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A NOTE ON THE EXISTENCE OF UNITARY PROPAGATOR
OF EQUATIONS IN QUANTUM MECHANICS

WATARU ICHINOSE

Section of Applied Math. Dept. of Computer Sci. Ehime Univ.,

Matsuyama 790, Japan

1. Introduction.
In this talk we study the equation

(%) ih%’;ﬁ(t) = K(t)u(t) (0 <t <T),u(0) = f € (L*)V

(u(t) = “(wa(?), ..., un(1)))

describing the motion of some charged particles in an electromagnetic field
E(t), B(t), where ¢ is the imaginary unit, & the Planck constant over 27, and
(L?)N the product space of N copies of the space of all square integrable
functions. The norm || f|| of f € (L*)" is defined by (L), [ |f;(z)[*dz)*/>.
We are concerned with the existence and uniqueness of unitary propz;tgator
U(t), i.e. U(t)f belongs to £2(]0,T];(L2)N) and is the solution of (%) such
that |[U@)f]l = ||If]] (0 <t < T). We denote by &([0,T]; F) the space of all

F-valued j times continuously differentiable functions in [0, 7.
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Suppose that K(t) is independent of ¢. That is, suppose that E(¢) and B(t)
are independent of t. Then it follows from Stone’s Theorem that the existence
and uniqueness of U(t) is virtually equivalent to the self-adjontness of K on
(L2)]‘V . The self-adjointness or the essential self-adjointness of K has been
studied in much detail. So in this talk we consider the case that E(t) and B(t)
vary in time ¢.

The results and their complete proofs in this talk will be published in Osaka
J. Math.

2. Typical equations.

Let z € R*, V(t,z) the scalar potential, and A(t,z) = (Ay,---,Ay) the
vector potential. Typical equations we consider are as follows.

(1) Schrodinger’s equation. N = 1.

1& 10
K(t)g = {5 2.(ADs; — 4;)" + Vg (Do, = =5—).
=1 J
(2)Pauli’s equation. n = 3.
1 3
52 hDg; ~ +V}g———ZB (t,z)ojg,
1=1 _] =1
where o; (j =1,---,n) are N by N Hermitian matrices.

(3) Dirac’s equation.

K(t)g = {cﬁ: a;(hDg; — Aj) + Bt + Vg,



where o; and B are N by N Hermitian matrices. ¢ > 0 is the velocity of light.

(4) The equation of a relativistic spinless particle. N = 1.

. X+ X

K(t)g = k(t, 5 yhD;)g (Weyl’s operator)

= @m)™ [f e he, T2 pe)g(aava
where k(t,z,£) = cm+ V.

3. Results.

We assume that V(¢,z) and A(¢,z) are smooth in z. We first introduce
one of Yajima’s results in J. D’Analyse Math., *91. See also Fujiwara, J.
D’Analyse Math., '79, Kitada, J. Fac. Sci. Univ. Tokyo Sec. IA, ’80, and
Robert, Birkhauser, 87.

By using the Gauge transformation we may suppose
V(t,z)=0.

Set
oA

Zj

A,

Biu(t,) = 5oE(6w) = 521, ).

Assume the following. There exists a positive constant & such that

> 10%B(t,z)| < Cp < >~ for all o # 0,

3,k=1

2_A107A;(t, 2)| + 1007 Aj(t,2)|} < C for all a # 0,

i=1

where < z >= /1 + [z|2. Then, he constructed the fundamental solution of

Schrédinger’s equation by using the Fourier integral operator. From this we



can prove the existence and uniqueness of U(t).

Remark. Yajima’s main purpose is to show the existence and uniqueness
of U(t) of Schrodinger’s equation with potentials having singularities, like that

V=—1/le—g(t). O

We note that Yajima’s result is not general. For example, his result doesn’t
include the case A;(t,z) is periodic in . We report in this talk :
(1) We can exteﬁd Yajima’s result on Schrodinger’s equation. For example,
we can see the existence and uniqueness of U(t) in the case A;(¢, ) is periodic
in .
(2) We can get the similar result on the other equations (Pauli’s, Dirac’s, and

the equation of a relativistic spinless particle).

Theorem 1. Let (k;(t,z,£))}-; be an N by N Hermitian matrix such that
the assumption (A) or (B) below is satisfied. Set K(t) = (kji(¢, £+, hDg))Ny.
Then, we can see the existence and uniqueness of the unitary propagator U(t)

of ().

(A) We have for all a + 8 # 0

S kS (t,2,6)] < Cap(L+ o] + [€]),

si=1

where kg-la&,)(t,w,f) = ¢ DPkji(t, 2, ¢).



(B) (i) We have for all @ # 0 and

Z lkj(?z)ﬁ)(taxaé)' S Ca,ﬁ'

=1

(ii) There exists a constant M > 1 such that for all 3

3 ket . 6)| < Co(<z >M+ <€>). O

jl=1 ‘

Application to Schrédinger’s and Pauli’s equation. Assume that

71102 A < Cy for all a # 0 and |05V] < Co < z > for all a # 0. Then we
can see the existence and uniqueness of U(t). O

Application to Dirac’s equation. Assume the following. There exists a
constant M > 1 such that -7, [0%A;(t, z)| + 02V (t,z)| < Co < z >M for all
a. Then we can see the existence and uniqueness of U(t). O

Application to the equation of a relativistic spinless particle.
Assume the following. We have }-7_, |05 A;| < C, log < z > for all o # 0 and

there exists a constant M > 1 such that |02V (¢,z)| < C, < z >M for all a.

