Two remarks on the subadditivity inequalities in von Neumann algebras ¹

by O. E. TIKHONOV

Taking into account a developed theory of operator monotone and operator convex functions (see e.g. [1-3]) it appears interesting to study operator subadditive functions. We do this within the context of von Neumann algebras though the main result is essentially a statement on 2×2 -matrices.

In what follows we suppose that M is a von Neumann algebra and ϕ : $[0,\infty) \to \mathbb{R}$ is a Borel measurable function bounded on bounded subsets of $[0,\infty)$. We say that ϕ is operator subadditive with respect to M or briefly M-subadditive if $\phi(a+b) \leq \phi(a) + \phi(b)$ for every pair a, b of positive operators from M.

EXAMPLES. It is easy to see that the following functions on $[0, \infty)$ are M-subadditive for any M:

1) $\phi(t) = \alpha t + \beta \ (\alpha \in \mathbb{R}, \beta \in \mathbb{R}^+);$

2) $\phi(t) = 1/(\alpha t + 1) \ (\alpha \in \mathbb{R}^+);$

3) an arbitrary function ϕ satisfying $\alpha \leq \phi(t) \leq 2\alpha$ for some $\alpha \in \mathbb{R}^+$.

Subadditive real functions used in analysis often satisfy $\phi(0) = 0$. The following theorem shows that the class of operator subadditive functions satisfying this condition uses to be very small.

THEOREM 1. Let M be a von Neumann algebra and let there exist a function $\phi: [0, \infty) \to \mathbb{R}$ such that $\phi(0) = 0$, ϕ is M-subadditive, and ϕ is not of the form $\phi(t) = \alpha t$ with $\alpha \in \mathbb{R}$. Then M is commutative.

Proof. Let M be noncommutative. Suppose ϕ is M-subadditive and $\phi(0) = 0$. We will show that ϕ has to be of the form $\phi(t) = \alpha t$ for some $\alpha \in \mathbb{R}$.

Since M is noncommutative, it is easy to check that there exist two equivalent and mutually orthogonal nonzero projections in M, i.e., there exists a nonzero partial isometry $v \in M$ such that the projections $p = v^*v$ and $q = vv^*$ are mutually orthogonal (see e.g. [4]). Take positive reals ϵ , δ such that $\epsilon \leq \delta$ and consider the pair of operators:

$$a = \epsilon p + \sqrt{\epsilon(\delta - \epsilon)} v + \sqrt{\epsilon(\delta - \epsilon)} v^* + (\delta - \epsilon) q,$$

$$b = \epsilon p - \sqrt{\epsilon(\delta - \epsilon)} v - \sqrt{\epsilon(\delta - \epsilon)} v^* + (\delta - \epsilon) q.$$

Observe that a and b are positive scalar multiples of projections and a straightforward computation shows that $\phi(a+b) = \phi(2\epsilon)p + \phi(2(\delta-\epsilon))q$, $\phi(a) = (\phi(\delta)/\delta)a$, $\phi(b) = (\phi(\delta)/\delta)b$. Whence, after multiplying the inequality $\phi(a+b) \le \phi(a) + \phi(b)$ by p from the left and the right we obtain $\phi(2\epsilon)p \le (2\epsilon\phi(\delta)/\delta)p$. Hence, $\phi(2\epsilon)/2\epsilon \le \phi(\delta)/\delta$. As the only restriction imposed on ϵ and δ is $0 < \epsilon \le \delta$, it follows that $\phi(t)/t$ is a constant, say α , on $(0, \infty)$. Thus, $\phi(t) = \alpha t$ on $[0, \infty)$.

¹Supported by Russian Foundation for Basic Research, grant 93-011-16099.

By similar arguments, we can also prove the following.

THEOREM 2. Let τ be a semifinite normal faithful trace on a noncommutative von Neumann algebra M. Let $\phi: [0, \infty) \to \mathbb{R}$ satisfy $\phi(0) = 0$ and

$$\tau(\phi(a+b)) \le \tau(\phi(a)) + \tau(\phi(b)) \tag{*}$$

for every pair a, b of positive operators from M such that both sides of the inequality are well-defined. Then ϕ is concave on $[0, \infty)$.

This theorem may be viewed as a converse to the well-known assertion that, under certain restrictions, the inequality (*) holds if ϕ is supposed to be a concave function on $[0, \infty)$ with $\phi(0) = 0$ (see [5], [6], [7]).

ACKNOWLEDGEMENT. The author would like to thank P. G. Ovchinnikov for a fruitful conversation.

REFERENCES

- 1. K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177–216.
- 2. J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58-71.
- 3. F. Hansen and G. K. Pedersen, Jensen's inequality for operators and Löwner's theorem, *Math. Ann.* 258 (1982), 229-241.
 - 4. M. Takesaki, Theory of operator algebras I (Springer-Verlag, 1979).
- 5. T. Fack and H. Kosaki, Generalized s-numbers of τ -measurable operators, *Pacific J. Math.* 123 (1982), 257–262.
- 6. L. G. Brown and H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras, J. Oper. Theory 23 (1990), 3-19.
- 7. O. E. Tikhonov, Convex functions and inequalities for traces, in: Konstr. Teor. Funktsii i Funktsional. Anal. 6 (Kazan Univ., 1987), 77-82 (in Russian).

Research Institute of Mathematics and Mechanics Kazan University,

Universitetskaya 17,

Kazan, Tatarstan,

420008, Russia.

E-mail: tikhonov@niimm.kazan.su