<table>
<thead>
<tr>
<th>Title</th>
<th>Proper learning algorithm for functions of k terms under smooth distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sakai, Yoshifumi; Takimoto, Eiji; Maruoka, Akira</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1995, 906: 236-243</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59438</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Proper learning algorithm for functions of k terms under smooth distributions

Yoshifumi Sakai Eiji Takimoto Akira Maruoka
Graduate School of Information Sciences, Tohoku University, Sendai 980-77, Japan
Email: {yoshif, t2, maruoka}@ecei.tohoku.ac.jp

Summary: In this paper, we deal with a class written as $\mathcal{F}_1 \circ \mathcal{F}_2^k = \{g(f_1(v), \ldots, f_k(v)) \mid g \in \mathcal{F}_1, f_1, \ldots, f_k \in \mathcal{F}_2\}$ for classes \mathcal{F}_1 and \mathcal{F}_2 characterized by "simple" descriptions and study the learnability of $\mathcal{F}_1 \circ \mathcal{F}_2^k$ from examples, where \mathcal{F}_1 and \mathcal{F}_2 are the classes of functions from Σ^k to Σ and those from Σ^n to Σ, where $\Sigma = \{0, 1\}$. Even if both of \mathcal{F}_1 and \mathcal{F}_2 are learnable, it is hard to learn $\mathcal{F}_1 \circ \mathcal{F}_2^k$ in general. For example, in the distribution free setting, it is known to be NP-hard to learn properly k-term DNF, which is represented as $\{\text{OR}\} \circ \mathcal{T}_n^k$, where \mathcal{T}_n is the class of all monomials of n variables. In this paper, we first introduce a probabilistic distribution, called a smooth distribution, which is a generalization of q-bounded distribution and product distribution, and define the learnability under this distribution. Then, we give an algorithm that properly learns $\mathcal{F}_k \circ \mathcal{T}_n^k$ under smooth distribution in polynomial time for constant k, where \mathcal{F}_k is the class of all Boolean functions of k variables. The class $\mathcal{F}_k \circ \mathcal{T}_n^k$ is called the functions of k terms and although it was shown by Blum and Singh to be learned using DNF as a hypothesis class, it remains open whether it is properly learnable under distribution free setting.

1 Introduction

Since Valiant introduced PAC learning model [4], much effort has been devoted to characterize learnable classes of concepts on this model. Among such classes are the ones represented by some restricted Boolean formulas such as DNF, CNF, k-DNF, k-CNF, k-term DNF and k-clause CNF as well as the ones given by describing Boolean functions such as threshold functions. In each case, the class is somehow defined by a "simple" description. In this paper, we deal with a class written as $\mathcal{F}_1 \circ \mathcal{F}_2^k = \{g(f_1(v), \ldots, f_k(v)) \mid g \in \mathcal{F}_1, f_1, \ldots, f_k \in \mathcal{F}_2\}$ for classes \mathcal{F}_1 and \mathcal{F}_2 characterized by "simple" descriptions and study the learnability of $\mathcal{F}_1 \circ \mathcal{F}_2^k$ from examples, where \mathcal{F}_1 and \mathcal{F}_2 are the classes of functions from Σ^k to Σ and those from Σ^n to Σ, where $\Sigma = \{0, 1\}$. When the target function to be learned is $g(f_1(v), \ldots, f_k(v))$ in $\mathcal{F}_1 \circ \mathcal{F}_2^k$ and both of g and f_1, \ldots, f_k are unknown, in general it is impossible to determine the values of $f_1(v), \ldots, f_k(v)$ even if pairs $(v, g(f_1(v), \ldots, f_k(v)))$ are given as examples for sufficiently many v's in Σ^n. Hence, even if both of \mathcal{F}_1 and \mathcal{F}_2 are learnable, it is hard to learn $\mathcal{F}_1 \circ \mathcal{F}_2^k$ in general. For example, in the distribution free setting, it is NP-hard to learn properly k-term DNF, which is represented as $\{\text{OR}\} \circ \mathcal{T}_n^k$, where \mathcal{T}_n is the class of all monomials of n variables [2, 3].

Blum and Singh [1] studied the learnability of the class $\mathcal{F}_k \circ \mathcal{T}_n^k$, denoted $\mathcal{F}_k,\text{-term}$, where \mathcal{F}_k is the class of all Boolean functions of k variables, and showed that, for constant k, $\mathcal{F}_k,\text{-term}$ is learnable by hypothesis class $O(n^{k+1})$-term DNF in the distribution free setting. Furthermore, they showed that, for any symmetric function g other than AND, NAND, TRUE, and FALSE, proper learning $\{g\} \circ \mathcal{T}_n^k$ is NP-hard.

