<table>
<thead>
<tr>
<th>Title</th>
<th>A Simple Near Optimal Parallel Algorithm for Recognizing Outerplanar Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakayama, Shin-ichi; Masuyama, Shigeru</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1995), 906: 6-13</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59467</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Kyoto University
A Simple Near Optimal Parallel Algorithm for Recognizing Outerplanar Graphs

Shin-ichi Nakayama (中山 慎一) Shigeru Masuyama (増山 繁)

Department of Knowledge-Based Information Engineering,
Toyohashi University of Technology
Toyohashi-shi, Aichi 441, Japan
E-mail: shin@toki.tutkie.tut.ac.jp, masuyama@tutkie.tut.ac.jp

Abstract. An outerplanar graph is a graph which can be embedded in the plane so that all vertices lie on the boundary of the exterior face. In this paper, we propose a simple near optimal parallel algorithm for recognizing whether a given graph G is outerplanar in $O(\log n)$ time using $O(n\alpha(l, n)/\log n)$ processors on an arbitrary-CRCW PRAM where n is the number of vertices in G, $\alpha(l, n)$ is the inverse Ackermann function, which grows extremely slowly with respect to l and n\cite{9} and $l = O(n)$. Although a near optimal parallel algorithm for general graphs can also be obtained by combining the algorithm in \cite{3} with the algorithm for finding biconnected components\cite{4,9}, our algorithm uses methods completely different from the algorithm in \cite{3}'s and is much simpler than \cite{3}'s.

1 Introduction

An outerplanar graph is an undirected graph which can be embedded in the plane in such a way that all vertices lie on the exterior face\cite{13}. A graph always denotes an undirected graph throughout this paper, except when it is specified to be directed. For outerplanar graphs, several efficient algorithms for solving important problems e.g., vertex-coloring, edge-coloring, longest path, are known \cite{5,9}. Furthermore, it is well-known that a given graph is outerplanar if and only if a given graph has page number one, where graph G has page number one if there exists a linear arrangement of vertices so that no pair of edges is crossing when they are drawn on the same side of the linear arrangement of the vertices \cite{13,11}. The problem of deciding whether a given graph has page number one is the special case of the book embedding, whose application to fault-tolerant VLSI design is described e.g., in the introduction of \cite{13}. Thus, it is useful to develop efficient algorithms for recognizing whether a given graph is outerplanar or not.

Mitchell \cite{10} proposed an $O(n)$ sequential algorithm for recognizing outerplanar graphs where n is the number of vertices in G. The sequential algorithm removes a vertex v satisfying some properties from a given graph G step by step, and cannot straightforwardly be applied to develop an efficient parallel algorithm. Diks, Hagerup and Rytter \cite{3} developed a parallel algorithm for recognizing outerplanar graphs. When an input graph is biconnected, the algorithm \cite{3} runs in $O(\log n)$.
time using $O(n \log n)$ processors on a CRCW PRAM (see e.g., [8]), where n is the number of vertices in G. However, when an input graph is a general graph, we need to find biconnected components before applying the algorithm [3] to each biconnected component. The best known parallel algorithm for finding biconnected components runs in $O(\log n)$ time using $O((n + m) \alpha(m, n) \log n)$ processors on the arbitrary-CRCW PRAM [4][9] where m is the number of edges and $\alpha(m, n)$ is the inverse Ackermann function, which grows extremely slowly with respect to m and n [9].

The arbitrary-CRCW PRAM is defined by the property that when several processors try to write to the same memory cell in the same step, then exactly one of them succeeds [8]. As outerplanar graphs have at most $2n - 3$ edges [10], by checking this fact first, we can find biconnected components in $O(\log n)$ time using $O(n \alpha(l, n) \log n)$ processors on the arbitrary-CRCW PRAM where $l = O(n)$. Thus, the algorithm [3] combined with the algorithm for finding biconnected components [4][9] together, in total, $O(\log n)$ time using $O(n \alpha(l, n) \log n)$ processors on the arbitrary-CRCW PRAM, when applied to general graphs. Similarly, on a CREW PRAM (see e.g., [8]), the complexity of parallel algorithm [3] is dominated by finding biconnected components, when applied to general graphs.

In this paper, we present a simple near optimal parallel algorithm for recognizing outerplanar graphs in $O(\log n)$ time using $O(n \alpha(l, n) \log n)$ processors on the arbitrary-CRCW PRAM, in the sense that $O(\log n) \times O(n \alpha(l, n) \log n) = O(n \alpha(l, n))$ is almost linear with respect to n. Although a near optimal parallel algorithm for general graphs can also be obtained by combining the algorithm in [3] with the algorithm in [4][9], our algorithm uses methods completely different from the algorithm in [3]'s, e.g., the well known st-numbering, and is much simpler than [3]'s.

