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STABILITY OF SOLITARY WAVES FOR THE
ZAKHAROV EQUATIONS IN ONE SPACE DIMENSION

O A R 2R
AKH HA (Masahito OHTA )

1. INTRODUCTION AND RESULT

We consider here the stability of solitary waves for the Zakharov equa-

tions:
.0 92
zégu—}——a—ﬁu—nu, t>0, zekR, (1.1)
0 0
&n + 8—3311 = 0 t > 0, T e ]R, (12)
0 0 9,
— —n =——\ul®, t : .
5V T 3" Bxlul , t>0, z€R, (1.3)

where u, n and v are functions on the time-space R x R with values in
C, R and R, respectively. From (1.2) and (1.3), we have
82 az 32

The system of equations (1.1) and (1.4) was first obtained by Zakharov
[20] as a model which describes the propagation of Langmuir turbulence
in a plasma. In this system, u denotes the envelope of the electric field
and n is the deviation of the ion density from its equilibrium. On the
other hand, (1.1)—(1.3) was given by Gibbons, Thornhill, Wardrop and

ter Haar [4] from a Lagrangian formalism.
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It is well known that (1.1)—(1.3) has a two parameter family of solitary

wave solutions:

Uy o(t, ) = V2w (1 = ) sech Vw(z—ct)-expi (%m — —Zit + wt) , (1.5)

N.e(t, z) = —2wsech® Vw(z = ct), (1.6)

Ve o(t, )  : —2cw sech? w(z — ct), | (1.7)

Where w > 0and —1 < ¢ < 1. Our purpose in this paper is to show the

stability of the solitary wave solution given by (1.5)—(1.7) of (1.1)~(1.3)
for any w >0 and -1 < c< 1.

There are a large amount of papers concerning the stability and in-
stability of solitary waves for the nonlinear Schrodinger equations (see,
e.g., [2, 3, 7, 14, 15, 16, 18, 19]). However, to our knowledge, there are
only a few results concerning the stability of solitary waves for coupled
systems of Schrodinger equations and other wave equations, except the
abstract theory by Grillakis, Shatah and Strauss [§] and our recent re-
sults for the coupled nonlinear Schrodinger equations [10] and for the
coupled Klein—Gordon—Schrodinger equations [11]. |

We now state our main result.

Theorem 1.1. For any w > 0 and —1 < ¢ < 1, the solitary wave
solution (g c(t), Nw.c(t), Vu.c(t)) of (1.1)~(1.3) is stable in the following
sense: for any € > 0 there exists a & > 0 such that if (ug,ng,vo) € X
verifies o

[(uo;m0,v0) — (Ues,e(0), nw,c(O); Ve (0)) || x <:(5,. B
then the solution (u(t), n(t),v(t)) of (1.1)—(1.3) with (u(0),n(0),v(0)) =

(ug, no,vo) satisfies

einef]R ”(U(t>, n(t), ’U(t))—(eiouw,c(ta +l/)7 nw,c(ty +y) Uw,c(ta +y)>“X <¢g
7y B
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for any t > 0, where X = H'(R) x L?(R) x L*(R).

Remark 1.2. For any (ug,ng,v9) € X, there exiqtq a weak solutiofi
(u(+),n(:),v(-)) € L*°([0,00); X) of (1.1)—(1.3) with (u(0),n 0)) =
(uo,m0,v0) (see C. Sulem and P.L. Sulem [17]). We do not necessanly
have the uniqueness and the energy identity. However, by using the

method in Ginibre and Velo [5], we can find a weak solution satisfying

H(u(z‘),n(f),u(f)) § H(’I‘L(),'I’I,(),U()), t Z (), ' (18)
N(u(t)) = N(ug), t>0, | (1'9')-
P(u(t),n(t),v(t)) = P(ug,ng,vg), t>0, (1.10)

where

P OC

o) = |

J — 00

a . . 1 . 1 %) :
(|0—u|‘) + nful® + 5”2 + jZ-U“> dx,
»

N(u) = /  |ufda,

J —oc

P(u,n,v) = / (m%u - nv) dx.

For the Cauchy problem of the Zakharov equations, see also [1], [12] and
[13].

Remark 1.3. Recently, Glangetas and Merle [6] proved the strong in-
stability (instability by blow-up) of standing waves of the Zakharov equa-

tions in two space dimensions.

