<table>
<thead>
<tr>
<th>Title</th>
<th>MODULAR FORMS ASSOCIATED WITH THE MONSTER MODULE (Moonshine and Vertex Operator Algebra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>HARADA, KOICHIRO; LANG, MONG LUNG</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1995), 904: 78-86</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59413</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
MODULAR FORMS ASSOCIATED WITH THE MONSTER MODULE

KOICHIRO HARADA AND MONG LUNG LANG

1. Introduction

In Harada-Lang [4], we associated to each irreducible character χ of the monster simple group \mathbb{M} a modular function $t_\chi(z)$, called in [4], the McKay-Thompson series for χ. $t_\chi(z)$ is a weighted average of all McKay-Thompson series $t_g(z)$ for the element g of \mathbb{M} as g ranges over \mathbb{M}:

$$t_\chi(z) = \frac{1}{|\mathbb{M}|} \sum_{g \in \mathbb{M}} \chi(g) t_g(z).$$

If Γ_χ is the invariance subgroup of $t_\chi(z)$, then we showed

$$\Gamma_\chi = \Gamma_0(N_\chi) = \bigcap_{g \in \mathbb{M}} \Gamma_g,$$

where g ranges over all the elements of \mathbb{M} such that $\chi(g) \neq 0$ and

$$N_\chi = \text{lcm}\{n_g h_g : \text{for all } g \in \mathbb{M}\text{ with } \chi(g) \neq 0\}.$$

As shown in Conway-Norton [1], the invariance group Γ_g of $t_g(z)$ is a certain subgroup of index h of the conjugate by

$$\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix}$$

of

$$\Gamma_0(\frac{n}{h}) + e, f, \cdots$$

This is a preliminary version. A full version with a table will be published elsewhere.
KOICHIRO HARADA AND MONG LUNG LANG

where e, f, etc. denote the Atkin-Lehner involutions. In [1], such a conjugate is denoted by

$$n|h + e, f, \cdots.$$

The numbers n, h depend on g, hence our notation n_g, h_g. Obviously every $t_{\chi}(z)$ is invariant by

$$\bigcap_{g \in M} \Gamma_g = \Gamma_0(N_0)$$

where $N_0 = 2^6 3^3 5^2 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \sim 10^{21}$. The level N_χ can be very large or relatively small. For example,

$$N_{\chi_1} = N_0, N_{\chi_{166}} = 2^6 3^3 7 = 4032$$

where $\chi_1 = 1$ is the trivial character and the character numbering such as χ_{166} is taken from the Atlas. In this paper, we will investigate the relation between $t_{\chi}(z)$ and the generating functions of the highest weight vectors (also called singular vectors, primary fields or lowest weight vectors.)

2. THE MONSTER MODULE AS A Vir MODULE

The monster module V is constructed in Frenkel-Lepowsky-Meurman [3] as a vertex operator algebra and is denoted by V^\dagger there. Let V be a vertex operator algebra. Then V possesses two distinguished elements 1 and ω, called the vacuum and the conformal vector (or the Virasoro element) of V, respectively.

If $Y(\omega, z) = \sum \omega_n z^{-n-1}$ is the vertex operator corresponding to the conformal vector ω and if we set $L(n) = \omega_{n+1}$ for $n \in \mathbb{Z}$, then $L(n)$ satisfies the commutation relation:

$$[L(n), L(m)] = (n - m)L_{n+m} + \frac{1}{12}(n^3 - n)c\delta_{n+m,0}$$
where c is a constant called the central charge of V. For the monster module V, $c = 24$. c is also called the rank of the vertex operator algebra V.

Let \mathcal{L} be the Lie algebra generated by $L(n)$, $n \in \mathbb{Z}$. \mathcal{L} is denoted by Vir else where. The subalgebras \mathcal{L}^+ and \mathcal{L}^- are generated by $L(n), n \in \mathbb{Z}^+$ and $L(n), n \in \mathbb{Z}^-$, respectively. It is known that V possesses a positive definite invariant bilinear form and so V is completely reducible as an \mathcal{L} module and is a sum of highest weight modules.

Let $M(h, c)$ be the Verma module of the Virasoro algebra of central charge c generated by the highest weight vector v of height h : i.e.

$$M(h, c) = \mathcal{L}v, \mathcal{L}^+v = 0, L(0)v = hv.$$

The module structure of $M(h, c)$ has been determined by Feigin-Fuchs [2]. We will use their results to determine the module structure of V as an \mathcal{L} module. Feigin-Fuchs showed that every submodule of $M(h, c)$ is a sum of submodules that are also Verma modules. Therefore, the knowledge of all embeddings among Verma modules gives all submodules of a given Verma module. The main theorem of Feigin-Fuchs states that there are six types of embeddings of the Verma modules into other Verma modules. Let

$$\begin{align*}
p\alpha - q\beta &= m \\
c &= 24 = \frac{(3p-2q)(3q-2p)}{pq} \\
h &= \frac{m^2-(p-q)^2}{4pq}
\end{align*}$$

where p, q and m are complex variables. We next solve for integers α and β. Let

$$\epsilon = \frac{-11 \pm i\sqrt{23}}{2}, \quad \bar{\epsilon} = \frac{-11 \mp i\sqrt{23}}{2}$$
KOICHIRO HARADA AND MONG LUNG LANG

