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In what follows, a capital letter means a bounded linear operator on a complex Hilbert

space $H$ . An operator $T$ is said to be positive (in symbol : $T\geq 0$) if $(Tx, x)\geq 0$ for all

$x\in H$ . Also an operator $T$ is strictly positive (in symbol : $T>0$) if $T$ is positive and

invertible. We write $A\gg B$ if $logA\geq logB$ which is called the chaotic order $[\mathrm{F}\mathrm{K}][\mathrm{F}\mathrm{F}\mathrm{K}2]$ .
Results in this paper will appear in [F9] and [F10].

\S 1. Generalizations of Kosaki trace inequalities

and related trace inequalities on chaotic order

By using an extension of the Furuta inequality and following after Kosaki’s nice tech-

nique, we shall show generalizations of trace inequalities by Kosaki and related trace

inequalities on chaotic order (i.e., $logA\geq logB$).

It is well known that $A\geq B\geq 0$ ensures $Tr(f(A))\geq Tr(f(B))$ , where $Tr$ denotes

the usual trace and $f$ is a continuous increasing function on $\mathrm{R}_{+}$ with $f(\mathrm{O})=0$ . Kosaki
$[\mathrm{I}<]$ shows the following very interesting trace inequality as a generalization of the above

mentioned trace inequality.

Theorem A [K]. Assume $A\geq B\geq 0$ and $p>1_{f} \alpha\geq{\rm Max}\{-1, \frac{-p}{2}\}$ .
(i) Then there exists a partial isometry operator $Usatish^{i}ng$

$A^{\frac{\alpha}{2}}B^{p}A^{\frac{\alpha}{2}}\leq U^{*}A^{p+\alpha}U$ .

(ii) For a contin$\mathrm{c}\iota ous$ increasing function $f$ on $\mathrm{R}_{+}$ with $f(\mathrm{O})=0$, we have

$Tr(f(A^{\frac{\alpha}{2}}BpA \frac{\alpha}{2}))\leq Tr(f(A^{p}+\alpha))$

In the above statements the invertibility of $A$ is assumed when $\alpha<0$ .

Recently Ando-Hiai [AH] established various $\log$-majorization results to ensure excellent

and useful inequalities for unitarily invariant norms.

On the other hand, as an extension of [H] and [L], we established the following Furuta

inequality ( $[\mathrm{F}1][\mathrm{F}2][\mathrm{F}3][\mathrm{F}\mathrm{U}\mathrm{J}]$ and [KA]).
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Theorem B. If $A\geq B\geq 0$ , then for each $r\geq 0$ ,

(i) $(B^{r}A^{P}Br)^{1/}q\geq(B^{\Gamma}BPB^{r})^{1/}q$

and

(ii) $(A^{r}A^{p}Ar)^{1/q}\geq(A^{r}B^{p}A\Gamma)^{1}/q$

hold for $p$ and $q$ such that $p\geq 0$ and $q\geq 1$ with $(1+2r)q\geq p+2r$.

In Furuta [F8] we established the following extension of Theorem $\mathrm{B}$ , which interpolates

this $\log$ majorization results of Ando-Hiai and the Furuta inequality and moreover extends

the results in $[\mathrm{F}\mathrm{F}\mathrm{K}1],[\mathrm{F}\mathrm{F}\mathrm{K}2],$ $[\mathrm{F}\mathrm{K}],[\mathrm{F}4]$ and [F5].

Theorem $\mathrm{C}$ [F8]. If $A\geq B\geq 0$ with $A>0$ , then for each $t\in[0,1]$ and $p\geq 1$ ,

$F_{p,t}(A, B, r, S)=A^{\frac{-r}{2}} \{A^{\frac{r}{2}}(A^{\frac{-t}{2}B^{p}A^{\frac{-t}{2}}})^{s}A\frac{r}{2}\}^{\frac{1-l+r}{(\mathrm{p}-t)\cdot+r}}A^{\frac{-r}{2}}$

is a decreasing function of both $r$ and $s$ for any $s\geq 1$ and $r\geq t$ and the following inequality

holds $F_{p,t}(A, A, r, s)\geq F_{p,t}(A, B, r, \mathit{8})$ , that is, for each $t\in[0,1]$ and $p\geq 1$ ,

$A^{1-t+r} \geq\{A^{\frac{r}{2}}(A^{\frac{-t}{2}B^{p}A^{\frac{-t}{2}}})^{s}A\frac{r}{2}\}^{\frac{1-t+r}{(\mathrm{p}-t)\iota+r}}$

holds for any $s\geq 1$ and $r$ such that $r\geq t$ .