Then we can see the existence and uniqueness of U(t). O

Let s > 0 and define weighted Sobolev’s spaces Bj (%) by {f € L?; || f|
| <> Fll+ | <k->b f]| < oo} (a>0,b>0). We denote its dual space

by B, ;(R). Then we can get a more detailed result than Theorem 1.

Theorem 2. (i) Assume (A). Let f € Bj,(h)" (s > 0). Then the solution

U(t)f of (*) belongs to ([0, T}; B ,(h)N) N EX([0, T); Bls,_lzv(h)N). In addition,

B: ,(h) =
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there exists a constant C,(T) independent of 0 < A <1 such that

U@ Nls; , o < Cs(DNIF|

Bls,l(h)N (0 S 1 S T)

(ii) Assume (B). Let f € Bjs1(h)N. Then the solution U(t)f belongs to
£2(0,T); By 1(B)N)NEX([0, T); Bz 1(B)N), where M is the constant appearing
in (B). In addition, we get the same inequality as in (i) where Bj ; (%) is replaced
by Bjs,(R). O

The above inequalities are important in the study of the classical limit (c.f.
Wang, Commun. Math. Phys., ’86).

4. The outline of the proof of Theorems. We first give the outline of

the proof of Theorem 1. Let N = 1. The general case can be proved similarly.

We define w(z, £) by

<z>+<E>, when (A)is assumed,
w(z,€) =

<z >M 4 <¢>, when (B) is done.

We give the proof under (A). That under (B) is similar.
Let x(#) be a real valued and infinitely differentiable function on R' with

compact support such that x(0) = 1. Let 0 < e <1 and set

ke(t,z,€) = x(ew(z, £))k(t, z,§).

We note that lim._k.(t,z,€) = k(t,z, ) pointwisely.
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We first consider

(%)e ihg—z(t) = K (t)u(t) = ke(t, X+ X’ahDac)u(t)a
u(0)=f

in place of ().

~ 1st step. Assume f € B?*(k) := B},(h). Note that k.(t,,¢) is a infinitely
differentiable function on R2% with compact support. So we can easily show
that K.(t) is a bounded operator on B?(h). Consequently we can prove by
using the iteration that there exists a solution u.(t) € ([0, T]; B*(h)) of (*)..

Then we can easily have
llue(®)IF = [171]-

Now using the assumption (A), we can prove that
{ue(t)}oce<a is a bounded family in £([0, T]; B*(h))
and that
{K.(t)}o<e<1 is a bounded one in the space of operators from B?(h) into L*.

These are essential in our proof. We omit their proofs.

Since

ihug(t) — ihuc(t) = | K. (s)ue(s)ds,



we see from the results above that
{ue(t)Joce< is an equi-continuous family in £([0, T]; L?).

We note that the embedding map from B?(%) into L? is compact. Hence we
can apply Ascoli-Arzeld’s theorem to a family {u.(t)}oce<t in E2([0, T; L?). So

there exist a function u(t) and a sequence € > €; > --- — 0 such that
ue;(t) = u(t) in £2([0,T]; L?).

We can prove that this u(t) belongs to &£ ([0,T]; B~2(h)) and satisfies (x).
Thus, we could find a solution u(t) € £2([0,T]; L*) N EL([0,T]; B~2(R)) such
that [[u(®)] = 7]

2nd step. In this step we will show the uniqueness of the solution of (%).

Let ¢(t) € B*(h) and consider the equation

a2

5 () = K(t)o(t) +9(1) (0 <t <T), o(T) =0.

As in the proof in the 1st step we get a solution v(t) € £2([0,T]; B%(k)) N
& ([0, T]; L?).
Let u(t) € £([0,T]; L?) be a solution of (x) with u(0) = 0. Then u(t) €

E([0,T); B%(h)) follows from (*). So we have

0= [ (hget) ~ K(eu(0), o()dt = [ (u(t),(0)d.

Hence we have u(t) = 0, because g(t) is arbitrary. O
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3rd step. Let f € L?. Then there exists a sequence f; € B*(h) (j =
1,2,---) such that f; — f in L2. It follows from the 1st and 2nd steps that
a solution u;(t) € £2([0,T]; L*) N E}([0,T]; B-2(R)) of (x) to f; is determined
uniquely and we have |
lui I = NI £
In addition, since u;(t) — uk(t) is the solution of () to f; — fx determined

uniquely, we also have
llui(8) = wr(@®)ll = 15 = Fell-

Consequently there exists a u(t) € £2([0,T]; L?) such that
u;(t) = u(t) in £([0,T7; L?).

We can prove that this u(¢) belongs to £}([0,T]; B~2(h)) and is a solution of
(%) satisfying ||u(t)|| = || f|]l- The uniqueness of the solution has already been
proved in 2nd step. Thus the proof of Theorem 1 could be completed.

We can prove Theorem 2 by the analogous arguments used in the proof of

Theorem 1. [
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