In this paper, we first introduce a probabilistic distribution, called a smooth distribution, which is a generalization of q-bounded distribution and product distribution, and define the learnability under this distribution. Then, we give an algorithm that properly learns $\mathcal{F}_k,\text{-term}$ under smooth distribution in polynomial time for constant k.
2 Preliminaries

In this extended abstract we follow the standard terminologies in PAC learning model unless otherwise stated. Obtaining positive and negative examples of a target function \(f \) through oracles POS() and NEG(), a learning algorithm is expected to produce a hypothesis \(h \) that approximates the target function \(f \). A target function \(f \) and a hypothesis \(h \) are assumed to be Boolean functions of variables \(x_1, \ldots, x_n \).

In the following, we often identify a Boolean formula with the Boolean function that it represents. So we regard the class of Boolean formulas as the corresponding class of Boolean functions. For a given Boolean formula (or the corresponding Boolean function) \(f \), let \(D_f \) denote the set of all pairs \((D^+, D^-) \) of probability distribution \(D^+ \) on the set of all positive examples of \(f \) and probability distribution \(D^- \) on the set of all negative examples of \(f \). For a class \(\mathcal{F} \) of Boolean formulas (or the corresponding class of Boolean functions), let \(D_{\mathcal{F}} \) denote \(\bigcup_{f \in \mathcal{F}} D_f \). Oracles generate examples independently according to some probability distributions \(D^+ \) and \(D^- \) for some \((D^+, D^-) \) in \(D_f \). In PAC learning model, the examples are usually assumed to be generated according to either an arbitrary distribution or a uniform distribution. In this paper we assume more general setting where the class of distributions according to which examples are drawn is taken arbitrarily as in Definition 2 below. Let \(\Sigma = \{0, 1\} \) and let \(D \) be a distribution on subset \(V \) of \(\Sigma^n \). For a vector \(v \) in \(\Sigma^n \) and a subset \(V' \subseteq \Sigma^n \), let \(D(v) \) denote the probability assigned to \(v \) under \(D \) and \(D(V') \) denote \(\sum_{v \in V' \cap V} D(v) \). A Boolean function (formula) \(g \) also represents the set of vectors \(v \) in \(\Sigma^n \) such that \(g(v) = 1 \). So \(D(g) \) represents \(\sum_{f(v) = 1} D(v) \) and \(g \subseteq g' \) means \(\{ v \mid g(v) = 1 \} \subseteq \{ v \mid g'(v) = 1 \} \). For Boolean functions \(g \) and \(g' \), \(D(g \land g')/D(g') \) denotes \(D(g \land g')/D(g') \). The size of a Boolean function \(g \) is the number of symbols appearing in the shortest description of \(g \) under some reasonable encoding. Given a class of Boolean functions \(\mathcal{F} \), \(\mathcal{F}_{n,s} \) denotes the set of Boolean functions of \(n \) variables with size at most \(s \) in \(\mathcal{F} \).

Definition 1 Let \(f \) be a Boolean function, and let \((D^+, D^-) \in D_f \). A Boolean function \(h \) \(\varepsilon \)-approximates \(f \) under \((D^+, D^-) \) if \(D^+(f - h) < \varepsilon \) and \(D^-(h - f) < \varepsilon \) hold.

Definition 2 Let \(\mathcal{F} \) be a class of Boolean functions, and let \(D \) be a subset of \(D_{\mathcal{F}} \). An algorithm \(L \) learns \(\mathcal{F} \) under \(D \) if and only if for any positive integers \(n, s \), any target function \(f \) in \(\mathcal{F}_{n,s} \), any real numbers \(\varepsilon, \delta \) with \(0 < \varepsilon, \delta < 1 \), and any pair of probability distributions \((D^+, D^-) \) in \(D \cap D_f \), when \(L \) is given as input \(n, s, \varepsilon \) and \(\delta \) as well as access to POS() and NEG() that generate positive and negative examples independently according to \(D^+ \) and \(D^- \), respectively, \(L \) halts in steps at most some polynomial in \(n, s, 1/\varepsilon \) and \(1/\delta \), and outputs a hypothesis \(h \) in \(\mathcal{F}_{n} \) that, with probability at least \(1 - \delta \), \(\varepsilon \)-approximates \(f \) under \((D^+, D^-) \). Furthermore, if there exists a learning algorithm for \(F \) under \(D \), then \(F \) is called learnable under \(D \).

For a vector \(v \) in \(\Sigma^n \) and an integer \(1 \leq i \leq n \), let \(v_i \) denote the \(i \)th component of \(v \). For a vector \(v \), let \(\text{true}(v) \) and \(\text{false}(v) \) denote \(\{ i \mid v_i = 1 \} \) and \(\{ i \mid v_i = 0 \} \), respectively. Let \(0^n \) and \(1^n \) denote vectors \((0, 0, \ldots, 0) \) and \((1, 1, \ldots, 1) \) in \(\Sigma^n \), respectively. For \(v \) and \(v' \) in \(\Sigma^n \), let \(v \leq v' \) denote the condition that \(v_i \leq v_i' \) for any \(1 \leq i \leq n \), and let \(v < v' \) denote the condition that \(v \leq v' \) and \(v \neq v' \). For any subset \(V \) of \(\Sigma^n \), let \(\text{Min}_V \) denote a subset of \(V \) defined as

\[
\text{Min}_V = \{ v \in V \mid \forall v' \in V - \{ v \} \quad v' \nleq v \},
\]

and let \(\text{Mon}(V) \) denote a monotone Boolean function of \(n \) variables defined as

\[
\text{Mon}(V)(v) = \begin{cases}
1 & \exists v' \in V \quad v' \leq v \\
0 & \text{otherwise.}
\end{cases}
\]

