0000000000
902 0 19950 80-102 &0

Inductive Synthesis of Recursive Processes from Logical Properties *

Shigetomo Kimura (A4t Bift), Atsushi Togashi (E#Z #) and Norio Shiratori (H& HIER)
2-1-1 Katahira, Aoba-ku, Sendai, Japan.

Research Institute of Electrical Communication, Tohoku University.
T 980-77 Ml EHHFEX A F2-1-1
L KFESHEEFERT

e-mail : {kimura,togashi,norio}@shiratori.riec.tohoku.ac.jp

1 Introduction

The studies of process algebras started from the latter half of 1970’s to give mathemat-
ical semantics for concurrent systems. Typical systems are CSP by Hoare [5,15], CCS by
Milner [19] and ACP by Bergstra and Klop [2]. In Feb. 1990, ISO adopted LOTOS [4] as
the international standard for OSI specification description language. Algebraic formaliza-
tion techniques are utilized as the descriptive languages for communicating processes and
concurrent programs. They are also applied to the verification problem, by virtue of the
mathematical formality. The processes, however, have the features such as non-determinacy
and concurrency, so their operational semantics are completely different from those of the

" traditional automata and formal languages.

In the formal specification, modal or temporal logic are studied to express constrains
or to verify a specification. For example, [8] and [9] used temporal logics to verify that
specifications had good properties like ‘safety’ or ‘liveness’, and did not have bad properties
such as ‘deadlock’.

From opposite point of view, we can regard these formulae as facts, which a specification
must satisfy. And we seem to be able to infer a specification from facts by using learning
paradigms. Inductive inference is one of the learning paradigms and suitable for our pur-
pose since an exact specification satisfying input facts can be inferred by means of inductive
inference. Therefore, the inductive inference of the processes forms a basis for automatic
synthesis of highly reliable communicating protocols and concurrent programs from the ex-
amples or the 1‘équired properties. However, little has been investigated for the inductive
inference of concurrent processes due to the difficulties arising from the process features such
as non-determinacy and concurrency.)

We have already presented the algorithm that inductively synthesizes a basic process

in a subclass of CCS from concrete examples expressed in modal formulae which describe

*A part of this study is supported by Grants from the Asahi Glass Foundation and Research Funds from
Japanese Ministry of Education. A preliminary version of this paper was published in the Proceedings of the
fifth International Workshop on Algorithmic Learning Theory. LNCS, 1994

81

the properties of the process and have demonstrated the validity and improvement of the
approach [16]. However, the expressive powér of basic processes is weak. They cannot express
the recursive behaviors of a system. It remains to propose a synthesis algorithm for recursive
processes.

This paper presents an inductive synthesis algorithm for a recursive process. To synthesize

a process, facts, which must be satisfied by the target. process, is given to the algorithm
‘ one by one since such facts are infinitely many in general. When n facts are input to the
algorithm, it outputs a process which satisfies the input n facts. And this generation process
is repeated infinitely many times. To represent facts of a process, we adopt a subcalculus
of p-calculus [11, 17, ?5], which can describe recursive behaviors. The correctness of the
algorithm can be stated that the output sequence of processes by the algorithm converges to
a process, which cannot be distinguished from the intended one (if we could know it) by a
given enumeration of facts, in the limit.

In fact, the problem to synthesize a process is regarded as a satisfiability problem for
logical calculi. The satisfiability problem is a decision problem to determine whether or not a
given formula in the logic has a model. For example, Kozen [17] provided a tableau method
for the p-calculus. We will compare our method with related works and discuss the reason
why we employ inductive inference to synthesize a process in detail in Section 6.

The outline of the paper is as follows: Section 2 presents the algebraic formulation of
processes, together with pu-calculus. Section 3 discusses the discriminative power of a sub-
calculus of p-calculus. Section 4 gives an algorithm that synthesizes a process satisfying a
given enumeration of facts. Section 5 introduces a prototype system SORP (Synthesizer of
Recursive Processes) based on the synthesis algorithm. The paper is concluded in Section 6,

where related works and future problems are briefly discussed.
2 Preliminaries
In this section, we briefly review the preliminary notions such as algebraic processes and
p-calculus. See [11,13,15,17,19,25] for more detailed discussions.
2.1 Algebraic Processes

Let A be an alphabet, a finite set of symbols. Its element is called an action. This
corresponds to a primitive event of a process and this is assumed to be externally observable
and controllable from the environment. Throughout this paper, it is assumed that we have a

denumerable set C of process constants.

Definition 2.1 Recursive terms are defined inductively as follows:

1. An inaction 0 and a process constant ¢ € C are recursive terms.
2. If p is a recursive term, an action prefiz a.p is a recursive term where a € A.

3. If p1 and p; are recursive terms, their summation py + p, is a recursive term.

82

. . . def . .
4. A process constant ¢ with a defining equation ¢ = p, denoted as recc.p, is a recursive

term, where p is a recursive term. _ a

In a recursive term rec c.p, every occurrence of ¢ in p is called bound. We say p is a scope
of rece. in rec c.p. The occurrence of a process constant which is not within any scope of
rec c. is called free. When every free occurrence of ¢ is within some subterm a.q of p, we call
c is guarded in p. When every constant in p is guarded, p is also called guarded. If every
occurrence of any process constant in p is bound, p is called closed. Otherwise it is called
open. Closed terms are called (recursive) processes. Let P denote the set of all processes.
By renaming process constants, every term p is converted to a term p’ such that if recc;.py
and rec cy.p; are subterms in p’ then ¢; # co. This conversion is the same as a-conversion in
A-calculus [14]. Thus, a term p can be represented as p with a set {c1 o, en = pn) of
defining equations, where every subterm of the form recc.q in p is replaced by c.

Semantics of a recursive term is given by a labeled transition system with actions as labels.

Definition 2.2 A labeled transition system is a triple < 5,.A, —>, where S is a set of states

and — is a transition relation defined as -C S x A x §. o

. a e . .
For (s,a,s’) €—, we normally write s — s'. Thus, the transition relation can be written as
a a . . .
—={3| a € A}. s > s’ may be interpreted as “in the state s an action a can be performed
and after the action the state moves to s’”. s’ is called an a-successor of s. We use the usual

. . r a
abbreviations as e.g. s = for 3¢’ € § s.t. s = s’ and s A for -3s’' € §s.t. s > 5.

Definition 2.3 A transition relation on recursive terms is given by the following transition

rules:
p=yp ¢=d p{recc.p/c} = p/
ap—=p p+qg=p p+q>q recc.p = p
where p{q/c} is p except any free occurrences of c¢ are replaced by ¢. o

Based on the operational semantics given by the transition system, several equivalences and
preorders have been proposed in order to capture various aspects of the observational behavior

of processes. One of those is the equivalence induced by the notion of a bisimulation [19,20].