The following Theorem 1.1 is an extension of Theorem A [K].

Theorem 1.1 [F9]. Let $A$ and $B$ be positive operators such that $A\geq B\geq 0$ with

$A>0$ . Assume that $p\geq 1_{f}s\geq 1,$ $t\in[0,1]$ and $\beta\geq{\rm Max}[t-1, \frac{1}{2}\{t(s+1)-ps\}]$ . Then

the following inequalities hold.

(I) There exists the a partial isometry operator $U$ satisfying

$A\mathrm{f}\mathrm{l}g2(A^{\frac{-l}{2}}B^{p}A^{\frac{-l}{2})^{s}2}A\leq U^{*}A^{(_{P^{-t}})s+\beta}U$.

(II) For a continuous increasing function $f$ on $\mathrm{R}_{+}$ with $f(\mathrm{O})=0$ ,

$Tr \{f(A^{E\rho_{2^{\sim})}}2(A\frac{-t}{2}BpA^{\frac{-l}{2}})sA\}\leq Tr\{f(A^{(pt}-)s+\rho)\}$ .

The following Theorem 1.2 is a parallel result to Theorem 1.1.
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Theorem 1.2 [F9]. Let $A$ and $B$ be positive invertible operators such that $A\gg B$

(i.e., $logA\geq logB$ ). Assume that $p\geq u>0,$ $s\geq 1,$ $\alpha\in[0,1]$ and $\beta\geq-u\alpha$ .
Then the following inequalities hold.

(I) There exists the a partial isometry operator $U$ satisfying

$A^{\frac{\beta}{2}}(A \frac{u\alpha}{2}B^{p}A^{\frac{u\alpha}{2})A^{4}}s2\leq U^{*}A^{(u\alpha+)+\rho}psU$ .

(II) For a continuous increasing function $f$ on $\mathrm{R}_{+}$ with $f(\mathrm{O})=0$ ,

$\tau_{r\{f}(A^{\frac{\beta}{2}}(A^{\frac{u\alpha}{2}B^{p}A^{\frac{u\alpha}{2})^{s}A)}}\frac{\beta}{2}\}\leq^{\tau r}\{f(A^{(u}\alpha+_{P)}s+\beta)\}$ .

Corollary 1.3 [F9]. Let $A$ and $B$ be positive invertible operators such that $A\gg B$

(i.e., $logA\geq logB$ ). Assume that $p>0$ , and $\beta\geq 0$ . Then the $f_{ollow},$$ing$ inequalities hold.

(I) There exists the a partial isometry operator $U$ satisfying

$A^{\frac{\beta}{2}}B^{p}A^{\frac{\beta}{2}}\leq U^{*}A^{p+\beta}U$ .

(II) For a continuous increasing function $f$ on $\mathrm{R}_{+}$ with $f(\mathrm{o})=0$ ,

$Tr \{f(A^{\frac{\beta}{2}}BpA\frac{\beta}{2})\}\leq Tr\{f(Ap+\rho)\}$.

\S 2. Extensions of Ando’s characterization of

operators satisfying $logA\geq logB$ and its applications

It is shown in Ando [A] that $A\gg B$ holds if and only if $A^{p}\geq(A^{\mathrm{g}}2B^{p}A^{\mathrm{z}\iota}2)2$ holds for

all $p\geq 0$ .

In this section , we state an extension of this result and its application.

Theorem 2.1 [F10]. Let $A$ and $B$ be positive invertible operators. Then the following

(I) and (II) holds.

