0,

Sq(c) = c(1 + a)m+1.

Comparing the coefficients of ambi in both sides of (1.6), we obtain εi =
(

m + 1
i

)
,

which proves the theorem. q.e.d.

(b) n = 2m− 1. According to 6

H∗ (Q2m−1 ; Z) = Z t, e /
(
tm − 2e, e2

)
,

where t is the same as ours. The inclusion SO(2m + 1) ⊂ SO(2m + 2) (X 7→ X ⊕ 1)
yields a commutative diagram

Q2m−1
f - Q2m

ι
?

ι
?

BSO(2)×BSO(2m− 1)
f ′- BSO(2)×BSO(2m).

From f ′∗(1×χ) = 0 and f ′∗(t× 1) = t× 1 it follows that f∗(t) = t and f∗(s) = e,
and we have

Corollary 1.5. Sq2ie =
(

m + 1
i

)
eti (i ≥ 0).

§ 2. Exceptional types

In this section ` = 6 or 7. Let G be the simply connected exceptional Lie group
of type E` and T a maximal torus of G. Take the root system {α1, · · · , α`} as in 2
, and define K to be the centralizer of the 1-dimensional torus defined by the equations
αi = 0 (i 6= `). Then the quotient space G/K is the irreducible Hermitian symmetric
space EIII (` = 6) or EVII (` = 7).

Consider the fibration K/T → G/T
p→ G/K. By the classical theorem of Bott the

odd dimensional parts of the cohomology of both the fibre and the base vanish. Hence
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the spectral sequence for the fibration collapses, and p∗ : H∗(G/K ; A) → H∗(G/T ; A)
is injective for any coefficient ring A. Therefore the action of Sqi in G/K is derived
from that in G/T .

First we fix a system of generators of H∗(BT ; Z) after 7 and 9 . Let {w1, · · · , w`}
be the fundamental weights of G. Being regarded as elements of H2(BT ; Z), they form
a basis of it. Let Rj be the reflection in the plane αj = 0, and put

t` = w`, ti = Ri+1(ti+1) (` > i > 1), t1 = R1(t2) and ci = σi(t1, · · · , t`) (i ≥ 0).

Then
H∗(BT ; Z) = Z t1, · · · , t`, x /(c1 − 3x).

As the canonical mapping i : G/T → BT does not induce a surjection in H∗( ), we
introduce BG̃ the 4-connective fibre space over BG to have commutative diagram with
two fibrations

G/T
ĩ- BT̃ - BG̃

? ?
g

G/T
i- BT - BG

In H∗
(
BT̃ ; Z(2)

)
we have new generators gi (i = 3, 5, 9) with

2g3 = c3, 2g5 = c′5 = c5 + c4c1 and 2g9 = c′9 = c7c
2
1 + c6c

3
1

(Note that the symbol g∗ is omitted here). We put

γ3 = ρ(g3), γ5 = Sq4γ3 and γ9 = Sq8γ5 ∈ H∗
(
BT̃

)
.

Then

(2.1) γ5 = ρ
(
g5 + g3c

2
1 + c4c1

)
and

γ9 = ρ
(
g9 + g5

(
c4 + c4

1

)
+ g3

(
c6 + c4c

2
1 + c6

1

)
+ c7c

2
1 + c2

4c1 + c4c
5
1

)
.

For details see 3 . Note that our γi (i = 5, 9) are slightly different from those in
9 .

Recall that the generator of maximum degree is w in each case (see § 0). So it is
sufficient for us to consider in the range of degree ≤ d`, where d6 = 14 and d7 = 34.
Define polynomials

I6 = γ2
3 + c4c

2
1 + c6

1, I8 = c6c
2
1 + c2

4 + c4c
4
1 + c8

1,

I10 = γ2
5 + c6c

4
1 + c10

1 , I12 = c2
6 + c6c4c

2
1 + c2

4c
4
1 + c4c

8
1,

I14 = c2
7 + c6c4c

4
1 + c6c

8
1

and sets

R6 = {c2, c3, c′5, I6}, R7 = {c2, c3, c′5, I6, I8, c′9, I10, I12, I14}

Then from § 3 in 4 we have

Lemma 2.1. (1) Up to degree d`

H∗(G/T ) =





F2 t1, · · · , t6, γ3 /(R6) (` = 6),

F2 t1, · · · , t7, γ3, γ5, γ9 /(R7) (` = 7).
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(2) Sq2γ3 = c4, Sq4γ3 = γ5
(
= c4c1 + c5

1 if ` = 6
)

;

Sq2γ5 = c4c
2
1 + c6

1, Sq4γ5 = c′7, Sq8γ5 = γ9 ;

Sq2γ9 = c4c
6
1, Sq4γ9 = 0, Sq8γ9 = c′7c6, Sq16γ9 = c′7c6c4

where c′7 = c7 + c6c1.

Now we interpret the results in 7 and 9 to our situation.

(2.2) H∗(EIII) = F2 t, w′ /
(
w′2t, w′3 + t12

)
,

where t, w′ = w + t4 ∈ H∗(E6/T ; Z) satisfy

t ≡ c1 + t1, w′ ≡ c4 +
(
γ3 + c2

1t + c1t
2
)
t mod (2).