Let \(X_n \) denote the set of Boolean variables \(x_1, \ldots, x_n \). Let \(Y_n \) denote a set \(X_n \cup \{-x_i \mid x_i \in X_n \} \). Let \(\mathcal{F}_n \) denote the set of all Boolean functions of \(n \) variables. Let TRUE and FALSE denote constant functions that take 1 and 0, respectively. A conjunction of literals is called a term. Let \(T_n \) denote the set of all terms of literals \(Y_n \). For a positive integer \(k \), \(T_{n,\leq k} \) denote the set of terms \(t \) of \(n \) variables with
$|lit(t)| \leq k$. For a term t, $lit(t)$ denotes the set of literals that appear in t. For any vector v in Σ^n, σ_v and τ_v denote terms of n variables defined as

\[
\sigma_v = \bigwedge_{i \in \text{true}(v)} x_i \wedge \bigwedge_{i \in \text{false}(v)} \neg x_i,
\]

\[
\tau_v = \bigwedge_{i \in \text{true}(v)} x_i \quad (\text{e.g., } \tau_0 = \text{TRUE}),
\]

respectively.

For a Boolean function g of k variables and k-tuple $T = (t_1, \ldots, t_k)$ of terms of n variables, $g(T)$ denotes a Boolean function of n variables that takes value $g(t_1(v), \ldots, t_k(v))$ for a vector v in Σ^n. A Boolean function that can be represented as $g(T)$ for some g in \mathcal{F}_k and for some $T = (t_1, \ldots, t_k)$ in T_n^k is called a function of k terms, and $\mathcal{F}_{k,\text{term}}$ denotes the class of functions of k terms. For example, the class $\mathcal{F}_{2,\text{term}}$ includes the function $(x_1 \land \neg x_2) \oplus (x_3 \land x_4 \land x_5)$, where \oplus denotes the exclusive OR function. A function $g(T)$ in $\mathcal{F}_{k,\text{term}}$ can be represented as the composed function $g \circ T$ of function g from Σ^k to Σ and function T from Σ^n to Σ^k. Similarly, in the following, we use notations such as $\sigma_v(T)$, $\tau_v(T)$, $\sigma_v \circ T$ and $\tau_v \circ T$.

Definition 3 For positive integer n and real number $0 < p \leq 1$, probability distribution D on Σ^n is p-smooth if, for any vectors v and v' in Σ^n with Hamming distance 1, $D(v)/D(v') \geq p$ holds. For a Boolean function f of n variables and real number $0 < p \leq 1$, a pair of probability distributions (D^+, D^-) in \mathcal{D}_f is p-smooth if there exists a p-smooth probability distribution D on Σ^n such that $D^+(v) = D(v)/D(f)$ for any positive vector v of f, and $D^-(v) = D(v)/D(\neg f)$ for any negative vector v of f. Let $S_{\mathcal{F}, p}$ denote the class of all p-smooth pairs (D^+, D^-) of \mathcal{D}_f. Furthermore, for a class \mathcal{F} of Boolean functions, let $S_{\mathcal{F}, p}$ denote the class $\bigcup_{f \in \mathcal{F}} S_{\mathcal{F}, p}$, and $S_{\mathcal{F}, p}$ is simply written as S_p when no confusion arises.

3 Learning algorithm

A learning algorithm is assumed to get information about a target function $g \circ T$ through positive and negative examples of $g \circ T$. But, in general, it is impossible to know the value of $T(v)$ by observing the examples of $g \circ T$. To overcome the difficulty, the learning algorithm presented in this paper finds an ε-approximation of $g \circ T$ as follows. Instead of trying to find T, the algorithm seeks for a k-tuple of terms, denoted $\tilde{T}_{W, g, T}$, which can be found by observing sufficiently many examples of $g \circ T$. The k-tuple $\tilde{T}_{W, g, T}$ is determined by $W \subseteq \Sigma^k$, $g \in \mathcal{F}_k$, and $T = (t_1, \ldots, t_k) \in T_n^k$. As Lemma 2 states, it turns out that there exists a function, denoted $\tilde{g}_{W, g}$ in \mathcal{F}_k such that $\tilde{g}_{W, g} \circ \tilde{T}_{W, g, T}$ approximates $g \circ T$. The fact that function $\tilde{g}_{W, g}$, which takes the same value as g on W (Proposition 1), is represented as $g \circ T$ in Proposition 1, is represented as the exclusive OR of at most $(k + 1)$ monotone Boolean functions, guarantees that the learning algorithm can find $\tilde{T}_{W, g, T}$ in feasible time. Actually, the learning algorithm finds $\tilde{g}_{W, g} \circ \tilde{T}_{W, g, T}$ that $\varepsilon/2$-approximates $g \circ T$. In the following, since g, T and smooth distribution (D^+, D^-) are assumed to be fixed arbitrarily, we may drop suffices such as g, T and (D^+, D^-), e.g., $\tilde{g}_{W, g}$ and $\tilde{T}_{W, g, T}$ are simply written as \tilde{g}_{W} and \tilde{T}_{W}, respectively. The learning algorithm does not find a set U^k of terms of terms that includes \tilde{T}_{W} for appropriate W such that $\tilde{g}_{W} \circ \tilde{T}_{W}$ $\varepsilon/2$-approximates $g \circ T$, and then finds g' in \mathcal{F}_k and U in U^k by exhaustive search such that $g' \circ U$ approximates $g \circ T$ with sufficient accuracy.