(I) If $A\gg B$ (i.e., $logA\geq logB$ ) , then for each $\alpha\in[0,1]$ , and all $p\geq 0$ and $u\geq 0$ ,

$G_{p,u,\alpha}(A, B,r, s)=A^{\frac{-ur}{2}} \{A\frac{ur}{2}(A\frac{u\alpha}{2}B^{p}A^{\frac{u\alpha}{2})^{s}}A\frac{ur}{2}\}^{\frac{u(\alpha+\prime)}{(u\alpha+\mathrm{p})*+u\prime}}A^{\frac{-ur}{2}}$

is a decreasing function of both $s$ and $r$ such that $s\geq 1$ and $r+\alpha\geq 1$ .
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(II) $A\gg B$ holds if and only if $g(s, r)=A^{\frac{-r}{2}(A^{\frac{r}{2}B^{S}}}A^{\frac{r}{2})^{\frac{r}{\iota+r}}}A^{\frac{-r}{2}}$ is a decreasing function
of both $r\geq 0$ and $s\geq 0$ .

Theorem 2.2 [F10]. Let $A$ and $B$ be positive invertible operators. Then the following

assertions are mutually equivalent.

(I) $A\gg B$ (i.e., $logA\geq logB$ ).

(II) For each $\alpha\in[0,1]$ , and all $p\geq 0$ and $u\geq 0$,

$A^{u(\alpha+r)} \geq \mathrm{f}^{A^{\frac{ur}{2}}}(A\frac{u\alpha}{2}B^{p}A^{\frac{u\alpha}{2})^{s}A^{\frac{ur}{2}\}}}\frac{u(\alpha+r)}{(u\alpha+\mathrm{p})l+ur}$

holds for any $s\geq 1$ and $r$ such that $r+\alpha\geq 1$ .

(III) For each $\alpha\in[0,1]_{f}$ and all $p\geq 0$ ,

$A^{p(\alpha+r})\geq\{A^{L^{\underline{r}}}2(A^{L^{\alpha}}2^{-}BpA^{R_{\frac{\alpha}{2}}})^{S}AL^{\underline{r}}2\}^{\frac{\alpha+r}{(\alpha+1)\epsilon+\prime}}$

holds for any $s\geq 1$ and $r$ such that $r+\alpha\geq 1$ .

(IV) For each $\alpha\in[0,1]$ , and all $p\geq 0$ ,

$A^{\alpha+r} \geq\{A^{\frac{r}{2}}(A\frac{\alpha}{2}B^{p}A^{\frac{\alpha}{2}})SA^{\frac{r}{2}}\}^{\frac{\alpha+r}{(\alpha+\mathrm{p})l+r}}$

holds for any $s\geq 1$ and $r$ such that $r+\alpha\geq 1$ .

Theorem 2.3 [F10]. Let $A$ and $B$ be positive invertible operators. If $A \geq(A^{\frac{1}{2}}BA^{\frac{1}{2})}\frac{1}{2}$ ,

then for each $\alpha\in[0,1]$ , and all $p\geq 1$ and $u\geq 1$ ,

$H_{p,u,\alpha}(A, B, r, \mathit{8})=A^{\frac{-ur}{2}}\{A\frac{ur}{2}(A\frac{u\alpha}{2}B^{p}A^{\frac{u\alpha}{2})^{s}A}\frac{ur}{2}\}^{\frac{u(\alpha+r)}{(u\alpha+p)\epsilon+ur}A^{\frac{-ur}{2}}}$

is a decreasing function of both 8 and $r$ such that $s\geq 1$ and $r+\alpha\geq 1$ .

Theorem 2.4 [F10]. Let $A$ and $B$ be positive invertible operators. Then the following

assertions are mutually equivalent.

(I) $A \geq(A^{\frac{1}{2}}BA\frac{1}{2})^{\iota}2$ .

(II) For each $\alpha\in[0,1]$ , and all $p\geq 1$ and $u\geq 1$ ,

$A^{u(\alpha+r}) \geq\{A^{\frac{ur}{2}(A}A^{\frac{u\alpha}{2}B^{p}}\frac{u\alpha}{2})^{s}A\frac{ur}{2}\}^{\frac{u(\alpha+r)}{(u\alpha+\mathrm{p})^{\mathrm{q}}\vee+ur}}$
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holds for any $s\geq 1$ and $r$ such that $r+\alpha\geq 1$ .