Definition 2.4 A relation R over recursive terms is a strong bisimulation if (p, q) € R implies,
for all a € A:
1. whenever p > p', then there exists ¢’ such that ¢ = ¢’ and (p/,¢') € R,
2. whenever ¢ 2 ¢, then there exists p’ such that p = p' and (p’,¢') € R. o
Recursive terms p and q are strongly equivalent iff (p,q) € R for some strong bisimulation

R. p ~ ¢ denotes that p and ¢ are strongly equivalent. Clearly, ~ is the largest strong

bisimulation and an equivalence relation.

83

Proposition 2.5 [12,19] The following equations are satisfied on processes.

IL.p+q~qg+p.
2.p+(qg+r)~(p+q) +r.
3. p+p~p:

4. p+0~p. : v O

This proposition can be easily extended for recursive terms. If is known that the equiv-
alence given by the above proposition is sound and complete over strong equivalence, when
only basic processes constructed by inaction, action prefix and summation, are considered [12].
Using this result, it is shown that any basic processes p can be equivalently transformed into a
process of the following form a,.py +- - . pa(E Sty @;.p;). The order of a;.p; is immaterial
from equation 1 and 2. When n = 0, it is understood that Y .-; a;.p; = 0. In the following,
based on that, we always assume both the commutative and associative law of + on recursive
terms to avoid heavy use of brackets. Furthermore, by definition, a process constant without
its definition is strongly equivalent to 0. Therefore, without loss of generality, to the rest of

this paper, we are concerned with only processes rather recursive terms.

2.2 p-calculus

The alternative characterization of equivalence on processes depends on the identification
of a'process with the properties it enjoys. Then we can say that two processes are equivalent if
and only if they enjoy exactly same properties. In other words, two processes are inequivalent
if one enjoys a property that the other does not enjoy. For this purpose, in this paper we
adopt the u-calculus [11,17,25], which includes a modality concerning actions, in order to
describe dynamic properties of processes. It is an extension of Hennessy-Milner logic [12] to
express recursive properties. So we will introduce it to represent facts of a process for the

synthesis algorithm.
Definition 2.6 formulae in p-calculus are defined inductively as follows:

1. tt (true) is a formula.
2. A variable 2 € A’ is a formula, where A" is a denumerable set of logical variables.
If f and f’ are formulae, f V f' and - f are formulae.

If f is a formula, (a)f is a formula, where a € A.

ook W

If z is a variable and f is a formula with positive occurrence of 2 — z occurs within

scopes of positive number of negations — pz.f is a formula. a

The notion of freeness, boundness and scope for formulae in g-calculus are defined similarly
to the one for recursive terms or A-calculus. A variable @ in a formula f is guarded, if every

occurrence of z is within some scope of (a). A formula f is guarded if every variable in f

84

is guarded. A formula f is sometime written as f(z) to express the free occurrence of z in
f. f(g) denotes the resulting f(z), where every free occurrence of z is replaced by g. In the
replacement f(g), every free occurrence of a variable in g is not bound in f(g) by means of
renaming bound variables. Recall that P is the set of all processes. Let V : X — 27 be a
valuation, which assigns a set of processes to be satisfied to each variable, where 27 is the
power set of P. We adopt conventional notation V[S/z], which is the valuation V' that agrees
with V except that V/(2) = S.

The set of all closed formulae is written as £. When a process p satisfies a formula f in a
valuation V, it is written as p =y f. The symbol = is used to denote logical equivalence, i.e.

f = f means that p |=y f iff p |=y f’ for all process p and for all valuations V.

Definition 2.7 Let p be any process. Satisfaction relation of formulae in a valuation V is

defined as follows:

1. p |=y tt.

2.plyzifpe V(r).

3.pkv iV f2 ifply fiorpl=y fo

4. pl=y ~f if p £y f, where p £y f means that p does not satisfy f.
*5. p l=v (a)f if there exists some ¢ such that p = ¢ and ¢ |=y f.

6. pl=v pz.f(z)if pe S for all § C P such that Vg € P.q |=yis/,) f(z) implies g€ §. O

Note that a valuation is immaterial for close formulae f in the sense that p =y f for some
Viff p |=y f for all V. In the following, |=y is abbreviated as |= if there is no conflict about

its valuation.

Definition 2.8 The following logical notations are used for convenience:

def

1. ff = —tt.
2. ik f2 = ~(=fi V- fo).
3. [a]lf ¥ =(a)-f.

4. ve.f(z) E —pz.~f(-z). a

For a set of closed formulae L(L C £) and a process p, L(p) is defined as follows:

Lp)={fell|pk f}

Our definition of p-calculus differs from that of STA(X,.A) in [11]. Fortunately, each
system has same expressive power when A is finite and only guarded formulae are concerned.
The set of all formulae in STA(X, A) is defined in the following BNF:

fuostt|Nil|a|Af|f+f1fVf|-f]|px.f wherez € X and A C A.

85

Definition 2.9 Let p be any process. Satisfaction relation of a formula in STA(X,A) in a
valuation V is defined as follows: ’
l.pl=y Nil ifp~o.
2.pEvAf if3piande; € A(1<i< n) such that p ~ "% | a;.p; and p; |=y f for each
pi.
3.pl=v fi+ fo if 3py and p; such that py |=y f1, p2 |=y f2 and p ~ py + po.
4. The satisfaction relation for other syntactical constructs is defined in the exactly same
way as in Definition 2.7. - ' a

Proposition 2.10 [11]

L f+f=f for f of the form Af'. tt. Nil.

F4+Nil=f. |

0f =fF.

(ALUAs)f = AifV Asf V(ALS + Asf).

h+(f2Vfs)=(h+f2)V(H+ f3)

S(Af+t8) = (A~ ARV A-fV (A= A)tt + A=f) v Nil

(i Aifi) = (5 Aifi + t6) V[(A((A = ALV A=) + tt).

pa.Crl{a}Calr + f] = pa.Crl{a}Coluy(C1[{a} Ca[y]) + f)]] for any formula f and con-

texts C1[] and Cy] which are formulae with the hole [].

P NS ;™ e

proof We prove only 8 since it is not included in [11]. It roughly means a variable appearing
as a summand of some subterm can be eliminated. Since we are concerned with guarded
formulae, any equation of the form z = f(z) has a unique least fixed point, i.e. pz.f(z).
Let & = px.C1[{a}Cz[x + f]], the unique least fixed point of the equation z = Ci[{a}C2[z +
fll. Thus we have & = Ci[{a}Ca[2 + f]], where { = t{z/z} for t = C (a context) or
t = f (aformula). Let § = # 4 f. Then § = Ci[{a}Cq[9]) + f. So # is the fixed point
of the equation y = Cﬁ'l[{av}Cﬁ'Q[y]] + f. Therefore # is the fixed point of the equation ¢ =
C1[{a}Co[uy.C1[{a}Ca[y]] + f]]. Hence we get the result. ' a

For example,

peda}(z + {b}Nil)

I

pr-{atpy.({a}y + {b}Nil)

{a}py.({a}y + {b}Nil),
pe{atpy{b}uz.pw.({b}w + {a}{b}= + {c}Nil)
{a}{b}pz.pw.({d}w + {a}{b}2 + {c}Nil).