In this section, we first define \tilde{g}_W and \tilde{T}_W mentioned above, and then explain how the algorithm finds these functions.

A Boolean function g in \mathcal{F}_k, k-tuple $T = (t_1, \ldots, t_k)$ in T_n^k and p-smooth distribution (D^+, D^-) in $\mathcal{D}_{g, T}$ are assumed to be fixed arbitrarily. Let W be any subset of Σ^k. Let subsets $M_{W, 0}, M_{W, 1}, \ldots, M_{W,k+1}$ of Σ^k be defined as

\[M_{W, 0} = \{0^k\}, \]
and for $1 \leq l \leq k + 1$,
$$
M_{W,l} = \text{Min}_S \left\{ w' \in W \mid \exists w \in M_{W,l-1} \text{ w < w', } g(w) \neq g(w') \right\}.
$$

Furthermore, let $d_{W,l}$ be defined to be $\text{Mon}(M_{W,l})$ for $0 \leq l \leq k + 1$. It is clear that there exists $1 \leq l' \leq k + 1$ such that $\text{TRUE} = d_{W,0} \supset d_{W,1} \supset \cdots \supset d_{W,l'} = d_{W,k+1} = \text{FALSE}$, and hence, W is partitioned into the blocks
$$
\{ W \cap (d_{W,0} - d_{W,1}), W \cap (d_{W,1} - d_{W,2}), \ldots, W \cap (d_{W,l'-1} - d_{W,l'}) \}.
$$

Furthermore, by definitions, it is easy to see that g takes the same value on each block and the opposite values on any neighboring blocks. Let \tilde{g}_W denote the Boolean function of k variables defined as
$$
\tilde{g}_W = g(0^k) \oplus \bigoplus_{1 \leq l \leq k} d_{W,l}.
$$

Then since, for any $0 \leq j \leq l' - 1$ and any vector w in $W \cap (d_{W,j} - d_{W,j+1})$,
$$
\tilde{g}_W(w) = g(0^k) \oplus \bigoplus_{1 \leq j \leq l} d_{W,j}(w) = g(0^k) \oplus 1 \oplus \cdots \oplus 1 = g(w),
$$

the following proposition holds.

Proposition 1 For any vector w in W, $g(w) = \tilde{g}_W(w)$.

Let sign_g denote the function defined as $\text{sign}_g(j) = g(0^k) \oplus 1 \oplus \cdots \oplus 1$ for $1 \leq j \leq k$. Then $\text{sign}_g(j)$ represents the value that g takes on the region $W \cap (d_{W,j} - d_{W,j+1})$.

Let M_W denote $\bigcup_{1 \leq i \leq k} M_{W,i}$. For $1 \leq i \leq k$, $\hat{\imath}_{W,i}$ denotes a term defined as
$$
\hat{\imath}_{W,i} = \bigwedge_{y \in Y} y, \quad \text{where } Y = \bigcap_{w \in M_W, w_i = 1} \text{lit} (\tau_w(T)).
$$

In the above definition, $\hat{\imath}_{W,i}$ denotes FALSE when $w_i = 0$ for any vector w in M_W. Let
$$
\hat{T}_W = (\hat{\imath}_{W,1}, \ldots, \hat{\imath}_{W,k}).
$$

Proposition 2 For any vector w in M_W, $\tau_w(T) = \tau_w(\hat{T}_W)$.

Proof: It suffices to show that $\text{lit} (\tau_w(T)) \supseteq \bigcap_{v \in \Sigma^n} \text{lit} (\tau_v(\tilde{T}_W))$. Recalling $T = (t_1, \ldots, t_k)$, we have $\tau_w(T) = \bigwedge_{w_i = 1} t_i$. Since $\text{lit}(t_i) \subseteq \text{lit}(\tau_w(T))$ holds for any $1 \leq i \leq k$ and any w' in Σ^k with $w'_i = 1$, we have $\text{lit}(\hat{\imath}_{W,i}) \subseteq \text{lit}(\hat{\imath}_{W,i})$, which implies $\text{lit}(\tau_w(T)) \supseteq \bigcap_{w \in M_W, w_i = 1} \text{lit}(\hat{\imath}_{W,i}) = \text{lit}(\hat{\imath}_{W,i})$. On the other hand, since $w \in M_W$, we have $\text{lit}(\hat{\imath}_{W,i}) \supseteq \bigcap_{v \in \Sigma^n} \text{lit} (\tau_v(\tilde{T}_W))$ for any i with $w_i = 1$. Therefore, $\text{lit}(\tau_w(T)) \supseteq \bigcup_{w \in M_W, w_i = 1} \text{lit}(\hat{\imath}_{W,i})$.