In the next section, we give the proof of Theorem 1.1. We apply the

variational method introduced by Cazenave and Lions [3] to the coupled
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system of the Schrodinger equation and the wave equations as well as
in our previous papers [10] and [11]. In [3] they proved the stability of
standing waves for some nonlinear Schrodinger equations. By a simple
inequality in Lemma 2.3 below, we reduce our problem for the Zakharov

equations to the case of the single nonlinear Schrodinger equation.

2. PrROOF OF THEOREM 1.1

In what follows, we fix the parameter c € (—1,1). First, we briéﬂy re-
call the proof by Cazenave and Lions (3] for the stability of standing wave

solution u(t,z) = "', .(2) of the nonlinear Schrédinger equation:

Z%U-l— gj L+ 1jpzlul u =0, t>0, reR,  (2.1)
where ,, .(z) = 1/2w(1 — ¢?) sech \/Jwz. We consider the minimization
problem:

I'(p) = inf{E'(u) : v € HY(R), N(u) = p}, (2.2)

| oy
El(u) = / Igul‘ — 5—(—1——}_—(3(_;5|u|4) dzx,
SHp) = {u € HY(R) : E*(u) = I'(u), N(u) = pu}.

We note that E'(u) and N(u) are the conserved quantities of (2.1).
The following two lemmas are crucial parts to prove the stability of the

standing wave of (2.1). We use them in the proof of Theorem 1.1 later.

Lemma 2.1. For any w > 0. we have
SHp(w)) = {e“pucl(-+y) : 0,y € R},

where ¢, o(1) = \/2w(1 — ¢2)sech \/wz and
b() = Nig) = 4(1 - ).
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Lemma 2.2. Let p > 0. If {u;} C H'(R) satisfies E'(u;) — I'(p)
and N(u;) — p, then there exists {y;} C R such that {u;j(- + y;)} is
relatively compact in H'(R).

Lemma 2.2 is proved by using the concentration compaétness method
introduced by Lions [9] For the proofs of Lemmas 2.1 and 2.2,’ see [3].
From the conservation laws of (2.1) and the compactness of any mini-
mizing sequence of (2.2), Lemma 2.2, one can easily show the stability
of the set of minimizers ¥!(u) for any p > 0. Moreover, the character-
ization of the set of minimizers, Lemma 2.1, concludes the stability of
the standing wave of (2.1) (for details, see [3]). | |

Following Cazenave and Lions [3], we consider the following minimiza-

tion problem:

I(p) = inf{E(u,n,v) : (u,n,v) € X, N(u) = pu}, - (2.3)

OO

E(u,n,v) = /

—o0

) , 1, ,
(I%UV + njul* + 5" + %’v‘ — cnv) dz,
S(u) = {(w n.v) € X : Blu,n,v) = I(), N(u) = ).
where X = H(R) x L%(R) x L?(R). We note that
2

E(e™"*/2y, n,v) = H(u,n,v) + cP(u,n,v) + %—N(u) (2.4)

The following lemma plays an essential role in the proof of Theorem
1.1.

Lemma 2.3. For any (u,n,v) € X, we have E'(u) < E(u,n,v). More-
over, the equality holds if and only if n = —(1/(1 — ¢*))|ul* and v = cn.
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Proof. Since
0<||Juff+(1=c*)n|*= [u|4—|—2 1—A)nfuf* + (1 =c2)?*n?, (2.5
we have

1 . 1
E(u,n,v)Z/ (I ’|2~§—(—1——;—|1L|4 %n +—2—v —mv) dx

9.,

Ox

0 1 - 1
/ (5—1! _mlul 2(CTI—U) )d.r
EY

From (2.5) and (2.6)‘,: we see that the equality holds if and only if
n=—(1/(1-c*))|uf* and v =cn. O

v

(2.6)

The following lemma follows immediately from Lemma 2.3.

