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§0. Introduction

In this paper we calculate the squaring operations in the mod 2 cohomology of the
irreducible Hermitian symmetric spaces of compact type. Each of them is obtained as a
quotient of an appropriate compact simple Lie group by the centralizer of an appropriate
1-dimensional torus, and they are divided into six classes:

ATIT W(m,n) = U(m+n)/(U(m)xU(n)) (m,n >1)

BDI Qn = S0(n+2)/(5S0(2) x SO(n)) (n>3)

CI Sp(n)/U(n) (n = 3)

DIII SO(2n)/U(n) (n>4)

EIII = Eg/ (Spin(10)-T) (Spin(10) N T = Zy)
EVII — E7/(Es-TY) (Bs NT" = Z3)

Their cohomology rings have been obtained by several authors:

H*(W(m,n); Z)=Z[a1, - ,am, b1, -, n]/( abj; k>1>

i+j=k
Zt, e m_ 9, e? n=2m—1),
(0, Z>:{ [t.€]/ (¢ ) ( )
Z[t,s]) (t™T — 2st, s% — §pst™) (n=2m);
H* (Sp(n)/U(n); Z) = Zler, - el /(Y0 (—1)eieys k> 1)
i+j= Zk

2k—1
H*(SO(2n)/U(n); Z) = Zles,ea, -y ean-2] [ (ear + Y (=1)exiear )
=1

(it should be understood that ey; =0 if j >n);
H*(EIlL; Z) = Z[t,w]/ (t* — 3w, w® + 15wt — 9wt®);
H*(EVIL; Z) = Z[u,v,w]/ (v? = 2wu, u* — 24, w* —2B),

1+ (=)™
2
lai| = 1bi| = [ei| =lexu| =2, [t]=2, [s|=]e|=2m

|lu|=2, |v|=10 and |w|=8 for EIIl; =18 for EVIL

where §,, = , A and B are appropriate integral cohomology classes, and

For details see [1],[6],[7],[9] and §1.4 in this paper.

For AIII and CI the cohomology rings are generated by Chern classes and for DIII
by the suspension images of Stiefel-Whitney classes, whence the squaring operations are
obtained by the Wu formula.



For BDI (n = 2m) we calculate in H* (50(2771—1—2)
U(1) x U(m)
SO(2m +2)

U1) x U(m)

> through the homomorphism

induced by the projection — @Q2m, and obtain

. 1 .
Theorem 1.4. Sq%'s = (m—i— ) st' (1>0).
i

m—+ 1

Corollary 1.5. Sq*e = (
i

) et’ (i > 0).

For the exceptional types EIIl and EVII we calculate in G/T (T a maximal torus of

G) using the fibration G/T L BT — BG, where BG is the 4-connective cover of BG
and BT is defined in a similar way (for details see [37]). The results are

Theorem 2.5. (i) In EIIl we have

Sqw’ = w't, Sq*w’ =1%, Sqw’ = w”? (where w' = w + t4).
(ii) In EVII

Sq?v =0, Sq*tv =vu? +u”,  Sq®v=w+vut +u?;

Sq?w = u',  Sqtw =vub +u't, SqPw =wvud +u!3,  Sqlbw = vu!2.

As an application we give in the final section the Stiefel-Whitney classes of EIII and
EVII by use of the Wu classes.
Throughout the paper H*( ) denotes exclusively the mod 2 cohomology (integral

cohomology is always denoted by H*( ; Z)). Fy denotes the prime field of character-
istic 2. For an integral element z its mod 2 reduction is denoted by p(z), or simply by x

unless there is danger of confusion. o;(z1,- -, x,) denotes the i-th elementary symmetric
polynomial in xy,---,2, (i > 0). A(ay,---,a,) denotes an algebra with simple system
of generators ay,- -, a,.

§ 1. Classical types

First recall the Wu formula. Let z1,---,x, be elements of degree d with Sqixj =
0(0<i<d), and put ¢; =oj(21,--,2n) (§ > 0). Then we have

. Jj—i+r—1
(1.1) Sq¥ic; = Y ( )Cj-i-rci—r-

0<r<i "
1.1. The Grassmannian W(m,n). We have the fibration
W (m,n) —= BU(m) x BU(n)—BU(m + n).

Put a; = *(¢; x 1) and b; = ¢*(1 X ¢;), where ¢; is the i-th universal Chern class in
BU(m) or BU(n) (i > 0). Then

H* (W(m,n); Z) = Z[a1, -, am, b, 0] /(Y aibys k>1),
i+j=k

whence by the naturality the operation of Sq’ is obtained from the Wu formula (1.1).



1.2. The space Sp(n)/U(n). The operation of Sq’ is again obtained from the Wu

formula since

H* (Sp(n)/U(n); Z) = Z[Cla"'ycn]/( > (—Veiej; k> 1),
i+j=2k

where ¢; is the i-th Chern class (i > 0).