(III) For each $\alpha\in[0,1]$ , and all $p\geq 1$ ,

$A^{p(\alpha+r)} \geq\{A^{L^{r}}2(A^{R_{\frac{\alpha}{2}}}B^{p}AR\frac{\alpha}{2})^{s}A^{L^{\underline{r}}}2\}^{\frac{\alpha+r}{(\alpha+1)*+r}}$

holds for any $s\geq 1$ and $r$ such that $r+\alpha\geq 1$ .

(IV) For each $\alpha\in[0,1]$ , and all $p\geq 1$ ,

$A^{\alpha+r} \geq\{A^{\frac{r}{2}}(A\frac{\alpha}{2}B^{p}A^{\frac{\alpha}{2})\}}sA^{\frac{r}{2}}\frac{\alpha+r}{(\alpha+p)*+r}$

holds for any $\mathit{8}\geq 1$ and $r$ such that $r+\alpha\geq 1$ .

Remark 2.1. When we replace the hypothesis $A\gg B$ in Theorem 2.2 by
$A \geq(A^{\frac{1}{2}}BA^{\frac{1}{2})}\frac{1}{2}$ in Theorem 2.4, then all the results in Theorem 2.2 remain valid if we

replace $p\geq 0$ and $u\geq 0$ in Theorem 2.2 by $p\geq 1$ and $u\geq 1$ in Theorem 2.4.

Also we remark that when we replace the hypothesis $A\gg B$ in (I) of Theorem 2.1 by
$A\geq(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}$ in Theorem 2.3, but the result in (I) of Theorem 2.1 remain valid if we

replace $p\geq 0$ and $u\geq 0$ in Theorem 2.1 by $p\geq 1$ and $u\geq 1$ in Theorem 2.3.

Remark 2.2. Put $r+\alpha=1$ and $s=1$ in (IV) of Theorem 2.4, then $A^{u}\geq$

( $A^{\frac{u}{2}}B^{p}A^{\frac{u}{2})^{\frac{u}{p+u}}}$ holds for any $p\geq 1$ and $u\geq 1$ , which has been shown in [Theorem 2, $\mathrm{F}\mathrm{F}\mathrm{W}$].

Also put $r+\alpha=1$ and $s=1$ in (IV) of Theorem 2.2, then we have $A^{u}\geq(A^{\frac{u}{2}}B^{p}A^{\frac{u}{2})^{\frac{u}{\mathrm{p}+u}}}$

holds for any $p\geq 0$ and $u\geq 0$ , and this result is already obtained in [Theorem I,FFK2]

and [Theorem 1,F5].

\S 3. Characterizations of operators satisqing $logA\geq logB$

associated with sonle operator equations and parallel results

Theorenl 3.1 [F10]. Let $A$ and $B$ be positive invertible operators. Then the following

assertions are mutually equivalent.

(I) $A\gg B$ (i.e., $logA\geq logB$ )

(II) For each $\alpha\in[0,1]$ and for any $p\geq u>0$ and $s\geq 1$ , there exists a unique invertible

positive contraction $\tau_{p,u_{)}\alpha}(s)$ such that
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$T_{p,u,\alpha}( \mathit{8})A^{pu\alpha}s+(s-1)Tu,\alpha(p,S)=A^{\frac{-u\alpha}{2}}(A^{\frac{u\alpha}{2}}BpA\frac{u\alpha}{2})^{S}A^{\frac{-u\alpha}{2}}$

(III) For any $p\geq 0$ , there exists a unique invertible positive contraction $T_{p}$ such that

$T_{pp}A^{p}T=B^{p}$ .

Next we state the following parallel result to Theorem 3.1.

Theorem 3.2 [F10]. Let $A$ and $B$ be positive invertible operators. Then the following

assertions are mutually equivalent.

