the generalized Numerical Range and its Boundary

Hiroshi Nakazato (Faculty of Science, Hirosaki Univ.)

中里博"

Abstract. We consider the boundary of C-numerical range of a matrix and its related topics in the theory of invariant polynomials

1. the generalized numerical range of a matrix as a semi-algebraic set.

We recall the definition of the C-numerical range. Denote by $M_n(\mathbf{C})$ the set of all $n \times n$ complex matrices.

Def. Let A, C be $n \times n$ complex matrices. Set

$$W_C(A) = \{tr(CUAU^*) : U \in U(n)\}$$

$$\tag{1.1}$$

where U(n) is the compact group of all unitary matrices of oder n. $W_C(A)$ is called the C-numerical range of A.

It is clear that C-numerical range is a unitary invariant of the suare matrix A: If B is unitarily similar to A, i.e, $B = U A U^*$, then $W_C(B) = W_C(A)$. If C is a rank one orthogonal projection, then the C-numerical range $W_C(A)$ coincides with the classical numerical range W(A),

$$W(A) = \{ (A\xi, \xi) : \xi \in \mathbf{C}^{n}, ||\xi|| = 1 \}.$$

The generalized numerical range $W_C(A)$ is the range of the real algebraic variety

$$U(n) = \{ U = \{ u_{i,j} \}_{1 \le i, j \le n} \in \mathbf{C}^{n^2} \cong \mathbf{R}^{2n^2} : \sum_{k=1}^{n} \mathbf{u}_{i,k} \overline{\mathbf{u}_{j,k}} = \delta_{i,j} \ (1 \le i, j \le n) \}$$
 (1.2)

under the polynomial mapping

(1.3).
$$X (\in M_n(\mathbf{C}) = \mathbf{C}^{n^2} \cong \mathbf{R}^{2n^2}) \mapsto tr(CXAX^*) (\in \mathbf{C} \cong \mathbf{R}^2)$$

We recall Tarski=Seidenberg's theorem.

Def. A subset Λ of the n-dimensional affine space \mathbb{R}^n is said to be semi-algebraic if Λ is an element of the Boolean algebra generated by the family of sets

$$Z_0(f) = \{x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n : f(x_1, x_2, \dots, x_n) = 0\},\$$

and

$$Z_1(f) = \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : f(x_1, x_2, \dots, x_n) > 0\}$$

where f varies over the real polynomial ring $\mathbf{R}[X_1, X_2, \dots, X_n]$.

In other words, Λ a semi-algebraic set $(\subset \mathbf{R}^n)$ $\Leftrightarrow_{\mathbf{definition}}$

$$\Lambda = \cup_{j=1}^m \cap_{k=1}^{l_j} Z_{\epsilon_{j,k}}(f_{j,k})$$

where $\epsilon_{j,k} \in \{0,1\}, f_{j,k} \in \mathbf{R}[X_1, X_2, \dots, X_n].$

Of course, an algebraic set $(\subset \mathbb{R}^n)$ is semi-algebraic.

a Corollary of Tarski=Seidenberg's theorem.

The range $\phi(\Lambda)$ of a semi-algebraic set $\Lambda \subset \mathbf{R}^m$ under a polynomial mapping $\phi = (\phi_1, \phi_2, \dots, \phi_n) : \mathbf{R}^m \to \mathbf{R}^n$, is semi-algebraic, where $\phi_j \in \mathbf{R}[X_1, X_2, \dots, X_m]$ $(1 \le j \le n)$.

A Simple Example

$$S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\} \subset \mathbb{R}^3$$

↓ projection

A closed disc

$$\{(x_1,x_2)\in\mathbf{R}^2: x_1^2+x_2^2\leq 1\}.$$

We remark that the closed disc is semi-algebraic and not algebraic.

Another Result about Semi-Algebraic Sets. The boundary $\partial \Lambda$ of a semi-algebraic set $\Lambda (\subset \mathbb{R}^n)$ is also semi-algebraic.

Using the result above, Takaguchi, Nishikawa and I proved the following.

Theorem. [Takaguchi=Nishikawa=Nakazato[1]] The boundary $\partial W_C(A)$ of C-numerical range $W_C(A) \subset C \cong \mathbb{R}^2$ is the union of a finite number of real algebraic arcs.

Furthermore, using the theorem above and Bezout's theorem, we proved the following. Theorem. The number of non ω -regular points of $\partial W_C(A)$ is finite.