We compute
\[\epsilon \overline{\epsilon} = 1, \quad \epsilon + \overline{\epsilon} = \frac{-11}{6}, \quad \epsilon^2 + \overline{\epsilon}^2 = \frac{49}{36}. \]

Using the second equality of (1), we obtain
\[(p \alpha - q \beta)^2 = m^2 = 4pq + (q - p)^2, \]
which may be rewritten as
\[(\alpha - \epsilon \beta)^2 = 4\epsilon h + (\epsilon - 1)^2. \]

We therefore obtain two equations:
\[\alpha^2 - 2\epsilon \alpha \beta + \epsilon^2 \beta^2 = 4\epsilon h + (\epsilon - 1)^2, \]
and
\[\alpha^2 - 2\overline{\epsilon} \alpha \beta + \overline{\epsilon}^2 \beta^2 = 4\overline{\epsilon} h + (\overline{\epsilon} - 1)^2. \]

Taking the sum of them, we get
\[72\alpha^2 + 132\alpha \beta + 49\beta^2 = -264h + 253. \]

By subtracting one from the other, we get
\[-12\alpha \beta - 11\beta^2 = 24h - 23. \]

Therefore
\[\alpha^2 - \beta^2 = 0, \]
or \(\alpha = \pm \beta. \) Setting \(\alpha = \delta \beta \) with \(\delta = \pm 1, \) we have
\[\beta^2 = \frac{24h - 1}{11 - 12\delta}. \]

If \(h = 0, \) then we must have \(\delta = 1 \) and so \(\alpha = \beta = \pm 1. \) In particular, \(\alpha \beta = 1 > 0. \) On the other hand, if \(h \in \mathbb{Z}^+, \) then \(\delta = -1 \) and so \(\alpha = -\beta = \pm 1, \)
and hence $\alpha \beta = -1 < 0$. Using the results of Feigin-Fuchs [2], we conclude (which must be well known to experts):

Theorem. $M(0,24)$ has a unique submodule, which is isomorphic to $M(1,24)$. For all positive integers h, $M(h,24)$ is irreducible.

Let $L(c,h)$ be the unique irreducible highest weight \mathcal{L}-module of central charge c and height h. Then

Corollary. We have

1. $L(0,24) = M(0,24)/M(1,24)$, and,
2. $L(h,24) = M(h,24)$ if $h \in \mathbb{Z}^+$.

Let us now express the monster module V as a sum of $L(h,24)$'s as follows

$$V = \sum_{h=0}^{\infty} s_h L(h,24).$$

Then s_h is the number of linearly independent singular vectors v_h of height h, hence $v_h \in V_h$. Since the Virasoro algebra \mathcal{L} commutes with the action of the monster \mathcal{M}, we can actually split s_h into the sum of s_h^k where the index k corresponds to the irreducible character χ_k. More precisely, let

$$V_h^k = c_{hk} \chi_k$$

where c_{hk} is the multiplicity of χ_k in V_h and

$$V^k = \bigoplus_{h=0}^{\infty} V_h^k.$$

Thus V^k is an \mathcal{M} submodule of V consisting entirely of irreducible submodules isomorphic to χ_k and V_h^k is an \mathcal{M} submodule of V^k of height h. We also define

$$W_h^k = \mathcal{L}(\bigcup_{0 \leq i < h} V_i^k) \cap V_h^k,$$
KOICHIRO HARADA AND MONG LUNG LANG

which is an \mathbb{M} submodule of \mathcal{V}_h^k that is generated by elements of lower heights. Let

$$s_h^k = \dim \mathcal{V}_h^k / W_h^k.$$

Then s_h^k is the number of linearly independent singular vectors in \mathcal{V}_h^k. Obviously

$$s_h = \sum_{k=1}^{194} s_h^k.$$

For a graded module $X = \sum_{h \in \mathbb{Z}} X_h$, the character of X (or the partition function of X) is defined to be a formal sum

$$\text{char}(X) = \sum_{h \in \mathbb{Z}} \dim X_h x^h.$$

Using this notation, we have, as is well known,

$$\text{char} M(h, c) = x^h \sum_{n \geq 0} p(n) x^n$$

where $p(n)$ is the partition function of n. For convenience, set $p(0) = 1$, and $p(n) = 0$ if $n \in \mathbb{Z}^-$. Let us consider the \mathcal{L} submodule generated by the vacuum 1. We have $V_1 = 0$ but the height 1 component of $M(0, 24)$ is nonzero, we conclude that

$$\mathcal{L} \cdot 1 \simeq M(0, 24) / M(1, 24).$$

Hence

$$\text{char}(\mathcal{L} \cdot 1) = \sum_{n \geq 0} p(n) x^n - x \sum_{n \geq 0} p(n) x^n = \sum_{n \geq 0} (p(n) - p(n-1)) x^n.$$