1.3. The space SO(2n)/U(n). We extract from [6], Chap. 3, §6. Using the
fibration

50(2n)/U(n) —% BU(n)—BSO(2n),
1 .

we have unique elements eg; = §L*Ci e H*(SO(2n)/U(n); Z) (1 <i<n—1). Let

p:SO(2n) — SO(2n)/U(n) be the projection and o : H* (BSO(2n)) — H* (SO(2n))
the suspension. Then

(1.2) p*(e2i) = o(wait1) (w; the Stiefel-Whitney classes) ;

(1.3) H*(SO(2n)/U(n)) = A(ea, €4, -, €an—2), €3, = eq
(it should be understood that ey; = 0 if j > n).

It follows that p* is injective. So we calculate in SO(2n) :

2k —2i+r
Z W2k+1+rW2i—r

0<r<2i r

p* (Sq%e%) =0 (Sq2iw2k+1> =0 (
by the Wu formula. Since o annihilates decomposables, we have
oy 2% k .
Proposition 1.1.  Sq®egr, = | . | eant2 (i,k > 0).

i

1.4. The complex quadric @, = SO(n+2)/(S0O(2) x SO(n)). We have the fibration
Qn — BSO(2) x BSO(n)—BSO(n + 2).

Let t € H?(BSO(2); Z) be the canonical generator, and put t = (*(t x 1). Here

we distinguish the two cases (a) n is even, and (b) n is odd.

(a)n =2m. Let x € H* (BSO(2n); Z) be the Euler class and p; € H* (BSO(n); Z)
the i-th Pontrjagin class. Using the fibration above we see that

Exx)=0. (1 Xpy)=(=1)m"2m and
FIxx+t"x1)=0 mod (2).

Since H* (Q2m; Z) has no torsion we have a unique element s € H?™ (Qa,,, ; Z) with
2s =1 (1 x x +t™ x 1). Then the relations above yield

2st = M+l and 452 =2 (14 (—=1)™) st™.
Considering the Serre spectral sequence for the fibration SO(2m + 2)/SO(2m) —
Q2m — BSO(2), we obtain

Theorem 1.2. H* (Qam; Z) = Z[t,s]/ (t™ — 2st, s — §,,st™).



Now consider the diagram :

SO(2m)/U(m)

|

Um+1) J SO(2m+2 q

(14) \

SO(2m + 2) L
S0(2) x SO(2m) — BSO(2) x BSO(2m)

SO(2m+2)/U(m+1)

) x BU(m —»BU +1)

QZm =

2 2
Define t, eg; (i > 1) and eGH*(SO( m+2) Z) by

U(1) x U(m)’
t=p*(t)=1*(c1 x 1), €9 =q*(ez;) and e= Z(_l)ie%tmﬂ"
Then

Lemma 1.3. (i) ¢* induces an isomorphism of algebras

. [ SO(2m+2) - SO(2m+2) m+1
T (5w oy 2) =0 (o 21/ (e waee).

(ii) p*(8) = Omt™ + (—1)™e.

Proof. By the definition of ¢t we see that j*t generates the ring H* (P,,(C); Z).
Since the spectral sequence for the row in (1.4) collapses, (i) holds as an isomorphism of
modules. Let ¢, ¢ and ¢’ be the total Chern classes of BU(m), BU(1) and BU(m + 1),
respectively. Then ¢*(¢")=¢ x¢. Applying J* we have

1+2e3+2e4 + -+ + 2e2,, = (*(1 x ) - (14 1),

whence
M X ) = (=)™ (H™ + 2€) .
Then (™ +2e)t = (—1)"(/*(1 X ¢;,)) -t = 0, which completes the proof of (1).
Next from the diagram (1.4) we have

2p*(8) = " (e X 1) + 1™ = 25,,t™ + (—=1)"2e,

2 2
which proves (ii) since H* <m, Z) is torsion free. q.e.d.
. 1 )
Theorem 1.4. Sq%s = (m+ > st (1 >0).
i
Proof. As is well known Sq = 14 Sq' +Sq? +--- is an algebra homomorphism,

and by 1.2 we can put Sq(s) = s (1 +e1t +eot? +---) (e; € F3). Applying p* we have



(1.5) Sq (6mt™ +€) = (ut™ +€) (1 +ert + got? 4 - ).