2. Concrete C-numerical ranges

Second I consider the q-numerical ranges of matrices.

We set

$$C = C_q = \begin{pmatrix} q & \sqrt{1 - |q|^2} & 0 & 0 \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

We denote $W_{C_q}(A)$ by W(A:q). We recall N.K.Tsing's formula.

A formula due to Tsing.

$$W(A:q) = \bigcup \{ q(A\xi,\xi) + \sqrt{1-|q|^2} r \exp(i\theta) \sqrt{||A\xi||^2 - |(A\xi,\xi)|^2} : \xi \in \mathbf{C}^n, ||\xi|| = 1, 0 \le \mathbf{r} \le 1, 0 \le \theta \le 2\pi \}$$
(2.2).

This formula is rewriten as

$$W(A:q) = \bigcup \{ B(qz: \sqrt{\phi_A(z)} : z \in W(A:1) \}$$
 (2.3),

where $\phi_A(z) = \max\{||A\xi||^2 - |z|^2 : \xi \in \mathbb{C}^n, ||\xi|| = 1, (\mathbf{A}\xi, \xi) = \mathbf{z}\}$ (2.5), for $z \in W(A) = W(A:1)$.

We set

$$\psi_A(z) = \max\{||A\xi||^2 : \xi \in \mathbf{C}^n, ||\xi|| = 1, (\mathbf{A}\xi, \xi) = \mathbf{z}\}.$$

We review N.K.Tsin's results.

Theorem. [N.K.Tsing [6]] ψ_A is a concave function on W(A) and hence ϕ_A and $\sqrt{\phi_A}$ are also concave on W(A).

Using the theorem above we can prove the following two claims.

Proposition. $A, B_1, \ldots, B_m : matrices.$ $W(A) = \bigcup_{j=1}^m W(B_j), \phi_A(z) = \max\{\phi_{B_j}(z) : 1 \le j \le m\},$

$$\Rightarrow W(A:q) = \bigcup_{i=1}^{m} W(B_i:q)$$

for every q with |q| < 1.

Theorem. [2]] (1) Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are arbitrary complex numbers ($n \geq 3$). Then the following equation holds for every $z \in \text{Conv}(\{\lambda_1, \lambda_2, \ldots, \lambda_n\})$:

$$\phi_{\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)}(z) = \max\{\phi_{\operatorname{diag}(\lambda_{\mathbf{j}_1}, \lambda_{\mathbf{j}_2}, \lambda_{\mathbf{j}_3})}(z) : 1 \leq j_1 < j_2 < j_3 \leq n\}.$$

Hence

$$W(\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) : q) = \cup \{W(\operatorname{diag}(\lambda_{j_1}, \lambda_{j_2}, \lambda_{j_3}) : q) : 1 \leq j_1 < j_2 < j_3 \leq n\}.$$

(2) If
$$\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$$
 and $|\lambda_1| = |\lambda_2| = |\lambda_3| = 1$, then

$$\partial W(\operatorname{diag}(\lambda_1,\lambda_2,\lambda_3):q)\subseteq \{z\in C:|z|=1\}\cup \{\partial W(\operatorname{diag}(\lambda_j,\lambda_k):q):1\leq j< k\leq 3\}.$$

3. C-numerical ranges of 2 by 2 matrices

The study of C-numerical ranges of 2×2 matrices is reduces to that of

$$W(\begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} : q)$$

for $0 \le \beta \le \alpha, 0 \le q \le 1$.

We have the following formula(cf.[3]):

$$W(\begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} : q)$$

$$= \{r[(\alpha+\beta)/2+\sqrt{1-q^2}(\alpha-\beta)/2]\cos(\theta)+\sqrt{-1}r[(\alpha-\beta)/2+\sqrt{1-q^2}(\alpha+\beta)/2]\sin(\theta): 0 \leq r \leq 1, \\ 0 \leq \theta \leq 2\pi\}, where \ 0 \leq \beta \leq \alpha, 0 \leq q \leq 1.$$

4. Relation between generalized numerical ranges and invariant polynomials

It is well known that the following three conditions for 2×2 matrices x, y are mutually equivalent: (i) W(x) = W(y); (ii) tr(x) = tr(y), $tr(x^2) = tr(y^2)$, $tr(x^*x) = tr(y^*y)$; (iii) $y = UxU^*$ for some unitary matrix.