Writing

$$\text{char}(\mathcal{L} \cdot 1) = \sum_{h \geq 0} a_{h1} x^h,$$
MCKAY-THOMPSON SERIES

we get a partial list:

\[
\begin{array}{cccccccccccc}
 h & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 a_{h1} & 1 & 1 & 1 & 2 & 2 & 4 & 4 & 7 & 8 & 12 & 14 \\
\end{array}
\]

In [4], we had a partial list of \(c_{h1} \) where \(c_{h1} \) is the multiplicity of the trivial character \(\chi_1 \) occuring in \(\mathcal{V}_h \).

\[
\begin{array}{cccccccccccc}
 h & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 c_{h1} & 1 & 1 & 1 & 2 & 2 & 4 & 4 & 7 & 8 & 12 & 14 \\
\end{array}
\]

The coincidence \(c_{h1} = a_{h1} \) stops there and we have

\[
\begin{array}{cccc}
 h & 12 \\
 a_{h1} & 21 \\
 c_{h1} & 22 \\
\end{array}
\]

This means \(s_{12}^1 = 1 \), namely, \(\mathcal{V}_{12}^1 \) contains a singular vector, while \(\mathcal{V}_h^1, 0 < h \leq 11 \), do not. The number \(d \) of linearly independent singular vectors occuring in

\[
\mathcal{V}_h^1 (0 \leq h \leq 30)
\]

is as follows

\[
\begin{array}{cccccccccccc}
 h & 12 & 16 & 18 & 20 & 22 & 24 & 26 & 27 & 28 & 29 & 30 \\
 d & 1 & 1 & 1 & 1 & 1 & 3 & 2 & 1 & 4 & 2 & 6 \\
\end{array}
\]

We are now lead to consider its generating function for each \(k, 1 \leq k \leq 194 \).

Define

\[
G^k(x) = \sum_{h \geq 0} s_k^h x^h.
\]

The character of \(\mathcal{V}^k \) is

\[
\text{char}(\mathcal{V}^k) = \sum_{h \geq 0} c_h^k (\deg \chi_k) x^h = x \deg \chi_k t_\chi(x)
\]

where \(t_\chi(z) \) is the McKay-Thompson series for the irreducible character \(\chi \). On the other hand, using the expression

\[
\mathcal{V}^k = \sum_{h \geq 0} s_k^h L(h, 24),
\]
we obtain
\[
\text{char}(\mathcal{V}^k) = \sum_{h \geq 0} s_h^k \text{char} L(h, 24).
\]

Suppose \(k > 0 \). Then \(s_0^k = 0 \) and so
\[
\text{char}(\mathcal{V}^k) = \sum_{h \geq 1} s_h^k x^h \sum_{n \geq 0} p(n) x^n.
\]

On the other hand if \(k = 1 \), then \(L(0, 24) \) occurs only once as a constituent of \(\mathcal{V}^1 \). Therefore
\[
\text{char}(\mathcal{V}^1) = (1 - x + \sum_{h \geq 2} s_h^1 x^h) \sum_{n \geq 0} p(n) x^n.
\]

Using the Dedekind eta-function and replacing \(x \) by \(q = e^{2\pi i z} \), we obtain, by setting \(s_1^1 = -1 \) for convenience,
\[
\deg \chi_k t_{\chi_k}(q) = \frac{q^{-1} (\sum_{h \geq 0} s_h^k q^h) q^{\frac{1}{24}}}{\eta(q)}.
\]

Hence
\[
\deg \chi_k t_{\chi_k}(q) \eta(q) = q^{-\frac{23}{24}} \sum_{h \geq 0} s_h^k q^h,
\]

which implies
\[
q^{-\frac{23}{24}} G^k(q) = \deg \chi_k t_{\chi_k}(q) \eta(q)
\]

where as defined before \(G^k(q) \) is the generating function of the singular vectors in \(\mathcal{V}^k \). Writing \(G^k = G^x \) in general, we obtain:

Theorem. \(q^{-\frac{23}{24}} G^x(q) \) is a meromorphic modular form of weight \(\frac{1}{2} \) and level \(N_x \).

Corollary. \(q^{-\frac{23}{24}} G^x(q) \eta(q)^{23} \) is a holomorphic modular function of weight 12 and level \(N_x \).
MCKAY-THOMPSON SERIES

REFERENCES

Department of Mathematics,
The Ohio State University,
Columbus, Ohio, 43210
U.S.A

Department of Mathematics,
National University of Singapore,
Singapore, 0511
Republic of Singapore