2 Definitions

Given an undirected connected graph $G = (V, E)$ having no multiple edges. A path P from v_0 to v_k in G is a finite non-null sequence $v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k$, $v_i \in V$, $i = 0, 1, \ldots, k$, $e_j \in E$, $j = 1, 2, \ldots, k$, such that, for $1 \leq i \leq k$, the end vertices of e_i are v_{i-1} and v_i, respectively. If $v_0 = v_k$, then path P is a circuit.

A biconnected graph G is a connected graph which has no vertex v such that $G - v$ (the graph obtained by removing v from G) has at least two connected components. A biconnected outerplanar graph has a planar embedding consisting of a circuit bounding the exterior face, where (possibly) a number of non-crossing edges are embedded within the interior region of this circuit [5]. Edges on the boundary of the exterior face are called sides, while the other edges are called diagonals [5].

Next, we describe the st-numbering used in our parallel algorithm.

Definition 1 [12] An st-numbering is a one-to-one function f from V to $\{1, \cdots, n\}$ satisfying the following two conditions:

(i) $f(s) = 1$ and $f(t) = n$,
(ii) for each \(v \in V - \{s, t\} \), there exist adjacent vertices \(v_1 \) and \(v_2 \) such that \(f(v_1) < f(v) < f(v_2) \).

Fig. 2 illustrates \(st \)-numbering. The \(st \)-numbering is used as an indispensable component in several algorithms [12]. We have the following theorem.

Theorem 1 [12] A graph \(G \) is biconnected if and only if it has an \(st \)-numbering by letting \(s = u \) and \(t = v \) for each edge \((u, v) \).

(Note 2.1) If graph \(G \) is biconnected, its \(st \)-numbering can be obtained in \(O(\log n) \) time using \(O((n + m)\alpha(m, n)/\log n) \) processors [4] where \(n \) (resp., \(m \)) is the number of vertices (resp., edges) in \(G \) and \(\alpha(m, n) \) is the inverse Ackermann function.

3 The Parallel Algorithm

We first assume that the given graph \(G \) is biconnected. We shall describe how to treat general graphs at the end of this section. The following theorems characterize outerplanar graphs.

Theorem 2 [6] Given graph \(G = (V, E) \), \(G \) is outerplanar if and only if \(G \) has no subgraph homeomorphic to either \(K_4 \) or \(K_{2,3} \), where \(K_4 \) is the complete graph on four vertices and \(K_{2,3} \) is the graph illustrated in Fig. 3. \(\square \)

Theorem 3 [10] An outerplanar graph \(G \) with \(n \geq 3 \) vertices has

(i) at most \(2n - 3 \) edges,

(ii) at least two vertices of degree 2. \(\square \)

Our parallel algorithm first checks, based on Theorem 3, if \(G \) has at most \(2n - 3 \) edges and at least two vertices of degree 2. Then, this algorithm chooses a vertex \(v \) of degree 2 and a vertex \(v' \) incident to \(v \); regards \(v \) (resp., \(v' \)) as \(s \) (resp., \(t \)) and finds \(st \)-numbering of \(G \). Note that, by Note 2.1 just after Theorem 1, we can find \(st \)-numbering of \(G \) because \(G \) is assumed to be biconnected. When \(G \) is outerplanar, exactly one Hamiltonian circuit always exists in \(G \), and the edges constructing the Hamiltonian circuit can be regarded as sides of the outerplanar graph [2][5]. Consequently, the above process finds the sides by the following lemma. In the following, suppose that the vertices in \(G \) are numbered from 1 to \(n \) by \(st \)-numbering where \(s \) is a vertex of degree 2 and \(t \) is a vertex incident to \(s \) and each vertex in \(G \) is identified with its vertex number.

Lemma 1 If \(G \) is outerplanar, then all edges \((i, i + 1), i = 1, \cdots, n - 1, \) are in \(G \).

(proof) We shall show that, if \(G \) does not have some edge among \((i, i + 1), i = 1, \cdots, n - 1, \) then \(G \) is not outerplanar. Assume that vertex \(i \) is not incident to vertex \(i+1 \). By the definition of \(st \)-numbering, each vertex \(x, x = 2, \cdots, n - 1 \), must be incident to a vertex whose number is less than \(x \) and to a vertex whose number is more than \(x \), respectively. By this fact and the connectivity of \(G \), \(G \) has simple path \(P_{1,s} = i, j_1, j_2, \cdots, j_l, s, (l \geq 1) \) where \(i > j_1 > j_2 > \cdots > j_l > 1(= s) \). Vertex 1 (=s) is adjacent to exactly two vertices \(n (= t) \) and 2 by definition, so \(j_l \) of \(P_{1,s} \) must be 2, (see Fig. 4). Similarly, for \(i+1, \) simple path \(P_{i+1,s} = i + 1, j_1', j_2', \cdots, j_l', s, (l' \geq 1) \) where \(i + 1 > j_1' > j_2' > \cdots > 2(= j_l') > 1(= s) \) exists.