Since g and \tilde{g}_W take the same value on W, $\tilde{g}_W \circ \hat{T}_W$ -approximates $g \circ T$ when W mentioned above includes all vectors w with $D^{\tilde{g}_W}(\{ w \mid T(v) = w \}) \geq \epsilon/2^k$ (Lemma 2), where D^+ and D^- denote D^+ and D^-, respectively. In order to show this, we need to define some notations as follows. Let $\text{range}(T)$ denote set $\{ w \in \Sigma^k \mid \exists v \in \Sigma^n \text{ w = T(v)} \}$, and let $\text{range}^+(T) = \text{range}(T) \cup g$ and $\text{range}^-(T) = \text{range}(T) \cap \neg g$. Then $\text{range}(T)$ is partitioned into $\text{range}^+(T)$ and $\text{range}^-(T)$. Let $\text{range}_{\Sigma^g(T)}(T)$ denote the subset $\{ w \in \text{range}(T) \mid D^{\tilde{g}_W}(\sigma_w(T)) \geq q \}$, where $D^{\tilde{g}_W}(\sigma_w(T))$ denotes $D^{\tilde{g}_W}(\{ v \in \Sigma^n \mid T(v) = w \})$. Let $\text{range}^+_{\Sigma^g}(T) = \text{range}_{\Sigma^g}(T) \cap g$ and $\text{range}^-_{\Sigma^g}(T) = \text{range}_{\Sigma^g}(T) \cap \neg g$. Then it is easy to see the following lemma.
Lemma 1 If a Boolean function h satisfies $(g \circ T)(v) = h(v)$ for any w in range$_{2^{t/2}}(T)$ and any v in Σ^n with $T(v) = w$, then h ε-approximates $g \circ T$ under (D^+, D^-).

Using Propositions 1, 2, and Lemma 1, we can show the following lemma.

Lemma 2 If range$_{2^{t/2}}(T) \subseteq W$, then $\tilde{g}_W \circ \tilde{T}_W$ ε-approximates $g \circ T$ under (D^+, D^-).

Proof: Let w be any vector in W and let j be a suffix such that $w \in d_{W,j} - d_{W,j+1}$, that is, $d_{W,j}(w) = 1$ and $d_{W,j+1}(w) = 0$. Since $w \in W$, we have $g(w) = \tilde{g}_W(w)$ by Proposition 1. Therefore, since \tilde{g}_W takes the same value on $d_{W,j} - d_{W,j+1}$ and $w \in d_{W,j} - d_{W,j+1}$, we have $g(w) = \tilde{g}_W(w')$ for any w' in $d_{W,j} - d_{W,j+1}$.

Therefore, if $T(v) = w$ implies $\tilde{T}_W(v) \in d_{W,j} - d_{W,j+1}$, then $(g \circ T)(v) = (\tilde{g}_W \circ \tilde{T}_W)(v)$ for any v in Σ^n with $T(v) = w$. That is, for any w in W (and hence, for any w in range$_{2^{t/2}}(T)$), $g \circ T$ and $\tilde{g}_W \circ \tilde{T}_W$ take the same value on $\{v \mid T(v) = w\}$. Thus, by Lemma 1, $\tilde{g}_W \circ \tilde{T}_W$ ε-approximates $g \circ T$ under (D^+, D^-). In the following, we show that $T(v) = w$ implies $\tilde{T}_W(v) \in d_{W,j} - d_{W,j+1}$.

Since w in Mon$(M_{W,j})$, there exists w' in $M_{W,j}$ such that $w' \leq w$. From Proposition 2, we have

$$\tau_w(T) \subseteq \tau_w' = \tau_{w'}(\tilde{T}_W) \subseteq \tau_{w'}(T) = d_{W,j} \circ \tilde{T}_W.$$

On the other hand,

$$d_{W,j+1} \circ T = d_{W,j+1} \circ (t_1, \ldots, t_k) \supseteq d_{W,j+1} \circ (\tilde{t}_W, \ldots, \tilde{t}_W) = d_{W,j+1} \circ \tilde{T}_W,$$

since, for any $1 \leq i \leq k$, $l_{it}(t_i) \subseteq l_{it}(\tilde{t}_W)$, that is, $t_i \supseteq \tilde{t}_W$. Therefore we have

$$T(v) = w \Rightarrow (\tau_{w'}(T)(v) = 1 \text{ and } (d_{W,j+1} \circ \tilde{T}_W)(v) = 0 \Rightarrow \tilde{T}_W(v) \in (d_{W,j} - d_{W,j+1})$$

□

Let $f = g \circ T$ be a target function and let W be any subset of Σ^k such that range$_{2^{t/2+1}} \subseteq W$. Lemma 2 says that, in order to obtain $\tilde{T}_W = (\tilde{t}_W, \ldots, \tilde{t}_W)$ such that $\tilde{g}_W \circ \tilde{T}_W$ ε-approximates f, it is sufficient to find $\tau_w(T)$ for each w in M_W, because $\tilde{t}_W = \Lambda \left(\bigcap_{w \in M_W, w \in 1 \bigcup \text{lit}(\tau_w(T))} \text{lit}(\tau_w(T)) \right)$.