Now put A = H*(P,(C) x Pyn(C)) = Fa[a,b]/ (@™, b™*1).  Then the cor-
respondence ¢ +— a, ey +— b'(i > 1) extends to an algebra homomorphism ¢ :
. ( SO(2m + 2)
g (2 T2
U(1l) x U(m)

to (1.5):

) — A, which commutes with the squaring operations. Apply ¢

(1.6) Sq (0 + 1)a™ +¢) = (0 + 1)a™ +¢) (1 + e1a + 20 + -+ ),

where ¢=a"™+a™ b+ ---+b™. First calculating in the quotient field of Fa[[a,b]],
we obtain
Sq(c) _ i (m+ 1) (am+i + am+i—1b+ et bm-i-z) . Z(a+ b)]
‘ 1 ‘ ’
1=0 Jj=0
and then in A using the equalities @™ +a™ ™" 1h+ ... + b™ = ca’ and c(a+b) =0,
Sq(e) = ¢(1 4 a)™ .

. +1
Comparing the coefficients of a™b" in both sides of (1.6), we obtain ¢; = (m >,

which proves the theorem. q.e.d.
(b) n=2m —1. According to [6]
H* (Qom-15 Z) = Z[te]/ (1 = 2¢, €?),

where ¢ is the same as ours. The inclusion SO(2m +1) C SO2m +2) (X — X & 1)
yields a commutative diagram

Q2m71 Q2m

[2 Ll
/

BSO(2) x BSO(2m — 1) —~ BSO(2) x BSO(2m).

From f*(1xx)=0 and f*(¢tx1)=1tx1 it follows that f*(¢t) =t and f*(s) =e,
and we have
m+1

Corollary 1.5. Sq*e = (
i

> et! (i >0).

§ 2. Exceptional types

In this section £ = 6 or 7. Let G be the simply connected exceptional Lie group
of type Ey and T a maximal torus of G. Take the root system {aj,---,ap} as in [2]
, and define K to be the centralizer of the 1-dimensional torus defined by the equations
a; =0 (i # £). Then the quotient space G/K is the irreducible Hermitian symmetric
space EIII (¢ =6) or EVII (£ =7).

Consider the fibration K/T — G/T £ G/K. By the classical theorem of Bott the
odd dimensional parts of the cohomology of both the fibre and the base vanish. Hence



the spectral sequence for the fibration collapses, and p* : H*(G/K ; A) — H*(G/T; A)
is injective for any coefficient ring A.  Therefore the action of Sq' in G/K is derived
from that in G/T.

First we fix a system of generators of H*(BT; Z) after [7] and [9]. Let {wy,---,wy}
be the fundamental weights of G. Being regarded as elements of H2(BT ; Z), they form
a basis of it. Let R; be the reflection in the plane a; = 0, and put

ty = wy, t; = Ri+1(ti+1) (f > > 1), t1 = Rl(tg) and ¢ = Ui(tl, s ,tg) (Z > 0).
Then
H*(BT; Z) =Z[t1, - ,ts,x]/(c1 — 3).

As the canonical mapping i : G/T — BT does not induce a surjection in H*( ), we
introduce BG the 4-connective fibre space over BG to have commutative diagram with
two fibrations

G/T ——~ BT — BG

e

G/T ——~ BT —— BG

In H* (BT; Z(Q)) we have new generators g; (i = 3,5,9) with
203 = c3, 295 =k =c5+cicr and 299 = ch = c7C3 + cgC
(Note that the symbol g* is omitted here). We put
v3=p(g3), v =9Sq'ys and 9 =8Sq¢® € H* (Bf).
Then
(2.1) v5 = p (g5 + g3c3 + cac1) and
Yo = p (g9 + g5 (ca + c}) + g3 (c6 + cact + §) + crcd + cier + cach).

For details see [3]. Note that our ~; (i =5,9) are slightly different from those in
[9].

Recall that the generator of maximum degree is w in each case (see §0). So it is
sufficient for us to consider in the range of degree < dy, where dg = 14 and d; = 34.
Define polynomials

Is =3 +cad+c8, Iy =cec? +c3+eact + 5,

_ 2 4,10 _ 2 2, 2.4 8
Lo =75 +ceci + ey T2 = c§ + cecact + cicp + cacy,
Iy = 2 + ccact + coch

and sets
Rs = {c2, c3, ¢, Is}, Rr ={ca, c3, &, Is, Is, ¢y, Tho, T2, 114}
Then from §3 in [4] we have

Lemma 2.1. (1) Up to degree dy

Falt1, -, ts,73]/(Rs) (£ =6),

H*(G/T) =
( / ) {Fg[tl,...7t7,73,75,f)/9]/(R7) (527)'



(2)  Sa?y3 = ca, Sq'ys =5 (= cac1 + ¢ if €=6);
Says = cact +¢§, Sqtys = b, SqPys =0
Sy = cact, Sq'y9 =0, Sq¥yg = ches, Sq%9 = chesen

where ¢ = ¢7 + cgeq.

Now we interpret the results in [7] and [9] to our situation.