Moreover, by the fact that each vertex \(x, x = 2, \cdots, n - 1, \) must be incident to the vertex
whose number is more than \(x \), \(G \) has simple paths \(P_{i,t} = i, k_{1}, k_{2}, \ldots, t \), where \(i < k_{1} < k_{2} < \cdots < t(= n) \), and \(P_{i+1,t} = i + 1, k_{1}', k_{2}', \ldots, t \), where \(i + 1 < k_{1}' < k_{2}' < \cdots < t(= n) \).

Since \(t > \cdots > k_{2} > k_{1} > i > j_{1} > j_{2} > \cdots > j_{l} > 1(= s) \), \(P_{i,t} \) and \(P_{i,s} \) share no vertex except \(i \). Similarly, \(P_{i,t} \) and \(P_{i+1,s} \), \(P_{i+1,t} \) and \(P_{i,s}, P_{i+1,t} \) and \(P_{i+1,s} \) share no vertex except \(i \), \(i + 1 \). \(G^* \), constructed by \(P_{i,s}, P_{i+1,s}, P_{i,t} \) and \(P_{i+1,t} \), has a subgraph homeomorphic to \(K_{2,3} \) (see Fig 4). Hence, \(G \) is not outerplanar by Theorem 2, which however contradicts the assumption that \(G \) is outerplanar. Thus we have shown that if \(G \) is outerplanar, then \(G \) has all edges \((i, i+1), i = 1, \ldots, n - 1 \). \(\square \)

By Lemma 1, if at least one edge among \((i, i+1), i = 1, \ldots, n - 1 \), does not exist in \(G \), then the algorithm stops since \(G \) is not outerplanar, otherwise the edges \((i, i+1), i = 1, \ldots, n - 1 \), and \((n, 1) \) construct a Hamiltonian circuit \(C \). We regard the edges constructing \(C \) as sides of the outerplanar graph. (Note that if \(G \) is outerplanar, Hamiltonian circuit \(C \) is unique [5].)

We assume that \(C \) is embedded in the plane so that each edge of \(C \) bound the exterior face and the edges of \(G - C \) \((G - C \) denotes the graph obtained by removing edges of \(C \) from \(G \)) are embedded within the interior region of \(C \). The edges of \(G - C \) are called diagonals of \(G \). If the diagonals do not intersect each other on such embedded edges, then \(G \) is outerplanar, otherwise \(G \) is not outerplanar.

To see this, we execute the following process. Hereafter, we identify each vertex with its vertex number assigned by \(st \)-numbering.

Let \(M(i), i = 1, \ldots, n \), be an array such that \(M(i) \) contains vertex \(j_{0} \) where \(j_{0} \equiv \min \{ j \mid j \) is the endpoint of diagonals adjacent to \(i \} \). If there is no diagonal incident to \(i \), \(M(i) \) has a value \(+\infty \) where \(+\infty \) is a sufficiently large number satisfying \(+\infty > n \). For each diagonal \((x, y) \) such that \(x < y \), we execute \(\mathrm{val}(x, y) \leftarrow \min \{ M(i) \mid x \leq i \leq y \} \) and regard \(\mathrm{val}(x, y) \) as the value of diagonal \((x, y) \). On the value \(\mathrm{val}(x, y) \) for each diagonal \((x, y) \), we obtain the following lemma.

Lemma 2 Assume that Hamiltonian circuit \(C \) is embedded in the plane so that each edge of \(C \) bounds the exterior face and diagonals are embedded within the interior region of \(C \).

The diagonals intersect each other if and only if there is a diagonal \((x, y) \), where \(x < y \), such that the value \(\mathrm{val}(x, y) \) is less than vertex number \(x \).

(proof) \(\Rightarrow \) Assume that there is a pair of diagonals which intersect each other. Let \((x, y), (x', y') \), where \(x < y, x' < y' \) and \(x' < x \), be a pair of intersecting diagonals. As these two diagonals intersect each other, vertex \(y' \) satisfies \(x < y' < y \) and is adjacent to diagonal \((x', y') \) where \(x' < x \) (see Fig. 6(a)). Hence, \(\mathrm{val}(x, y) = \min \{ M(i) \mid x \leq i \leq y \} < x \).