]

pr{atpuy.({b}(z + y + {c}Nil))

It is easy to see that p-calculus is embedded into STA(X,A). The diamond operator
(a) in p-calculus is not provided in STA(X, A). However if we define (a)f = {a}f +tt as

86

in [11], the inclusion is obvious. The opposite direction is not so trivial. We can show the
other inclusion when A is finite and a formula is guarded. From Proposition 2.10, we can
assume any summand (an operand of +) is either of the form tt or {a}f, where a € A, by

the following algorithm since each formula is guarded
1. Remove any - operators by logical connective rules and Proposition 2.10.6 and 7.
2. Eliminate any variables included in a summand by Proposition 2.10.8.

3. Convert any action set of each prefix operator to a singleton set by Proposition 2.10.3
and 4.

4. Delete V and Nil operators within summand by Proposition 2.10.2 and 5.
Then we can show a translation function from STA(X,.A) to p-calculus.

Definition 2.11 A translation function H(f) from a formula f in STA(X,.A) into the one

in p-calculus is defined in the following:

[y

H(tt) = tt.

. H(Nil) = Ajealalff.

H(z) ==

H(~f) = -H(f).

H(fiV f2) = H(f1)V H(f2).

H(pa.f) = pa. H(f).

- H({a}f) = (@) H(f) Aa]H(f) A Acea-{a} .

H(Ceffai} i) +tt) = Nier{ai)H(f;) where I is a finite index set.

H(Ziel{“i}fi) = (/\iel(“f)H(fi)) A (_/\iel[“i]\/ah:aJ f]) A (/\aeA_A[a]ﬁ') where I is a
finite index set and A = {a; | i € I} _ o

© © N o> o A o N

Let |=ysTL(4,¥) (V is sometimes omitted as I=sTL(4,x)) be a satisfaction relation for

formulae of STL(A,X’). Then we have the following results.

Lemma 2.12 Let p be a process and f a formula in STL(A,X). Then p =y strux) f ilf
p v H(S). o

Proposition 2.13 When A is finite and a guarded formulae are only concerned, p-calculus

has same expressive power with STA(X, A). : O

The following two propositions, the same results for STA(X',.A), can be proved by Propo-
sition 2.13.

Proposition 2.14 Let f(z) be a guarded formula. Then the followings are satisfied:

87

1. pe.f(x) = Viso fH(F).
2. vz.f(z) = Apso FF(t1). 0

Proposition 2.15 Processes p and g are strongly equivalent, i.e. p ~ q, iff L(p) = L(g). O

The next proposition shows that the negation can be removed from a formula.

Proposition 2.16 Any formula can be equivalently converted to a formula without negation,

i.e. a formula built up with tt, ff, A, v, (a), [a], p, and v. a

From now on, we will consider closed formulae without negation.

3 A subcalculus of p-calculus

In section 4, an inductive synthesis algorithm for recursive processes is introduced. The
algorithm generates a process which satisfies given formulae. However, a formula of disjunctive
form, e.g. fV g, or pa.f(z)(= \/k,>ofk'(ﬁ')) is ambiguous to our purpose, i.e. synthesis of
processes. Consider the formula («)tt v (b)tt. It says the target process can execute either
a or b (or both). When it is input to the synthesis algorithm, the algorithm is unsure which

formula, i.e. (a)tt or (b)tt, is really needed. Suppose that the algorithm trusts (a)tt and
' outputs a process p which satisfies it. But after some times, [¢]ff(= —(a)tt) may be input.
In such case, the algorithm must backtrack at the point before p was synthesized, and adopt
the other formula (i.e. (b)tt). Especially, since a formula with u operator has infinite many V
operators (see Proposition2.14), it may cause backtracking infinite many times. To remedy
the difficulty, we focus on the formulae without V and u operators. Let Ly be the set of all

formulae defined in the following BNF":

fu=tt| el (@) | [af | fAS]vaf

where z € X',a € A. A relation <, on recuresive process is defined by p <4 ¢ iff p =y f
implies ¢ |=y f for all formulae f € L4 and for all valuations V. Note that only closed formulae
suffice to define <;. Obviously, <, is a preorder and the resulting relation ~,4, defined by
Pr~aq iff p <4 ¢ and ¢ <4 p, is an equivalence relation. So, <4 turns out to be a partial order
on the equivalence classes of recursive process with respect to ~g, i.e. [p] <4 [q] iff p <4 ¢,

where [p] = {p' | p ~a P'}.

Lemma 3.1 For a formula f € L4, recursive processes p,q and a valuation V, we have the

following claims:

LpEvfadqglzy fimplyp+ql=y f.

2. a.p+ a.ql=y [a]f implies a(p+ q) =y [¢]f. O

Proposition 3.2 For any processes p,p',q.r and any action a, the followings are satisfied:
P W] p.r.q Y g

88

1. pLgqg&=ap<yaaq.
2.pldq==>p+r<qq+r.
3. Ifr A thenap+r<jgap +r<=>ap+aqg+r<gap +aq+r.

4. ap+aq<gap+aq+alp+q). m]
Lemma 3.3 p ~ ¢ implies p ~4 q. But not vice versa.]

As the discriminative power of this relation <4, we have the following result on comparison

with the ready simulation preorder <gs [10].

Definition 3.4 A ready simulation preorder is a binary relation R on processes such that

whenever (p, q) € R and a € A then:
1.if p 5 p’ then 3¢'.¢ 2 ¢’ and (p', ') € R.
2. if ql 5 then p . | | m]
Let <ps be the union of all ready simulation preorders. Then we have the following result.
- Lemma 3.5 ‘p <4 q itmplies p <Rgs q. But not vice versa.]
- We have also the following relation which has more discriminative powér than <4.

Definition 3.6 A binary relation T, over processes is a maximum relation which satisfies
the followings. If p C, ¢, for all « € Act,
1. whenever p = p/, then there exists ¢’ such that ¢ = ¢’ and p' Cq4 ¢/,
2. whenever ¢ % ¢/, then there exist pj,...,p} such that p = p! for each p}, and pj +---+
P Caq, wheren>1. ’ a

Lemma 3.7 p C, q implies p <4 ¢. But not vice versa. a

After all, we have the following theorem. See Fig. 1. In the figure, the arrows indicate
proper inclusion relation between preorders, i.e. R — R’ means R is properly included by
R’ (R' has more discriminative power than R). About traces [19], failures [5] and simulation

preorders {19] and thier relationship, see [10] for more detail.