To find $\tau_w(T)$ for each w in M_W, the algorithm finds sets $\{\tau_w(T) \mid w \in M_W\}$ for $l = 0, 1, \ldots, k$, repeatedly. More precisely, to find $\tau_w(T)$ for each w' in $M_{W,i}$, the algorithm uses $\tau_w(T)$ previously found for w in $M_{W,i-1}$ with $w < w'$. Since $w < w'$ holds,

$$\text{lit}(\tau_w(T)) = \text{lit}(\tau_w(T)) \cup \bigcup_{1 \leq i \leq k} \text{lit}(t_i).$$

In order to find $\tau_w(T)$, the algorithm tries to find a set V consisting of sufficient number of vectors generated according to $D^t(w')$ with $\sigma_{w'}(T)(v) = 1$ (that is, $T(v) = w'$), and to compute $\Lambda \{ g \in Y_n \mid \forall v \in V \ g(v) = 1 \}$. There is, however, no obvious way to know the value of $T(v)$ for vector v. So we explore conditions such that $T(v) = w'$ holds for some w' satisfying the conditions mentioned above. The conditions have to be expressed in terms of v and $\tau_w(T)$ without referring to $T(v)$. The conditions we notice consist of three conditions. The first condition is $\tau_w(T)(v) = 1$. The second condition is the one that guarantees $t_i(v) = 0$ for all i with $w'_i = 0$. Provided that y_i is chosen from $\text{lit}(t_i) - \text{lit}(\tau_w(T))$ for each i with $w'_i = 0$, let $r = \bigwedge_i \text{alg}(y_i)$, and the second condition we adopt is $r(v) = 1$ for such y_i's which are found by exhaustive search. Then, if v satisfies these two conditions, we can easily see that
$w \leq T(v) \leq w'$ holds. The third condition we take is $f(v) = g(w')$. When w' is the minimal vector among w'' in $\text{range}(T)$ such that $g(w'') \neq g(w)$ and that $w'' \geq w$, it follows that $f(v) = g(T(v)) = g(w')$ for $T(v) \geq w$ implies $T(v) \geq w'$. Thus the third condition, together with the first and second conditions, guarantees that $T(v) = w'$ (Lemma 3).

Using these three conditions, the algorithm finds a set V of sufficient number of v's such that $T(v) = w'$ and computes set \{ $y \in Y_n \mid \forall v \in V \ y(v) = 1$ \}. Literals in \{ $y \in Y_n \mid \forall v \in V \ y(v) = 1$ \} are candidates for literals corresponding to $\tau_w(T)$, i.e., those appearing in $\bigwedge_{v \in \text{range}(w')} t_i$. Since there may be a literal $\neg y_i$ appearing in r but not in $\bigwedge_{v \in \text{range}(w')} t_i$, it is necessary to remove all such literals from \{ $y \in Y_n \mid \forall v \in V \ y(v) = 1$ \} to obtain $\text{lit}(\tau_w(T))$. In algorithm LEARN given in Figure 1, a possible set of such literals is denoted by p.

The argument above suggests that as W the set, denoted W, which is defined as follows.

\[
W = \{ w \in \text{range}^+(T) \mid \exists w' \in \text{range}^+_{2^i/2^{i+1}}(T) \text{ such that } w \leq w' \} \\
\cup \{ w \in \text{range}^-(T) \mid \exists w' \in \text{range}^-_{2^i/2^{i+1}}(T) \text{ such that } w \leq w' \}.
\]

Let $\text{child}_{W}(w)$ denote $\text{Min}_{\leq} \{ w' \in W \mid w' \geq w, g(w') \neq g(w) \}$. Then clearly, for any w' in $M_{W,1}$, there exists w' in $\text{child}_{W}(w)$ such that $w \in M_{W,1}$, where $1 \leq l \leq k$. Note that if $w' \in \text{child}_{W}(w)$, then $\tau_{w'}(T) \not\subseteq \tau_w(T)$ holds. Let R_w be defined as

\[
R_w = \{ r \in T_{n} \leq \beta \mid r \neq \text{FALSE}, r = \bigwedge_{i \in \text{false}(w)} \neg y_i = \text{lit}(t_i) - \text{lit}(\tau_w(T)) \}.
\]

Then, we can show the following lemmas.