(\(\Leftarrow \)) Assume that no diagonals intersect each other. Since no diagonals intersect each other, each vertex \(j \) adjacent to vertex \(i \), where \(x \leq i \leq y \), satisfies \(x \leq j \leq y \) for each diagonal \((x, y) \) where \(x < y \) (see Fig. 6(b)). Hence, \(\mathrm{val}(x, y) = \min \{ M(i) \mid x \leq i \leq y \} \geq x \). \(\square \)

In the following, we introduce Procedure Recognition for recognizing whether a given graph is outerplanar.
Procedure Recognition
begin
(Step 1) if \(m > 2n - 3 \),
then print "\(G \) is not outerplanar" and stop.
(Step 2) if \(G \) does not have at least two vertices of degree 2,
then print "\(G \) is not outerplanar" and stop.
(Step 3) Choose a vertex \(v \) of degree 2 and a vertex \(v' \) incident to \(v \); regard \(v \) and \(v' \) as \(s \) and \(t \), respectively, and find an \(st \)-numbering of \(G \) [12][4].
(Step 4) if \(G \) does not have at least one edge among \((i, i+1) \) for all \(i, 1 \leq i \leq n - 1 \), where \(i, i + 1 \) are the vertex numbers assigned by Step 3,
then print "\(G \) is not outerplanar" and stop.
(Step 5) For each vertex \(i, i = 1, \ldots, n \),
\(M(i) \leftarrow \min \{ j \mid j \text{ is the endpoint of diagonals adjacent to } i \} \).
(Step 6) For each diagonal \(e_j = (x, y) \) where \(x < y \),
\(\text{val}(x, y) \leftarrow \min \{ M(i) \mid x \leq i \leq y \} \).
(Step 7) if there is a diagonal \((x, y) \), where \(x < y \), such that \(\text{val}(x, y) < x \),
then print "\(G \) is not outerplanar",
else print "\(G \) is outerplanar".
end.

The correctness of Procedure Recognition is obvious by Theorem 3 and Lemmas 1 and 2. We then analyze the computation time and the number of processors required.

The complexity analysis is done under the assumption that each vertex of the input graph \(G \) has a pointer to its predefined adjacency list, that is, for each vertex \(v \in V \), the vertices adjacent to vertex \(v \) are given in a linked list, say, \(L[v] = \langle u_1, u_2, \ldots, u_d \rangle \), in some order, where \(d \) is the degree of \(v \) (Fig. 5(a)). Recall that the arbitrary-CRCW PRAM is used as a parallel computation model in this paper.

The list ranking algorithm [8] can handle steps 1, 2 in \(O(\log n) \) time using \(O(n/\log n) \) processors.

Note that \(m = O(n) \) in the following analysis, as steps 3-7 are executed only when \(m \leq 2n - 3 \) by step 1.

The parallel algorithm for finding \(st \)-numbering runs in \(O(\log n) \) time using \(O((n+m)\alpha(m, n)/\log n) \) processors [4] where \(n \) (resp., \(m \)) is the number of vertices (resp., edges) in input graphs and \(\alpha(m, n) \) is the inverse Ackermann function. Thus, in step 3, finding \(st \)-numbering of \(G \) requires \(O(\log n) \) time using \(O(n\alpha(l, n)/\log n) \) processors where \(l = O(n) \).

After finding the \(st \)-numbering, each of the initial vertex numbers in the adjacency lists \(L[i] \)'s is replaced by its number assigned by the \(st \)-numbering. For this process, we first transform the adjacency lists \(L[i] \)'s into a linked list \(L' \) as follows. Let a vertex \(u'_i \) be the last element in the adjacency list \(L[i] \) of vertex \(i \) and a vertex \(u_{i+1} \) the first element in \(L[i + 1] \). Each vertex \(u'_i \) has a pointer to \(u_{i+1} \), for \(i = 1, \ldots, n - 1 \), (See Fig. 5(b)). We then convert the linked list \(L' \) into an array \(A \) by applying the list ranking algorithm [8] which runs in \(O(\log n) \) time using \(O(n/\log n) \) processors. And we replace each of the initial vertex numbers by its number assigned by \(st \)-numbering using a standard technique used to implement Brent's scheduling principle[5][8] as follows. Partition elements of \(A \) into equal-sized blocks \(E_i, i = 1, \ldots, |A|/\log n \), where each size is \(O(\log n) \). Treat each block \(E_i \) separately, and sequentially replace each of the initial vertex numbers belonging to block \(E_i \) by its number assigned by \(st \)-numbering. This process runs in \(O(\log n) \) time using \(O(n/\log n) \) processors.
Step 4 runs in \(O(\log n) \) time using \(O(n/\log n) \)
processors by applying Brent’s scheduling principle[5][8] stated in step 3.