Theorem 3.8 <ps 2 <4 2 Cuq 2 ~ ‘ o

= =

4 Synthesis algorithm

This section describes an inductive synthesis algorithm for recursive processes. Formulae

in p-calculus are regarded as specific properties of the intended process.

89

failures
trace ready simulation(<gg) — $y—»E,;— bisimulation(~)

simulation

B 1: The relationship of preorders.

4.1 Enumeration of facts

An algorithm we will propose now is an inductive one. It generates a process which
satisfies given facts, the properties of the intended target process, represented as formulae in
p-calculus. Thus, the input to the algorithm is an enumeration of formulae to be satisfied by
the target process. Let p, be the intended target process to be generated from its concrete

properties. It should be noted that p, is neither known initially nor given in a precise manner.

Definition 4.1 Let U be a set of pairs of formulae f € £ and a sign + (or —), i.e. (f,+)
(or (f,—)) such that either (f,+) or (f,~) always belongs to U for every formula f € L.
S={fI({fi+) € UYU{=f|(f,—) € U} is an enumeration of facts if S is consistent in the
deductive system STL(.Y,.A)! [11]. An element of § is called a fact. O

If we used p,, the enumeration of facts might be defined as follows:

S={feLllp = f}

Unfortunately, this definition of an enumeration of facts is impossible. Since p, is not known

a priori, we must consider .S from U in Definition 4.1 as an enumeration of facts.

4.2 Synthesis algorithm

As we mentioned in section 3, our algorithm restricts input formulae to elements of the set
L4 in order to avoid non-determinacy arising from both V and u operators. To take account
of this restriction, the definition of an enumeration of facts must be modified, i.e. define an
enumeration of facts as it Definition 4.1 and remove formulae which do not belong to £y from
an enumeration of facts. Note that a formula with v operator also has non-determinacy, i.e.
how many times loops of process branches unfold.

Given an enumeration of facts, the algorithm synthesizes a process satisfying those facts.
Recall that a process can be represented as a term p with a set {¢; oty & pn} of
defining equations. In the algorithm, a process is represented as a set of process definitions.
Each process definition recc.p is associated with a set C of formulae; denoted as ¢:C, which
must be satisfied by the corresponding process constant c. C can be omitted when it is not im-

portant. To describe the algorithm, we adopt a language like Prolog [6], where I/O predicates

'STL(X, A) is sound but unfortunately not complete. A complete deductive system for p-calculus is not

found yet.

90

can backtrack as well. For brief desciiption, let ¢; denote process constants associating with
the process definitions ¢; o p; or ¢;:C; o p; where C; is a set of formulae. The initial state
of a process is always fixed to ¢o. Thus, a set {co E poy..scn = pa) of process definitions
determines the process ¢g with its set of process definitions.

For a fact of the form vz.f(z), it is important to take an identification of formulae vz. f(x)
(or bound variables z) with process constants c¢. If ¢; corresponds to z, i.e. the formula
vz.f(z), the variable 2 is renamed by z;. Since z is a bound variable, the meaning of the
formula is not changed. We assume further that we can recall the original formula vz;. f(z;)

from z;. Also we adopt the following abbreviations:

ASfrseosfa} = fi Ao A fo where ABE tt.

Sle1:Ch & Py 0i:Ch ! pi] © The resulting set of process definitions S where the process
definitions of ¢y, -+, ¢ in S are replaced by ¢1:C; & py, -+, ¢p:Cr = pi, respectively, or
0 ¥ p; is added to S if ¢;:C; & pi€S.

S{z/y} : The resulting S where a free variable y is substituted for = in 5.

Now, we are in a position to state the synthesis algorithm. In order to help the understand-
ing of the algorithm, simple comments are attached directly to the corresponding predicates
which begin with the mark “9%". The detail explanation of the algorithm will be stated after

the completion of the algorithm.

Algorithm 4.2 [Synthesis algorithm]
Input: Enumeration of facts fi, fa,---. It is an enumeration of formulae be satisfied by the
intended target process. The order of them is arbitrary.

Output: Sequence of inferred processes p1, p2, - -. Each pj satisfies the whole input formulae

f1 to f.

def

mpstart :- mp({co:{tt} = 0}). % The initial process is 0.

mp(S) - % S is a set of process definitions.
read- formula(f), % Input a formula.

makeproc(co, S, f,X), % Modify the current process according to the new fact f,
% the result is set to X.

write-process(X), % Output the result.

mp(X). % Continue the synthesis process for the next fact.

% program clauses of makeproc(c, S, f,X) 2

2In the following procedures (clauses), we use the several meta variables and Prolog-like variables whose

intended meaning are explained below:

91

makeproc(ci, S, tt,).

% z; : a bound variable corresponding to the formula vz;.f(z;)ocooiiiiiiiLt, (b)
makeproc(c;, S, 5).
makeproc(c;, S, 2j,X) - % Where i # j.

" (8[ej:Ci = pi+) — {e:Ci € piP{ej/eiHei/ei}s

makeproc(c;, S/ ACHX) . oo (b*)
makeproc(c;, S,2;,X) :-

is-remake,

makeproc(c;i. S, f(27).K). oot e (b**)

makeproc(c;, S, {a) f,X) :-

exists(cj,¢;, S, f,X). % Je; such that ¢; = ¢; and makeproc(c;, S, f,X).
makeproc(c;, S, (a) f.X) :-

get-new-process-constant(c;),

makeproc(c;, S[ei:Ci E p; + a.cj, cj:{tt} E0], F A (A {fe | [a)fr € Ci}),X). ... (c*)

makeproc(c¢;, S, [alf.5) -
is-valid(AC; D [a]f). % |= AC; D [alf
makeproc(ci, S, [alf. S[ei:(Ci U {[d)f)) = pi))
not-transit(c;,a). % ¢; £ .

makeproc(c;, S, [a]f,X) :- _

forall(c;, ¢;, S[e;:C; U {[af} = pil, £.X).
% Vej.c; — cj, makeproc(c;, S[e;:Ci U {[a]f} =), £.%).

% AN 7 S (e)
makeproc(c;, S, fi A f2,X) -
makeproc(c;, S, f1,Y),

makeproc(c;.Y, f2,X).

2 (3 I (f)
makeproc(c;, S, ve.f(z),X) :-
makeproc(c;. S, f(x;).X). ‘ a
¢: the current process constant (meta variable)
S: the current set of process definitions (meta variable)
f: the current formula to be satisfied by ¢ (meta variable)
X:

the inferred process — a set of process definitions (Prolog-like variable)

Now, we explain the intuitive function of the clauses.