Lemma 3 For any vector w in M_{W}, any vector w' in $\text{child}_{W}(w)$ and any term r in R_w,

\[
\tau_{w'}(T) \land r = (g \circ T)^{\delta(w')} \land \tau_w(T) \land r
\]

holds, where $(g \circ T)^{1}$ and $(g \circ T)^{0}$ denotes $g \circ T$ and $\neg (g \circ T)$, respectively.

Note that the above lemma implies that $D^\theta(w') (\tau_{w'}(T) \land r) = D^\theta(w') (\tau_{w}(T) \land r)$, and hence $D^\delta(w') (y \mid \tau_{w}(T) \land r) = 1$ for any y in $\text{lit}(\tau_{w'}(T) \land r)$.

Lemma 4 Let $(D^+, D^-) \in S_{\leq T_{F}}$. For any w in W, any w' in $\text{child}_{W}(w)$ and r in $R_{w'}$,

\[
D^\delta(w')(\tau_{w'}(T) \land r) \geq \beta
\]

holds, and for any x_i with \{ $x_i, \neg x_i$ \} $\cap \text{lit}(\tau_{w'}(T) \land r) = \emptyset$,

\[
\gamma \leq D^\delta(w')(x_i \mid \tau_{w}(T) \land r) \leq 1 - \gamma
\]

holds, where $\beta = \epsilon p / 2^{2k+1}$ and $\gamma = p/2$.

We are now ready to construct Algorithm LEARN to learn $F_k \circ T_k$ under p-smooth distributions. An outline of the algorithm is given as follows. Algorithm LEARN first obtains samples S^+ of m positive examples and S^- of m negative examples by calling POS() and NEG() m times, respectively, where m is a sufficiently large number. Then, LEARN puts $U_0 = \{ \text{TRUE} \}$, and computes the sets U_1, \ldots, U_k such that $\{ \tau_{w}(T) \mid w \in M_{W,l} \} \subseteq U_l$ for $1 \leq l \leq k$, repeatedly. For $1 \leq l \leq k$, U_l is computed by using U_{l-1} as follows. Assume that LEARN has U_{l-1} such that $\{ \tau_{w}(T) \mid w \in M_{W,l-1} \} \subseteq U_{l-1}$ holds, and
Algorithm LEARN(n, ε, δ):

\begin{align*}
\beta &= \varepsilon p^k / 2^{2k-1}, \gamma = p/2 \ast \\
m &\leftarrow \max \left\{ 32 \frac{4}{\beta}, 24 \frac{4}{3\beta\gamma} \right\} \ln \left(\frac{(2\varepsilon)^{2k} k'}{\delta} \right) \\
S^+, S^- &\leftarrow \emptyset \quad \text{(\ast multiset \ast)}
\end{align*}

for \(m \) times do

\begin{align*}
\text{begin} \\
v &\leftarrow \text{POS}(); \\
S^+ &\leftarrow S^+ \cup \{v\}; \\
v &\leftarrow \text{NEG}(); \\
S^- &\leftarrow S^- \cup \{v\} \\
\text{end}
\end{align*}

\begin{align*}
U_0 &\leftarrow \{\text{TRUE}\}; \\
U_1, \ldots, U_k &\leftarrow \emptyset;
\end{align*}

for \(l \leftarrow 1 \) step 1 until \(k \) do

\begin{align*}
\text{for each } (z, s, r) &\in \{+, -\} \times U_{l-1} \times T_{n, \leq k} \text{ do} \\
\text{begin} \\
V &\leftarrow \{v \in S^z \mid (s \wedge r)(v) = 1\}; \quad \text{(\ast multiset \ast)} \\
\text{if } |V| &\geq \frac{3}{4} \beta m \text{ then} \\
\text{begin} \\
u &\leftarrow \wedge \{y \in Y_n \mid \forall v \in V \quad y(v) = 1\}; \\
U_l &\leftarrow U_l \cup \{\wedge (\text{lit}(u) - \rho) \mid \rho \subseteq \text{lit}(r)\} \\
\text{end} \\
U &\leftarrow \bigcup_{1 \leq l \leq k} U_l; \\
\bar{U} &\leftarrow \left\{ \wedge \left(\bigcap_{u \in U'} \text{lit}(u) \right) \mid U' \subseteq U, |U'| \leq 2^{k-1} \right\} \cup \{\text{FALSE}\}; \\
\mathcal{H} &\leftarrow \{g'(U) \mid g' \in \mathcal{T}_k, U \in \bar{U}^k\};
\end{align*}

\begin{align*}
\text{for each } h &\in \mathcal{H} \text{ do} \\
\text{if } |\{v \in S^+ \mid h(v) = 0\}| &< \frac{3}{4} \varepsilon m \text{ and } |\{v \in S^- \mid h(v) = 1\}| < \frac{3}{4} \varepsilon m \text{ then} \\
\text{output } h
\end{align*}

end.