Let \(A[k, k'], 1 \leq k < k' \leq |A| (= O(n)) \) be an interval between \(k \) and \(k' \) in \(A \). Note that the elements in \(A \) are numbers assigned by st-numbering. As the degree of each vertex is found in step 2, we can recognize the vertices adjacent to vertex \(v \) as the element in interval \(A[k, k'] \) where \(1 \leq k < k' \leq |A| \). For example, assume that \(d_i \) is the degree of vertex \(i \), the vertices adjacent to vertex \(1 \) are the elements in \(A[1, d_i] \), the vertices adjacent to vertex \(2 \) are the elements in \(A[d_1 + 1, d_1 + d_2] \), and so on. (Note: Given the degree of each vertex, the intervals in \(A \) corresponding to vertex \(i \) for \(i = 1, \ldots, n \), are found in \(O(\log n) \) time using \(O(n/\log n) \) processors by applying prefix-sums algorithm [8].) Hence, in step 5, finding each minimum vertex number adjacent to vertex \(i \) for \(i = 1, \ldots, n \), can be done by computing the minimum of interval in \(A \) corresponding to vertex \(i \). As described in [8](pp. 131-136), after executing a preprocessing algorithm (ALGORITHM 3.8 in [8]) which runs in \(O(\log n) \) time using \(O(n/\log n) \) processors, we can compute the minimum \(A_{\min}[k_i, k_i'] \) of \(A[k_i, k_i'] \), that is, \(\min\{A(k_i), A(k_i + 1), \ldots, A(k_i')\} \), where \(1 \leq k_i < k_i' \leq |A| \), in \(O(1) \) time using \(O(1) \) processors. We need to compute the minimum \(A_{\min}[k_i, k_i'] \)'s corresponding to vertex \(i, i = 1, \ldots, n \). Hence, by Brent’s scheduling principle[5][8], we can compute the minimum \(A_{\min}[k_i, k_i'] \)'s for \(i = 1, \ldots, n \), in \(O(\log n) \) time using \(O(n/\log n) \) processors. The total complexity in step 5 is \(O(\log n) \) time using \(O(n/\log n) \) processors.

In step 6, we compute \(\min\{ M(i) \mid x \leq i \leq y \} \), where \(x < y \), for each diagonal \(e_j = (x, y), j = 1, \ldots, k (= O(n)) \). Since this process is equivalent to the process described in step 5, this can be done in \(O(\log n) \) time using \(O(n/\log n) \) processors.

Step 7 takes \(O(\log n) \) time using \(O(n/\log n) \) processors.

Having assumed that the input graph \(G \) is a biconnected graph so far, we shall describe, before closing this section, how to decide whether \(G \) is outerplanar when \(G \) is a general graph.

We first check if \(G \) has at most \(2n - 3 \) edges. We next find biconnected components, that is, blocks \(B_1, B_2, \ldots, B_k \) of \(G \) by applying the algorithm of finding biconnected components in [4] [9], which runs in \(O(\log n) \) time using \(O(n\alpha(l, n)/\log n) \) processors. If \(G \) is outerplanar, then each of blocks \(B_1, B_2, \ldots, B_k \) is also outerplanar [2]. Thus, we independently execute Procedure Recognition for each of these blocks \(B_1, B_2, \ldots, B_k \). If a block \(B_i \) is an edge, then Procedure Recognition tells that \(B_i \) is outerplanar. When each block \(B_i, i = 1, \ldots, k \), is outerplanar, we print “\(G \) is outerplanar” and stop. By the above-mentioned statements, we have the following theorem.

Theorem 4 Given a graph \(G \) with \(n \) vertices and \(m \) edges, whether \(G \) is outerplanar or not can be decided in \(O(\log n) \) time using \(O(n\alpha(l, n)/\log n) \) processors on the arbitrary-CRCW PRAM where \(\alpha(l, n) \) is the inverse Ackermann function, which grows extremely slowly with respect to \(l \) and \(n \) [9] and \(l = O(n) \). ☐
References

Figure 1: An example of an outerplanar graph.

Figure 2: An example of st-numbering.
图 3: $K_{2,3}$.

图 4: Illustration of the proof of Lemma 1.

图 5: Adjacency lists $L(i), i = 1, \cdots, n$, and linked list L'.

图 6: Illustration of the proof of Lemma 2.