(a): If the current formula is tt, simply return S since tt is satisfied by any processes.
Note that there are no clauses for the formula ff. Since ff indicates that the input formulae
are inconsistent, therefore it needs backtracking for this case. By means of backtracking
mechanism, the intended process will be eventually generated.

(b): If the current formula is 2;, return S since there already exists a recursive loop. If the
current formula is @; (a process variable) which does not correspond to the current process
constant ¢;, ¢; with S needs modifications, since ¢; must satisfy the formula z; (i.e. vz;.f(z;))
which must be satisfied by ¢;. Therefore, in the clause identify ¢; and ¢; at first, then modify
¢; again to satisfy every condition in C; (See Fig. 2). The third clause in the case of logical
 variable will be invoked when identification of c¢; and ¢; makes contradiction. They may arise
from the direct recursive lbop, i.e. wrong connection of ¢; and ¢;. However, this is not always
the cases. Therefore, we need a controlling predicate. The predicate, is-remake, judges
whether or not unfolding of va;.f(2;) is necessary in such a way that i¢s-remake succeeds iff
the unfolding of the formula v;.f(z;) is necessary. Its intended function (rﬁeaning) will be
explained after the exblana.tion of the algorithm. ‘

(c): If the current formula is of the form (a)f, the clause generally makes a branch labeled
with @ and constructs a new process satisfying f as an a-successor of ¢;. However, if there
already exists an a-successor c; of ¢; such that ¢; can be modified to satisfy f, then neither
new constants nor new processes are created. Otherwise, the clause creates a new branch
followed by a new process by getting a fresh process constant c;.

(d): For the current formula [¢] f every a-successor must be checked and modified to satisfy
the subformula f. This is done by the last clause of this case. This check can be easily verified
if the condition |= AC; D [a]f holds. This is why we attach the condition to each process
definition, i.e. a process constant. If ¢; cannot perform the action «, it is sufficient to add [a]f
to C;.

(e): If the current formula is a conjunction f; A f2, apply fi and f2 in this order.

(f): For the recursive formula vz.f(z), rename the bound variable = into z; to adjust it
to ¢;,

Whenever the formula va.f(2) is applied to a process constant, the procedure makeproc
tries to make a loop at the nearest place from the applied process constant. Especial, for the
first time, it tries to make direct loop to the applied process constant. However, making a
loop at the nearest place sometimes conflicts with the facts. Such situations are illustrated
in the Fig. 3 and 4. In Fig. 3, the direct loop created at the first stage by the formula
vzo.{a)(b)zo conflicts with the third fact [«][b][b]ff. Thus, the direct loop must be unfolded
to avoid the conflict. In Fig. 4, the process constant ¢; with the condition [b]zg at the first
stage has potential power to make a loop, possibly actuated by some facts, e.g. [a](b){c)tt in
this example. Then, the created direct loop conflicts with the third fact [¢]fF.

To avoid the unnecessary unfoldings of loops, the procedure, is-remake, checks whether or

92

93

not the current process is in the situations in Fig. 3 or 4 whenever invoked, that is the current
process does not satisfy the given facts. Then, is-remake forces backtracking if the current
process is not in the situations in Fig. 3 or 4. Otherwise, the procedure succeeds, i.e. direct
loops are unfolded once stated as above. In the case illustrated in Fig. 3, is-remake traces the
path which is passed by a formula occurring inconsistent, and backtracking is allowed if the
path has one or more loops and does not end on these loops. In the case of Fig. 4, is-remake
traces the path in the same way as the previous case, and backtracking is allowed if the path
is at the beginning of a loop, but does not go inside the loop, instead takes the different path.

In each case, the information about which formula made each branch is needed.

T

s
[a]lb][b]F ’

‘5)<a>ﬁl

K 3: Some action sequences are possible since a loop is constructed.

4.3 Results of the Algorithm

Lemma 4.3 Let S be a set of process definitions applied to the predicate makeproc and
cCE¥pes. If f is a formula such that ¢ |= f then.makeproc(c, S, f,X) terminates with
X = § except that several formulae may be added to some sets of formulae labeled at process

constants. Also if f has been already applied to makeproc, S = X. a

94

T T laJ<c>T lal<c>T
vp<a>[blx [aj<c>T [c]F
a b c —
[b]x, [bx, (b

[4: Some action sequences are possible since a branch modifies a loop.

Theorem 4.4 Assume that there exists a process p, satisfying initial segments fi, -+, fa
of an enumeration of facts, where n > 1. Assume Algorithm 4.2 outputs a set of process
definitions S,_1 for the n — 1 facts, fi,--+, fa—1 also. For the n-th fact, f,, we have the

followings:

1. The algorithm 4.2 terminates and returns an output, which is a set of process definitions

S, with the process constant co (the initial state of Syn).
2. cp with S, satisfies f,.
3. co with S, satisfies f1,---, fn-1.

proof 1. When the predicate makeproc calls itself recursively, let f be a given formula to it,
and g be a formula to call itself. Then, the size of ¢ — the number of operators constructing
the formula — can be greater than the size of f, only in the clauses (b*), (b**) and (c*) in
the Algorithm 4.2. Without using the clauses (b*), (b**) and (c*), the algorithm terminates.
Therefore, it is sufficient to consider them only. Instinctively, the non-termination of the

algorithm means the following cases.

(i) Application of a set of formulae continues infinitely many times as if it is a chain reaction.
This situation corresponds to (c*). In (c*), the algorithm adds a new branch from the
current process definition. A process after the branch must satisfy every formula in the
labeled set at the process definition. However, another process déﬁnition may be added
as a new branch by the process, and the algorithm may arrive at (c*) again. If the above

situation continues, the predicate makeproc does not terminate.

(ii) Process reconstruction continues infinitely many times. This case corresponds to (b*)
and (b**). The clause (b*) makes a loop as short as possible to satisfy a formula with
a v operator. However, in the cases of Fig. 3 and 4, the loop must be unfolded once
by backtracking at (b**). Unfortunately unfolded loop may also be in the situation
of Fig. 3 or 4 and arrive at (b**) again. Repeating the above, process reconstruction
continues infinitely many times. Note that in this case, makeproc synthesizes one or

more branches with infinite depth.

95

Suppose the given enumeration of facts has ‘no v operator. Then the case (ii) dose not
arise, since both of definitions (b*) and (b**) are not used. We consider only the case (i).
However, since each formula has no process variable, the size of a formula used for recursive
call in (c*) is less than one given to it. Consequently, the algorithm terminates.

Next, we assume that there exists a formula with » in enumeration of facts. We have the

following cases.

e Only the case (i) is arisen.
From the previous lemma, makeproc neither makes new branches nor process definitions
from a formula which are already given. Since the size of each element of a set of formulae
for each process definition is finite, the set of formulae can be applied within only finite
range of the process. Therefore application of formulae is saturated in finite time, and

then makeproc terminates.