For $n \times n$ matrices x, y the following three conditions are mutually equivalent: (iv) $W_P(x) = W_P(y)$ for every orthogonal projection P; (v) $W_H(x) = W_H(y)$ for every Hermitian matrix H; (vi) $\det(\lambda I_n - (\alpha x + \beta x^*)) = \det(\lambda I_n - (\alpha y + \beta y^*))$ for every $\lambda, \alpha, \beta \in \mathbb{C}$.

In the case n=3, the condition (iv) is equivalent to the condition: W(x)=W(y), tr(x)=tr(y).

Question. $x, y: 3 \times 3$ matrices such that

$$tr(x) = tr(y), W(x:q) = W(y:q)$$

for every $0 \le q \le 1$.

 \Rightarrow ? $\exists U : \text{a unitary matrix such that } y = UxU^*\text{ or } y = U(^tx)U^*.$

I had the question above under the influence of the following theorem.

Theorem. (S.Teranishi, Nagoya Math. J. 1986[8]). Let x, y be arbitrary 3×3 complex matrices. (1) If

$$tr(x^k) = tr(y^k) \ (k = 1, 2, 3)$$
 (4.1),

$$tr(x^*x) = tr(y^*y) \tag{4.2},$$

$$tr(x^{*2}x) = tr(y^{*2}y)$$
 (4.3),

$$tr(x^{*2}x^2) = tr(y^{*2}y^2) \tag{4.4},$$

then there exits a unitary matrix U such that

$$y = UxU^*$$
 or $y = U(^tx)U^*$

. (2) If the conditions (4.1),(4.2),(4.3),(4.4) holds and if

$$tr(x^{*2}x^{2}x^{*}x) = tr(y^{*2}y^{2}y^{*}y)$$
(4.5),

then there exits a unitary matrix U such that $y = UxU^*$.

We denote by $M_n(\mathbb{C})$ the C^* -algebra of all $n \times n$ complex matrices. I want to find a *finite* subset F of $M_n(\mathbb{C})$ such that $\{W_C(\cdot): C \in F\}$ is a complete unitary invariant system(cf.[7], Theorem 10). This desire is influenced by the following theorem.

Theorem (cf.[9]) Let x, y be $n \times n$ complex matrices. Set $x_1 = x, x_2 = x^*, y_1 = y, y_2 = y^*$. If

$$tr(x_{i_1} x_{i_2} \cdots x_{i_p}) = tr(y_{i_1} y_{i_2} \cdots x_{i_p})$$

for every $1 \le p \le 2^n - 1, 1 \le i_1, i_2, \dots, i_p \le 2$, then there exits a unitary matrix U such that $y = UxU^*$.

We can obtain another criterion by using the following lemma.

Lemma. Let A, B be C^* -subalgebras of $M_n(\mathbb{C})$ such that $I_n \in A, I_n \in B$. If ϕ is a *-isomorphism of A onto B satisfying $\operatorname{tr}(\phi(\mathbf{x})) = \operatorname{tr}(\mathbf{x})$ for every $\mathbf{x} \in A$, then there exits a unitary matrix U such that $\phi(\mathbf{x}) = U\mathbf{x}U^*$ for every $\mathbf{x} \in A$.

Proposition. If

$$tr(x_{i_1} \ x_{i_2} \ \cdots x_{i_p}) = tr(y_{i_1} \ y_{i_2} \ \cdots y_{i_p})$$

for every $1 \le p \le 4$ $(n^2 - 3)$, $1 \le i_1, i_2, \ldots, i_p \le 2$, then there exists a unitary matrix U, such that $y = UxU^*$.

This proposition is stronger than the theorem above under the condition

$$n \geq 8$$
.

We have an analogous reslut.

Proposition. If

$$tr(x_{i_1} \ x_{i_2} \ \cdots x_{i_q}) = tr(y_{i_1} \ y_{i_2} \ \cdots y_{i_q})$$

for every $1 \le q \le 2$ $(n^2 - 3)$, $1 \le i_1, i_2, \ldots, i_q \le 2$, then there exists a *-preserving, Hilbert-Schmidt norm preserving linear bijection of the C*-algebra $C^*(x)$ onto the C*-algebra $C^*(y)$.