Figure 1: Algorithm LEARN
let \(w' \) be any vector in \(M_{W,1} \). There exists \(w \) in \(M_{W,l-1} \) such that \(w' \in \text{child}_{\hat{W}}(w) \). If the parameter \((z,s,r)\) of for sentence \((\text{sign}_{y}(f), \tau_{w}(T), r_{w'})\) for \(r_{w'} \in \mathcal{R}_{w'} \), then, by Lemma 4, the set \(V \) of vectors \(v \) in \(S^{\text{sign}_{y}(f)} \) with \((\tau_{w}(T) \land r_{w'})(v) = 1 \) satisfies, with sufficiently high probability, \(|V| \geq \frac{3}{4} \beta m \). Then, LEARN computes the set \(\{ y \in Y_n \mid \forall v \in V \hspace{1em} y(v) = 1 \} \). Since by Lemma 4, for any literal \(y \) not in \(\text{lit}(\tau_{w}(T) \land r_{w'}) \), both of the probabilities of \(y(v) = 1 \) and \(y(v) = 0 \) are lower bounded by some constant (given as \(\gamma = p/2 \)) when \(v \) is generated according to \(D^{(w')} \), a literal in \(\text{lit}(\tau_{w}(T) \land r_{w'}) \), with high probability, does not appear in \(\{ y \in Y_n \mid \forall v \in V \hspace{1em} y(v) = 1 \} \) when \(|V| \) is sufficiently large, which implies \(\{ y \in Y_n \mid \forall v \in V \hspace{1em} y(v) = 1 \} \subseteq \text{lit}(\tau_{w}(T) \land r_{w'}) \) with high probability, and hence \(\{ y \in Y_n \mid \forall v \in V \hspace{1em} y(v) = 1 \} = \text{lit}(\tau_{w}(T) \land r_{w'}) \). Putting \(\rho \) a possible set of literals in \(\text{lit}(\tau_{w'}) \) but not in \(\text{lit}(\tau_{w}(T)) \), LEARN produces \(\lambda \{ y \in Y_n \mid \forall v \in V \hspace{1em} y(v) = 1 \} - \rho \) and adds it to \(U_{t} \). Therefore, since for sentence is executed for all the possible combinations of parameters \(z, s, r \) in the sets given in the algorithm, we have that, with high probability, \(\{ \tau_{w}(T) \mid w \in M_{W,j} \} \subseteq U_{t} \), since \(t = \{ w \in M_{W,j} \} \subseteq U_{t} \), it follows that \(\{ \tau_{w}(T) \mid w \in M_{W,j} \} \subseteq U_{t} \) holds with high probability for \(1 \leq l \leq k \). Let \(\mathcal{U} = \bigcup_{1 \leq i \leq k} U_{t} \). Then, since \(\mathcal{U} = \bigwedge \{ \text{lit}(\tau_{w}(T)) \} \) for \(1 \leq i \leq k \), \(\mathcal{U} \) is represented as \(\lambda \left(\bigcap_{u \in \mathcal{U}'} \text{lit}(u) \right) \) for some appropriate set \(\mathcal{U}' \) of at most \(2^{k-1} \) terms in \(\mathcal{U} \). Let \(\mathcal{U} \) be the set of all possible terms \(\lambda \left(\bigcap_{u \in \mathcal{U}'} \text{lit}(u) \right) \) for such \(\mathcal{U}' \)'s. Finally, LEARN obtains the desired hypothesis by checking all the combinations \(g' \) in \(F_{k} \) and \((t_{1}, \ldots, t_{k}) \) in \(\mathcal{U}^{k} \) until \(g' \circ (t_{1}, \ldots, t_{k}) \) approximates \(g \circ T \) with sufficient accuracy.

4 Correctness

The correctness of algorithm at least \(1 - \delta/2 \), \(H \) that Algorithm LEARN computes includes an \(\epsilon/2 \)-approximation of \(g \circ T \) in \(F_{k,\text{term}} \) under \((D^{+}, D^{-}) \) in \(S_{p} \).

Lemma 5 With probability at least \(1 - \delta/2 \), \(H \) that Algorithm LEARN computes includes an \(\epsilon/2 \)-approximation of \(g \circ T \) in \(F_{k,\text{term}} \) under \((D^{+}, D^{-}) \) in \(S_{p} \), then LEARN outputs, with probability at least \(1 - \delta/2 \), \(h \) in \(F_{k,\text{term}} \) that \(\epsilon \)-approximates \(g \circ T \) under \((D^{+}, D^{-}) \).

Lemma 6 If \(H \) that Algorithm LEARN computes includes an \(\epsilon/2 \)-approximation of \(g \circ T \) in \(F_{k,\text{term}} \) under \((D^{+}, D^{-}) \) in \(S_{p} \), then LEARN outputs, with probability at least \(1 - \delta/2 \), \(h \) in \(F_{k,\text{term}} \) that \(\epsilon \)-approximates \(g \circ T \) under \((D^{+}, D^{-}) \).

Lemma 7 Algorithm LEARN halts in time \(O((n^{k+4k} \epsilon^{4k+1}) \ln(n/\delta)) \).

Theorem 1 If \(k \) is constant and \(p \) is bounded from below by the inverse of some polynomial in \(n \), \(F_{k,\text{term}} \) is learnable under \(S_{p} \).

References