¢ Only the case (ii) is arisen.
The definition (c¢*) unfolds a loop once. To arise the case (ii), there must exists some
given formulae which negate the loop infinitely many times and satisfy the condition of
is-remake. A formula without v operator cannot negate it infinitely. Even if there is
a formula with v operator, the part which negates the loop, i.e. the formula ff, must
occur periodically. Therefore when a loop is unfolded finitely many times, the formula
not only negates points inside a loop but also negates points outside the loop. Hence

ts-remake fails and makeproc terminates.

e Both the cases (i) and (ii) are arisen.
We can assume that both the cases (i) and (ii) arise alternatively. Then, firstly, some
formulae negate the point of a loop, and thus the loop is unwound. Next, a set of
formulae, which is labeled at a process definition, are applied to the unwound loop
or certain branches. After all, the transmition of formulae arrives at the point of the -
loop, and these processes are repeated. To negate infinitely, there must exist at most
one formula which have one or more v operators and negates the loop. This argument

similar the previous one, and thus the algorithm terminates.

2. By the following procedure, is-satisfied(f,,7), we make sure that c¢; satisfy f,.
procedure is-satisfied(f,i);

case f of
tt : Obviously ¢; |= f.

ff : It means that there does not exist a process which satisfies input formulae. Thus, this

case does not arise.

(a)f’ : From the algorithm, there exists c; such that makeproc selects it when the formula

is applied. This ¢; also satisfies ¢; = ¢;. Then make sure is-satisfied(f’,j) is satisfied.

96

[alf’ : If ¢; 71.,‘ then obviously ¢; |= f. In the case that ¢; = ¢;, make sure is-satisfied(f'.,j)

is satisfied for any c;.
g A h : Make sure is-satisfied(g,i) and is-satisfied(h,) are satisfied.
ve.g(z) : Make sure is-satisfied(g(z;),i) is satisfied.

z; : Let its original formula be va;.g(z;). Suppose z; = ;. Since the procedﬁre comes
here, ¢; |= g™(tt) where reconstructing loops for the original formula arise in n — 1
times and n > 1. As g"(2) is monotonicity for n, repeating this procedure leads to
¢j = An>09"(tt). Therefore we show that ¢; |= vzj.g(z;). Since length of each input
formula is finite and the synthesis algorithm terminates, the procedure terminates in

finite steps.

3. Same as 2. ' a
The algorithm is a non terminating procedure. Therefore, we show its correctness by
using the concept of convergence in the limit, which has been a key idea in inductive learning

paradigm [21].

Definition 4.5 Assume an algorithm reads in an enumeration of facts, and returns processes
sequentially. After some time, if the output process is always p, then the inferred sequence

by this algorithm converges in the limit to p over the enumeration of facts. (m]

Lemma 4.6 Assume p is an intended process, and the inferred sequence of processes by the

- Algorithm 4.2 converges in the limit to a process p’. Then p <4 p'. a

We construct. a formula which has sufficient information to synthesize a process. For

preliminary, we need the following definition.

Definition 4.7 If a set of process definitions S satisfies the following conditions, we call S a

complete set of process definitions of a process p:

1. S has the initial process definition ¢cg & pg such that P~ co.

.. . def '
2. Each process definition is of the form ¢ = aj.c; + -+ -+ @,.c,, where n > 0 (when n = 0,
def . vy
aj.ci+--+ay.c, = 0), a; € Aand each ¢; is a process constant whose process definition

belongs to 5.

3. For any process definition ¢ & ¢ in S, co in the deleted set S — {¢ & ¢} of process
q

definitions is not equivalent to p, i.e. ¢g % p any more.

Every guarded process p can be translated to a complete set of process definition of p by

the following algorithm. We represent this set P(p).

Algorithm 4.8 Let p be a guarded process and S a set of process definitions associated with
p. At first, get a fresh process constant ¢g which is not included in S, then add ¢ & ptoS. '

Finally apply the following transformation rules to S until § is not modified any more.

97

1.Ifc™ a.p € S and p is not a process constant then get a fresh process constant ¢’ and

S —SlcEad, ¥y
2.Ifc=p4+0e S then § — S[c ™ p].
3.Uc=Ep+p+reSthen S — ScEp+r].

4. If ¢ & p+ a.q € 5 and ¢ is not a process constant then get a fresh process constant ¢
and S ~ S[c p + a.c, ¢ ¥ q].

def

5. fc=p+candd = qeSthen § — S[c™ p+ g]l. Note that ¢ # ¢ since p is guarded.
6. If ¢ ¥ ¢’ and ¢’ is a process constant then S «— (§ — {c ¥ H{c/c}.

7.If ¢ € ¢ € § where ¢ # ¢g, and ¢ dose not occur in any other process definition then
S - S {(’ def O

For example, if § = {eg & a.c1, ¢; & b.(co + 1)}, then P(co) = {co Eoacr, o ¥

by, c2 = a.c; + b.cy}. Observe that ¢g in S and ¢g in P(cp) are strongly equivalent.

Lemma 4.9 For any guarded process p, Al(orthm 4.8 terminates and P(p) is a« complete set

of process (Ieﬁmtmm of p. - a

Now, we can construct a sound and complete formula F(p) for a process p w.r.t. <4 in our
restricted p-calculus.. For processes p and ¢, soundness means that p <, ¢ implies ¢ |= F(p)
and completeness means that ¢ = F(p) implies p <4 ¢.

In the full p-calculus, Stirling [24] gave the formation of the sound and complete formula
F'(p) for p w.r.t. the strong equivalence ~ in the sense that p ~ ¢ iff ¢ |= F'(p) for all pro.cesses
pand q. As an example, consider the process p = a.p; +a.pz, then we have F'(p) = (a)F'(p1)A
(a)F'(p2) Ala)(F'(p1)V F'(p2)). Unfortunately our restricted calculus has no V operators. We
cannot use V operators to define F(p) for p. So it seems that F(p) = (a)F' () A (a)F'(ps).
But this is not sufficient since p; and p; may have common properties, i.e. L4(p1)NLa(p2) # 0.
Thus F(p) should 1);‘ (@)F'(p1) AMa)F'(p2) ANa) A(La(p1) N Lq(p2)) though it is not inductive
definition. The function F(p) with the auxiliary function Fs(C)[C] in the next definition gives
the inductive formation of a sound and complete formula for a process p in L4. Instinctively,
Fs(C)[C] is a formula which is logically ‘equiva.lent to A(Neec La(c)), where C is a set of
process constants and C is a family of sets of process constants. C is used technically to make

recursive loops on formulae.