5. 3 by 3 orthostochastic matrices

We consider a 3×3 real matrix

$$A(x,y,z:u,v,w) = \begin{pmatrix} x+w & y+u & z+v \\ z+u & x+v & y+w \\ y+v & z+w & x+u \end{pmatrix} = xe_1 + ye_2 + ze_3 + ue_4 + ve_5 + we_6,$$

for $x \ge 0, y \ge 0, z \ge 0, u \ge 0, v \ge 0, w \ge 0, x + y + z + u + v + w = 1$. Here

$$e_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

$$e_4 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, e_5 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, e_6 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Such a matrix A(x,y,z:u,v,w) is called a 3×3 doubly stochastic matrix. A (3×3) doublystochastic matrix D is said to be orthostochastic if it is the Hadamard product (entrywise product) of some (3×3) unitary matrix U and its conjugate matrix \overline{U} . The necessary and sufficient condition of Au-Yeng and Poon for a doubly stochastic matrix

to be orthostochastic (cf.[5]) is stated in anther fashion(cf.[4]):

$$x^{2}y^{2} + x^{2}z^{2} + y^{2}z^{2} - 2xyz(x+y+z) + u^{2}v^{2} + u^{2}w^{2} + v^{2}w^{2} - 2uvw(u+v+w)$$

$$-4uvw(x+y+z) - 4xyz(u+v+w) - 2(xy+xz+yz)(uv+uw+vw) \le 0$$
(5.1)

Using this characterization we can obtain the following proposition.

Proposition ([4]) Suppose that A_3 is the affine hull of the compact convex set of all 3×3 doubly stochastic matrices and O_3 is the compact set of all 3×3 orthostochastic matrices. Denote by ∂O_3 the boundary of O_3 in the affine space A_3 . Then the following equation holds:

$$\partial O_3 = \{g \circ g : g \in SO(3)\},\$$

where SO(3) is the group of rotations in the 3-dimensional Euclidean space.

Consider a linear functional Ψ of the complex vector space $M_3(\mathbf{C})$,

$$\Psi: X = \{x_{i,j}: 1 \leq i, j \leq 3\} \in M_3(\mathbb{C}) \mapsto (x_{11} + x_{12} + x_{13} + x_{21} + x_{22} + x_{23} + x_{31} + x_{32} + x_{33}).$$

Suppose that A and C are complex 3×3 diagonal matrices with diagonal entriries

$$a = \{a_1, a_2, a_3\}, c = \{c_1, c_2, c_3\}$$

respectively. Consider the 3×3 matrix [A:C] given as the product $({}^ta)$ c, that is,

$$[A:C] = \begin{pmatrix} a_1c_1 & a_1c_2 & a_1c_3 \\ a_2c_1 & a_2c_2 & a_2c_3 \\ a_3c_1 & a_3c_2 & a_3c_3 \end{pmatrix}.$$

Then the C- numerical range of A coincides with the set

$$\{\Psi([A:C]\circ G):G\in O_3\}.$$

The following proposition is effective to determine the C-numerical range of a matrix A under the condition A = C and A is a 3×3 complex diagonal matrix.

Proposition ([4]) Suppose that A is a complex 3×3 complex diagonal matrix. Then the A-numerical range $W_A(A)$ coincides with the set

$$\{\Psi([A:A]\circ G): G\in O_3 \text{ and } (^t G)=G\}.$$

Under the condition

$$A = \operatorname{diag}\{1, 0, \alpha\},\$$

the description of the boundary of the range $W_A(A)$ concerns deeply the curve " (Steiner's) Deltoid". We define the Deltoid $D[z_0:K:\exp[i\;\eta]]$ (z_0 is a complex number, K is a positive number, η is a real number) in the complex plane C by the following: Choose $\exp[i\;\theta]$ (θ is a real number) ia an arbitratry cubic root of $\exp[i\;\eta]$.

$$D[z_0:K:\exp[i\,\,\eta]] = \{z_0 + (K/3)\,\,\exp[i\,\,\theta](2\exp[2\,\,i\phi] + \exp[-i\phi]): 0 < \phi < 2\,\,\pi\}.$$

We obtain the following theorem.