(I) $A \geq(A^{\frac{1}{2}}BA^{\frac{1}{2})}\frac{1}{2}$

(II) For each $\alpha\in[0,1]$ and for any $p\geq u\geq 1$ and $s\geq 1$ , there exists a unique invertible

positive contraction $T_{p,u,\alpha}(s)$ such that

$T_{p,u,\alpha}(s)A^{p}s+u \alpha(s-1)T_{p,\alpha}u,(S)=A\frac{-u\alpha}{2}(A\frac{u\alpha}{2}BpA\frac{u\alpha}{2})^{s}A\frac{-u\alpha}{2}$

(III) For any $p\geq 1$ , there exists a unique invertible positive contraction $T_{p}$ such that

$T_{p}A^{p}T_{p}=B^{p}$ .

Related to Theorem 3.1 and Theorem 3.2, we have the following parallel result by the

same way as proof of Theorem 3.1.

Theorenl 3.3 [F10]. Let $A$ and $B$ be positive invertible operators. Then the following

assertions are mutually equivalent.

(I) $A\geq B\geq 0$ .

(II) For each $t\in[0,1]$ and for any $p\geq 2$ and $s\geq 1$ , there exists a unique invertible positive

contraction $\tau_{p,t}(s)$ such that

$\tau_{p,t(_{S)AT_{p,t()A^{\frac{t-1}{2}}}}}(p-t)s+t-1s=(A\frac{-t}{2}BpA^{\frac{-t}{2}})^{s}A\frac{t-1}{2}$

(III) For any $p\geq 1$ , there exists a unique invertible positive contraction $T_{\mathrm{p}}$ such that
$T_{p}A^{p}T_{p}=A^{\frac{-1}{2}B^{p+1}A^{\frac{-1}{2}}}$ .
(IV) $A^{1+p}\geq(A^{L}2Bp+2A^{\mathrm{z}}2)^{\frac{1}{2}}$ for all $p\geq 0$ .

Results in this scetion are extensions of [Theorem 2, F6] and [Theorem 2.1, F7].
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\S 4. Addendum. An extension of Theorem $\mathrm{B}$

Recently we have the following result as an extension form of Theorem B.

Theorem $\mathrm{D}$ [FFK3]. If $A\geq B>0$ , then $(B^{\gamma}A^{\alpha}B^{\gamma})^{\beta}\geq(B^{\gamma}B^{\alpha}B^{\gamma})^{\rho}$ holds under

any one of the following conditions;

(i) $\frac{1}{\beta}\leq\alpha_{f}0<\beta<1$ , and $\gamma=\frac{\alpha\beta-1}{2(1-\beta)}$

(ii) $\frac{1}{\beta}\leq\alpha\leq 1,1<\beta\leq 2$ , and $\gamma=\frac{\alpha\beta-1}{2(1-\beta)}$

(iii) $\frac{1}{2}\leq\alpha\leq 1,2\leq\beta$, and $\gamma=\frac{\alpha\beta-1}{2(1-\beta)}$ .

Remark 4.1. (i) and (ii) are announced in $[\mathrm{Y}, \mathrm{p}61]$ , but we remark that (i) is nothing

but exchange of parameters $p,$ $q$ and $r$ in Theorem $\mathrm{B}$ , that is, put $(1+2r)q=p+2r$

for $r\geq 0,$ $p\geq 1$ and $q\geq 1$ in Theorem $\mathrm{B}$ , then we easily obtain $p\geq q\geq 1$ and we have

only to replace $p$ by $\alpha,$ $r$ by $\gamma$ and $\frac{1}{q}$ by $\beta$ , then we have (i) which is nothing but another

expression of (i) in Theorem B.

Moreover a simple proof of (ii) is obtained in [FFK3] along a mothod of [F2] by using

polar decomposition. Also in [FFK3] we obtained (iii) along a method of [F2]. We have

to assume invertibilty of $A$ and $B$ in the cases (ii) and (iii) since $\gamma\leq 0$ .

Remark 4.2. We should mention that Tanahashi [TA] has obtained several interesting

results closely related to Theorem D.
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