Definition 4.10 Let $ be a complete set of process definitions, Cop = {c | ¢ < p € §} and C
be a set of subsets of Cy. For ' C (Y, a formula Fs(C')[C] is defined in the following mutual

recursive equations:

[a)ff if ¢ 2 for any c € C,
Gs(C,a)lC] = [a)(Fs(Ueece s(e,a))[C]) if there exist ¢,¢’ € C' such that ¢ and ¢ 2,

(/\C"Gcomb {s(c.:z)lcEC})((”) }-S (", [(’])A [(I](‘FD(UCGC e, a)[C]) otherwise.

98

B xe if CeC,
Fs(O)C] = {mc. Awea(Gs(C,a)[CU{C)]) otherwise.

where s(c,a) = {¢' € C | ¢ = ¢’} and comb({C1,...,Cn}) = {{c1,---,¢n} |1 €Ch,...y0n €
C,} for n > 0. For a guarded process p, we define F(p) = Fp(y)({co})[0] where ¢o is the

" initial process constant of P(p). o

Let consider S = {co < a.er, c L qeg, ¢ E aco + a.cy +b.cy}) and A = {a,b},
then F(co) is given by the following equations, where a family of sets of process constants is

omitted.

Fleo) = Fs({eo}) = vaye){a)Fs({er}) AlalFs({er}) A [bfF

Fs({e1}) = vag,y(a)Fs({e2}) Aa]Fs({e2}) A [bE
(o) M) (o) A Al Fs({eo,e1}) A (D) ey A By
Fs {e1,e2}) A [a)Fs({c1,c2}) A [DIfE

s({e2}) = vay,y(a)ay
)
Fs({er,e2}) = vaye o1-(a)Fs({co. e2}) A (@) e c) N[} Fs({cos e1,¢2}) A Bl e,y
):
X

)Fs
)
)
Fs({eosc1}) = va{eey-da
X
Fs({corea}) = 12{eoe0) ()T feo, 01} MWy Al ageny A D7)

-7:5({609 €1, C?}i) = I/l{uo,cl w} (1>’l{cl,c'3} A <(I’>:L{COYC1 7132} A [(L]H’{COaChCQ} A [b]ﬂf{c]}

We show F(p) is a sound and complete formula of p in the following lemmas and propo-

sition.

Lemma 4.11 Let S be a complete set of process definitions, Co = {c | c pe S} and C be
a set of subsets of Co. For any C C Co and for any ¢ € C, ¢ |= Fs(C)[C]. o

Definition 4.12 For two processes p and ¢, let C), and C, be the sets of all process constants
of P(p) and P(q) respectively, and ¢y € C), and ¢ € C, be initial process constants of C,
and C, respectively. The corresponded relation over subsets of C, and C}, is a binary relation

=p,C 207 x 2% defined in the following:

1. {co} =pq {0}

2. For C = {c1,...,¢c,} € Cpand €’ = {c},..«,c),} C Cy, suppose C =, , C'. Then for
any action a, {c/ | i = ¢, 1 <i<n} =, {c] | N ', 1< j<m}.

3. For C C Cpand €' C C,p, if € =,, C' then {¢" | ¢ 2 ",c€ C}=p, {" | S ", €

C'} for any action «.]

Lemma 4.13 For two processes p and q, let C, and C, be the set of all process constants of
P(p) and P(q), and co € C,, and ¢{y € C, be initial process constants of C, and C, respectively.
Let C C Cp and C' C Cy and suppose C =, , C' and for any.c' € C' for some C C 2C7,
= Fpp)(O)NC): Ifcl=f foree C, thenc' |= f for ! € C'. -

99

proof The proofis by structural induction on f. First, we prove the lemma for the case that f
has no v operator. It is sufficient to consider only the cases f = (a)f’ and f = [a] f'. Anofher :
cases are immediate. In the following, we abbreviate P(p) as S for easiness description.

When f = (a)f’, let ' be {¢; | 1 < i < n} and C' be {cj | 1 < j < m}. Note that
ci % for ¢; € C since ¢; |= f. S0 G5(C.a) = (Acwecomp(is(eaylccct (@) Fs(CC U {CH)) A
[a)(Fs(Uzee s(e,a))[C U {C}]). From assumption, we can define C” = {c¢/ | ¢; = ¢/, ¢! |=
f',1 < i < n}. Then there exists C" = {c/' | ¢, = ¢/, ¢} |= Fs(C")[CU{C}],1 < i< m}.
Since C" =, C" and by the induction hypothesis, ¢}’ |= f' for ¢" € C"". Therefore ¢’ |= f
for every ¢’ € (.

When f = [a]f’. first we assume ¢ — for any ¢ € C. Then let C” be Ueec s(c,a), and
C" be Upecr s(¢'.a). From assumption, for any ¢’ € C”, ¢ |= f'. And for any ¢ € C",
" = Fs(C"). Since C" =, , C" and by the induction hypothesis, ¢ |= f’ for any ¢ € C"'.
Therefore ¢ |= f for every ¢’ € C’. Another cases are same as the above.

Finally, from Proposition 2.14. ¢, |= f for any formula f. _]

Proposition 4.14 1. p |= F(p).
2. p <4 q implies q |= F(p).

3. q |= F(p) implies p <, q. o
The validity of Algorithm 4.2 is also shown by the following theorem.

Theorem 4.15 Under the assumption of algorithm 4.2, if there exists a process p satisfying
an enumeration of facts, the inferred sequence of processes by Algorithm 4.2 converges in the

limit to a process p' such that p <, p'. ' o

5 A Prototype for the Process Synthesis System

In this section, we introduce a prdtotype system SORP : Synthesizer of Recursive Processes
based on the Algorithm 4.2. This system adopts a graphical user interface to display the
synthesized processes (See Fig. 5). The system is implemented using SICStus Prolog and
X-window system.

As an example, we input three formulae, in Fig. 3, to the prototype system. Its output
in Fig. 5. ‘The extreme left picture in Fig. 5 shows an 1/0 display, where we input the three
formulae, i.e. va.{a){b)x, (b)tt, and [«][b][b]ff, and quit the system. Note that ‘$x:"in the
picture means ‘va.’. Three other pictures are output processes which the system synthesizes

in each input step. Note that each process corresponds to the one in Fig. 3.

6 Concluding Remarks and Related Works

This paper presented the synthesis algorithm for a recursive process based on the enumer-
ation of facts, which must be satisfied by the intended target process. Its validity was also

discussed.

100

@ <] Co <@
o~ co
b
b.Cl1 0
b
b,L0 b,CO} O
b
| ?- dise. A c1
> $x:<a>x.
CO0=a.b.CO
>> T.

C0=a.b.C0+b.0
>> [a]l[b][b]F.
CO0=a.b.C1+b.0,
Ci=a.b

>> quit.