Theorem ([4]) Suppose that $A = \text{diag}\{1, 0, \alpha\}$ and $\alpha = a + i b$ where a, b are real numbers with $b \neq 0$. Then the boundary of the range $W_A(A)$ is a subset of the following set

$$\{(1-t)(1+\alpha^2)+t: 0 \le t \le 1\} \cup \{(1-t)(1+\alpha^2)+2t\alpha: 0 \le t \le 1\} \cup \{(1-t)(1+\alpha^2)+t(\alpha)^2: 0 \le t \le 1\}$$

$$\cup D[z_0:K:\exp[i\ \eta]]$$

where

$$z_0 = (1/(4 \ b^2))\alpha(\overline{\alpha} - 1)(3a^2 - 3a - b^2 + i \ [b + 4ab]),$$
$$K = (3/(4 \ b^2))|\alpha - 1|^2 \ |\alpha|^2,$$

 $|\alpha|^2 |\alpha - 1|^2 \exp[i \, \eta] = -(a - a^2 + b - 2a \, b + b^2)(a - a^2 - b + 2a \, b + b^2) + i(-2 \, b)(2a - 1)(a^2 - a - b^2).$

We give you some graphics about C-numerical ranges after this document.

References

- [1] H.Nakazato, Y.Nishikawa and M.Takaguchi: On the boundary of the c-numerical range of a matrix, preprint 1994 to appear in "LAMA"
- [2] H.Nakazato :the Boundary of the Range of a Constrained Sesquilinear Form, preprint 1994, submitted to "LAMA"
- [3] H.Nakazato :the C-numerical range of a 2 × 2 matrix, Sci.Report Hirosaki Univ,41(1994),pp 197-206
- [4] H.Nakazato: Set of 3×3 orthostochastic matrices, in preparation
- [5] Y.H.Au-Yeng and Y.T.Poon: 3 x 3 orthostochastic matrices and the convexity of the generalized numerical ranges, Lin.alg.appl. 27(1979) pp 69-79
- [6] N.K.Tsing: The constrained bilinear form and the C-numerical range, Lin.alg.appl.56 (1984) pp195-206
- [7] M.Goldberg and E.G.Strauss: Elementary Inclusion Relations for Generalized Numerical Ranges, Lin.alg.appl.18(1977) pp 1-24
- [8] Y.Teranishi:the Ring of Invariants of Matrices, Nagoya Math.Journ.104(1986) pp149-161
- [9] C.Procesi :The invariant theory of $n \times n$ matrices, Adv.in Math. 19(1976) pp 306-381

Wc (C)

(II-3) C=diag{1, 0, 2 +3 i}.

Graphics of C-numerical Ranges of Matrices and the set of 3 x 3 symmetric orthostochastic matrices

- (I) The q-numerical range of a 3 x 3 complex diagonal matrix A .
- (i) The diagonal entries of A are mutually distinct cubic roots of 1.
- (ii) q=4/5.
- (II)The C-numerical range W $_{\text{c}}(\text{C})$ of the 3 x 3 complex diagonal matrix.
- (II-1) The diagonal entries of C are mutually disdistinct cubic roots of 1. This generalized numerical range coincides with the closed domain surounded by the Deltoid D(0,3,1):

 $x=2 \cos(2 t) + \cos(2t), y=2\sin(2t) - \sin(2t)$

(II-2) C =diag{ 1, 0, (1/4) +i (1/2) }.

One graphic describes the range W $_{c}(C)$ based on the command "ParametricPlot3D" (2-parameter plot) in "Mathematica" (ver2.0, hardware: Apple,Quadra 900). Other three graphics describe its boundary based on the command "ParametricPlot" (1-parameter plot on the plane).

(III) The set of 3 x 3 symmetric orthostochastic matrices in the 3-dimensional affine space H of all 3 x 3 symmetric real matrices $\{(a_{11},a_{12},a_{13}),(a_{12},a_{22},a_{23}),(a_{13},a_{23},a_{33})\}$ such that $a_{11}+a_{12}+a_{13}=a_{12}+a_{22}+a_{23}=a_{13}+a_{23}+a_{33}=1$.

We use a non-orthogonal coordinates system < , ,> in H for which:

 $\{(1/3,1/3,1/3),(1/3,1/3,1/3),(1/3,1/3,1/3)\} = \langle 0,0,0 \rangle,$ $\{(0,1,0),(1,0,0),(0,0,1)\} = \langle 1,0,0 \rangle,$ $\{(0,0,1),(0,1,0),(1,0,0)\} = \langle -1/2,\sqrt{3}/2,0 \rangle,$ $\{(1,0,0),(0,0,1),(0,1,0)\} = \langle -1/2,-\sqrt{3}/2,0 \rangle,$ $\{(1,0,0),(0,1,0),(0,0,1)\} = \langle 0,0,b \rangle$

for some b > 0.