(2.3) H∗(EVII) = F2 u, v, w /
(
v2, u14, w2

)
,

where u = t7, v, w ∈ H∗(E7/T ; Z) satisfy

2v ≡ c5 − c4χ + c3χ
2 − c2χ

3 + 2χ5 + 2u5 mod (4),

2w ≡ c6c3 + c5c4 + 2c5c
2
2 +

(
2c6c2 − c2

4 + 2c4c
2
2

)
χ

− (
c5c2 − c4c3 + 2c3c

2
2

)
χ2 +

(
c6 + 2c3

2

)
χ3 − (c5 + c3c2)χ4

− (
c4 − c2

2

)
χ5 − c3χ

6 − c2χ
7 + 2χ9 + 2vu4 mod (4)

with χ =
1
3
c1 − u and ci = σi

(
t1 − 1

3
u, · · · , t6 − 1

3
u

)
(i ≥ 0).

We must describe v and w modulo 2 in terms of the ti and the γj . For EVII the
results are a little complicated. So we calculate modulo (c1). Note that c2 ≡ 0 mod (4)
(see 8 ) and recall the relation (2.1). Then after some calculations modulo (4, 2c1) we
obtain the following :

Lemma 2.2. Modulo (c1)

t ≡ t1, w′ ≡ γ3t1 + c4 (` = 6) ;

u ≡ t7, v ≡ γ5 + γ3t
2
7 + c4t7, w ≡ γ9 + γ3t

6
7 + c6t

3
7 (` = 7).

Fortunately we have

Lemma 2.3. ( i ) In H∗(G/T ) the ideal (c1) is closed under the operation of the
Sqi.

(ii) Up to degree d` the composition of p∗ : H∗(G/K) → H∗(G/T ) and the projection
π : H∗(G/T ) → H∗(G/T )/(c1) is injective.

Proof. ( i ) This follows from the Cartan formula.
(ii) For ` = 6 put bi = σi(t2, · · · , t6) (i ≥ 0), and let

A = F2 t1, · · · , t6, γ3 and B = F2 t1, b1, · · · , b5, γ3 .

Then A is free as a B-module, and hence for any subset R ⊂ B the canonical map
B/BR → A/AR is injective, where BR denotes the ideal generated by R in B, and
similarly for AR.
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Note that B coincides with F2 t1, c1, · · · , c5, γ3 . So it contains the set R = {c1}∪R6

= {c1, c2, c3, c
′
5, I6}, and B/BR can be regarded as a subset of A/AR = H∗(G/T )/(c1).

Then by 2.2 the image of π ◦ p∗ is contained in B/BR = F2 t1, c4, γ3 /
(
γ2

3

)
, and it is

easily seen that up to degree d` the map H∗(G/T ) → B/BR is injective.
Similarly for ` = 7. q.e.d.

Now the operation of the Sqi are obtained from 2.2 and 2.1,(2) by calculating modulo
(c1). The results are as follows :

Theorem 2.4. ( i ) In H∗(EIII) we have

Sq2w′ = w′t, Sq4w′ = t6, Sq8w′ = w′2

(ii) In H∗(EVII)

Sq2v = 0, Sq4v = vu2 + u7, Sq8v = w + vu4 + u9 ;

Sq2w = u10, Sq4w = vu6 + u11, Sq8w = vu8 + u13, Sq16w = vu12.

§ 3. Stiefel-Whitney classes

For the Hermitian symmetric spaces of classical type the Chern classes have been
obtained in 1 , whence so have the Stiefel -Whitney classes by mod 2 reduction. In
this section as an application of the previous section we give the Stiefel-Whitney classes
of EIII and EVII by using the Wu classes.

For a compact n-manifold M the i-th Wu class ui ∈ H i(M) is characterised by

ui · x = Sqix for any x ∈ Hn−i(M).

Using the Wu classes the Stiefel-Whitney classes wi are given by wi =
∑

j≥0

Sqi−juj , or

equivalently

(3.1) W = SqU ,

where W =
∑

wi, and U =
∑

ui (see 5 , for example).
From the previous section it follows that

(3.2) H∗(EIII) has {w′nti, w′2 | n = 0, 1 ; 0 ≤ i ≤ 12} as a basis, and

Sq2rw′t12−r = w′t12 (r = 0, 2, 6), Sq16w2 = wt12,

Sq2rb = 0 for the other b of degree 32− 2r in the basis ;

(3.3) H∗(EVII) has {wnvmui | n,m = 0, 1 ; 0 ≤ i ≤ 13} as a basis, and

Sq2rwvu13−r = wvu13 (r = 0, 4, 12),

Sq2rb = 0 for the other b of degree 54− 2r in the basis.

Therefore

Theorem 3.1. The non-zero Wu classes are given as follows :

for EIII, u0 = 1, u4 = t2, u12 = t6, u16 = w′2 ;

for EVII, u0 = 1, u8 = u4, u24 = u12.
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Then by use of the formula (3.1) we obtain

Corollary 3.2. The total Stiefel-Whitney class W is given as follows :

for EIII, W = 1 + t2 + t4 + t6 +
(
w′2 + t8

)
+ t10 + w′t12 ;

for EVII, W = 1 + u4 + u8 + u12.

Remark 3.3. For EIII the result coincides with the mod 2 reduction of that in 8 .
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