))
no = 1= A I <A

5: Output examples of the prototype system.

. As mentioned in the introduction, little had been investigated for inductive inference of
processes. However, some deductive approaches exist. These approaches find a model which
satisfies a consistent formula. Kozen [17] provided an algorithm by tableau method to show
consistency of a formula in p-calculus. The algorithm builds a finite tree-like model which a
consistent formula f satisfies. Since the model is a tree, not a graph, the algorithm cannot
make a loop, i.e. a recursive process. Actually, he showed that the depth of the model is -
exponential in |f|>. Streett and Emerson [27] presented a decision procedure to build an
automaton model which satisfies a given formula f. The built automaton model is a finite
tree with states in O(2%Pl). Similar approaches for temporal logic are in [18] and [3]. [18]
presented a satisfiability algorithm to create a model satisfied by a given formula in liner time
propositional temporal logic by using tablaue method, though its logic has no fixed point
opera;.tors. (3] proposed vT L., which is liner time temporal logic with fixed point operators u
and v and provided an algorithm that constructed a graph model of given formula.

Stirling’s work [22] seems to be related with our work. In [22], he showed a sound and
l complete deductive system NL for finite processes. Using NL, we can deduce that a process
does sa.tisfy a certain formula. For example, p F () f implies p + ¢ F (a)f, and also p I [a]f,
q + [e]f imply p+ q F [a]f. From these rules, a formula [a](b)T A (a)(c)T can infer, for

101

example, a process @.b.0 + a.(b.0+ c.0). In this sense, we can regard his system as a deductive
system for process synthesis. Of course, NL has no recursive expressions. NL is needed to be
extended to synthesize recursive processes effectively.

The difference between our approach and deductive ones is whether input formulae are
fixed or not. When the number of input formulae is finite and the sequence of formulae
is fixed, our algorithm gives similar results as the deductive one. In practice, however, a
" complete specification may not be given. After synthesizing, the user may want to input
more facts and/ 61‘ to add more functions to an output process. Our approach has advantages
over deductive ones in such a situation.

There is a restriction on input formulae in our algorithm. The formulae must be within
L4. However overcoming the problem leads us to a process synthesis algorithm whose output
converges in the limit to a process equivalent to an intended target one.

The time or space complexity of the algorithm is not discussed and is left for a future

study.

SENM

[1] Angluin, D.: “Learning Regular Sets from Queries and Counterexamples”, Inf. and

Comput, 75, pp.87-106(1987).

(2] Bergstra, J.A. and J.W. Klop: “Process Algebra for Synchronous Communication”,
Info. and Cont., 60, pp109-137(1984).

[3] Baniegbal, B. and H. Barringer: “Temporal Logic with Fixed Points”, Lecture Notes in

Comput. Sci. 398, pp62-74, Springer-Verlag(1989).

[4] Brinksma, E.: “A Tutorial on LOTOS”, Proc. IFIP Workshop on Protocol Specification,
Testing and Verification V. North-Holland, pp73-84(1986).

[5] Brookes, S.D., C.A.R Hoare and A.W. Roscoe: “A Theory of Communicating Sequential
Processes™, J. ACM., 31, 3, pp.560-599(1984).

[6] Clocksin, W.F. and C.S. Mellish: “Programming in Prolog”, Springer-Verlag(1981).

[7] Emerson, E.A.: “Temporal and Modal Logic”, Handbook of Theoretical Computer

Science, Elsevier Science Publishers B.V., pp.995-1072(1990). -

[8] Fantechi, A.. S. Gnesi and G. Ristori: “Compositional Logic Semantics and LOT0S”,
Protocol Specification, Testing and Verification, XL., IFIP, pp.365-378

[9] Gotzhein, R.: “Specifying Communication Services with Temporal Logic”, Protocol
Specification. Testing and Verification, XL, pp.295-309(1990).

[10] van -Gla,l)l)eol\", R.J.: “The Linear Time — Branching Time Spectrum”, Lecture Notes in

Comput. Sci. 458, Springer-Verlag(1990).

102

[11] Graf, S. and J. Sifakis: “A Logic for the Description of Non-deterministic Programs and

Their Properties”, Inf. and contr., 68, pp.254-270(1986)

[12] Hennessy, M. and R. Milner: “Algebraic Laws for Nondeterminism and Concurrency”,
J. ACM., 32, 1, pp.137-161(1985).

-[13] Hennessy, M.: “Algebraic Theory of Processes”, The MIT Press(1988).

[14] Hindley, J.R. and J.P. Seldin: “Introduction to Combinators and A-Calculus”, London

Mathematical Society Student Texts 1, Cambridge Univ. Press(1986).
[15] Hoare, C.A.R.: “Communicating Sequential Process”, Prentice Hall(1985).

[16] Kimura, S.. A. Togashi and S. Noguchi: “A Synthesis Algorithm of Basic Processes by
Modal Formulas” (in Japanese), Trans. IEICE, J75-D-I, pp.1048-1061(1992). -

[17] Kozen, D.: “Results on the Propositional p-calculus”, Theoret. Comput. Sci., 27,

pp.333-354(1983).

[18) Manna, Z. an P. Wolper: “Synthesis of Communicating Processes from Temporal Logic
Specifications”, ACM Trans. on Programming Languages and Systems, 6-, 1, pp68-
93(1984).

[19] Milner, R.: “Communication and Concurrency”, Prentice-Hall(1989).

20] Park. D.: “Concurrency and automata on infinite sequences”, Lecture Notes in Comput.
b o i .

Sci. 104, pp.167-183, Springer-Verlag(1981).

[21] Shapiro, E.Y.: “Inductive Inference of Theories From Facts”, Technical Report 192,

Yale Univ(1981).

[22] Stirling, C.: “A Proof-Theoretic Characterization of Observational Equivalence”, The-

oretical Computer Science, 39, pp.27-45(1985).

[23] Stirling, C.: “A Modal Characterization of Observational Conguruence on Finite Terms

of CCS”, Info. and Comput., 68, pp.125-145(1986).

[24] Stirling, C.: “Modal Logics For Communicating Systems”, Theoretical Computer Sci- -

ence, 49, pp.311-347(1987).

[25] Stirling, C.: “An Introduction to Modal and Temporal Logics for CCS”, Lecture Notes
in Comput. Sci. 491, Springer-Verlag, pp.2-20(1991).

[26] Stirling, C.: “Modal and Temporal Logics”, Handbook of Logic in Computer Science
volume 2. Oxford Science Publications, pp.477-563(1992).

[27] Streett, R.S. and E.A. Emerson: “An Automata Theoretic Decision Procedure for the

Propositi_d]m] Mu-Calculus™. Info. and Comput. 81, Academic Press, pp.249—26_4(1989).