(2.2) H*(EII) = Fa[t,w']/ (w?t, w +t12),

where t, w' =w+t* € H*(Eg/T; Z) satisfy
t=ci+t, w=ci+ (y3+St+at?)t mod (2).

(2.3) H*(EVII) = Fa[u,v,w]/ (v?, v, w?),

where w=1t7, v, we H*(E;/T; Z) satisfy
20 = 5 — CaX + C3X° — CoX° + 2X° + 2uP mod (4),
2w = CgC3 + C5C4 + 2C5C3 + (2C6C2 — T3 + 264C3) X

— (6552 — C4C3 + 2535%) X2 + (66 + 2@%) X3 — (55 + 5362))(4

— (@1 —3B) x° —e3x® —eax” + 2x° + 2vut mod (4)
) 1 _ 1 1 .
with X:§cl—u and ¢ = o; tl—gu, "',tﬁ—gu (1 >0).

We must describe v and w modulo 2 in terms of the ¢; and the ;.  For EVII the
results are a little complicated. So we calculate modulo (c;). Note that co = 0 mod (4)
(see [8]) and recall the relation (2.1). Then after some calculations modulo (4, 2¢;) we
obtain the following :

Lemma 2.2. Modulo (¢1)

t =11, w/E’ygt1+C4 (526);

u =iy, v =5 + 3tF + catr, w =9 + Y3t$ + cot? (L=T1).
Fortunately we have

Lemma 2.3. (i) In H*(G/T) the ideal (c1) is closed under the operation of the

]

Sq”.
(ii) Up to degree dy the composition of p*: H*(G/K) — H*(G/T) and the projection
w: H*(G/T) — H*(G/T)/(c1) is injective.

Proof. (i) This follows from the Cartan formula.
(ii) For £ =6 put b; = oi(te, - -,ts) (¢ >0), and let
A:FQEtlf"atﬁ”Yfﬂ and B:FQEtlablal"7b57’}/3]-

Then A is free as a B-module, and hence for any subset R C B the canonical map
B/BR — A/AR is injective, where BR denotes the ideal generated by R in B, and
similarly for AR.



Note that B coincides with Fa[t1,cq,---,¢5,73]. So it contains the set R = {¢1}URg
={c1,c2,c3,¢, I}, and B/BR can be regarded as a subset of A/AR = H*(G/T)/(c1).
Then by 2.2 the image of 7op* is contained in B/BR = Fy[t1,c4,73]/ (73), and it is
easily seen that up to degree dy the map H*(G/T) — B/BR is injective.

Similarly for £ = 7. q.e.d.

Now the operation of the Sq’ are obtained from 2.2 and 2.1,(2) by calculating modulo
(c1). The results are as follows :

Theorem 2.4. (i) In H*(EII) we have
Sq?w’ = w't, Sq*w’ =5, Sqdw’ = w'?

(i) In H*(EVII)
Sq?v = 0, Sq*v =vu? +u”, SqPv=w+vut+u?;

S?w = u', Sqt*w = vu® +u'', SqPw = vu® +u'3, Sq'%w = vu'?

§ 3. Stiefel-Whitney classes

For the Hermitian symmetric spaces of classical type the Chern classes have been
obtained in [1], whence so have the Stiefel -Whitney classes by mod 2 reduction. In
this section as an application of the previous section we give the Stiefel-Whitney classes
of EIIl and EVII by using the Wu classes.

For a compact n-manifold M the i-th Wu class u; € H (M) is characterised by

u; - = Sq'x for any = € H"~*(M).

Using the Wu classes the Stiefel-Whitney classes w; are given by w; = Z Sqi_j uj, or
equivalently =
(3.1) W = SqU,
where W =3 w;, and U =Y u; (see [5], for example).

From the previous section it follows that
(3.2) H*(ENI) has {w™, w? |n=0,1; 0<i<12} as a basis, and
S w't'? T = w't'? (r =0,2,6), Sql%w? = wt'?,
Sq*"b=0 for the other b of degree 32 — 2r in the basis;
(3.3) H*(EVII) has {w™v™u' | n,m=0,1; 0<1i<13} as a basis, and
S wou" = wou'? (r =0,4,12),

Sq>"b=0 for the other b of degree 54 — 2r in the basis.
Therefore

Theorem 3.1. The non-zero Wu classes are given as follows:
fOT‘ EHI, Uy = 1, Ug = t2, Ui = tG, Ul = w’2 3

for EVII, up =1, ug=u?, ug =u'?



Then by use of the formula (3.1) we obtain

Corollary 3.2. The total Stiefel-Whitney class W is given as follows:

for EIII, W =1+ 4"+ + (w? +8) + 10 + w't!?;
for EVII, W =1+u*+u® +u'

Remark 3.3. For EIII the result coincides with the mod 2 reduction of that in [8].
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