Lemma 2.4. For any p > 0. we have I(u) = I' () and

. ‘ . ’1 ‘
E(,LL)—‘: {(uan‘7v) Z‘U/EEl(p),nz—l |U|Z ’U—(’n}
o2

Proof. We set

1 . '
YO(p) = {(u,n,’v) cu € S (), n = {2 lul*, v = rn} :
—c

For u € ¥!(u), we have from Lemma 2.3

1 . . c . ,
ul?, = ——Jul? ) = B (u) = I'(p) < I(w).
— 2 —-C

HWSE(m—

Thus, we have I(p) = I'(p) and T%(p) C E(p).
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Moreover, for (u,n,v) € £(u), we have
I(p) = I'(p) < E'(u) < E(u,n,v) = I(p),
which implies that v € £(u) and E(u,n,v) = E'(u). Thus, it follows
from Lemma 2.3 that X(u) C X°%(p). Hence, we have S(p) = X%(p). O
We note that from (1.5)—(1.7) and Lemma 2.1, we have

eier /2y, (1) € S (p(w)),

1 :
Nee(t) = “1—_—_?|Uw,c(f)|2-, Vw,e(t) = eng, (1)

for any ¢ € R. Therefore, from Lemma 2.4, in order to show Theorem

1.1, we have only to prove the following proposition.

Proposition 2.5. For any p > 0. the set
A= {(e"*u,n,v): (u.n,v) € S(p)}

is stable in the following sense: for any ¢ > ( there exists a 6 > 0 such
that if (ug,no,v0) € X verifies dist ((ug,ng,vg), A) < 8, then the solu-
tion (u(t),n(t),v(t)) of (1.1)—(1.3) with (u(0),n(0).v(0)) = (ug, no, vo)
satisfies dist ((u(t), n(t), v(t)), A) < e for any t > 0, where

dist ((u,n,v), A) = inf{]|(u, n,v) — (u®,n° v°)||x : (u®,n°, °) € A}.
In order to prove Proposition 2.5, we need one lemma concerning the
compactness of any minimizing sequence of (2.3).

Lemma 2.6. Let p > 0. If {(uj.nj,v;)} C X satisfies E(uj,nj,v;) —
I(p) and N(uj) — p, then there exists {y;} C R such that
{(u;(- +yj).n;i(- +y;),v;(- +y;))} is relatively compact in X.
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Proof. From Lemma 2.3 and our assumption, we have E'(u;) — I(u) =
I'(p). Thus, from Lemma 2.2, there exists {y;} C R such that
{u;(- + yj)} is relatively compact in H*(R). Moreover, if we put uq =
ui(-+y;), nd =n;(-+y;), v) = v;(-+y;), then {( (u9.n?,v?)} is bounded
in X. Therefore, for some subsequence (still denoted by the same letter),
we have |

0,0

(Ugvnja vj) — (uo,nﬂ,vo) weakly in X,

u? —u® in HYR).
Since n2 + 1% — 2cnv = (1 —|e|)(n2 4+ v2) + || (n = (¢/]e|)v)” and |¢| < 1,

we obtain

I(p) < E(u®,n°,%) < hmlnfE( S, 0?) = I(p),

J—0c

from which it follows that

and (u%,n® 0% e S(p). O

Proof of Proposition 2.5. In what follows, we often extract subse-
quences without explicitly mentioning this fact. We prove by contra-
diction. If A is not stable, then there exist a positive constant o and

sequences {(‘uoj, noj, voj)} C X and {t;} C R such that

dist( (o, noj. voj). A) — 0, (2.7)

@)

dist((wj (1), (), vj(t})). A) > eo, (2.8)
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where (u;(t),n;(t),v;(t)) is a solution of (1.1)—(1.3) with
(u;(0),7;(0),v;(0)) = (uo;, noj,vo;). From the conservation laws (1.8)-

(1.10), (2.4) and (2.7), we have
E(e™"Pu;(t;),n;(t)), vi(t;)) < E(e™"*Pugj,ngj,vo5) — (1), (2.9)
N(e™"*Pu;(t;)) = N(u;(t;)) = N(uoj) = N(e™**?ug;) — p. (2.10)
From (2.9), (2.10) and the definition of I(u), we have
E(e™ " uj(t),n;(t;), vj(t5)) = I(). (2.11)
If we put uj(z) = e™"uj(t;. ), nj(x) = n;(t;,x), vi(x) = v;(t;, ),
then from (2.10), (2.11) and Lemma 2.6, there exists {y; } C R such that
(i 4y mbC )0l y) = (whnlie) X (212)
for some (u',n!,vl) € (p). Since we have
bz + y;) = emien 26 =i 2y (1 g gy,
it follows from (2.12) that
dist((u; (t5). m(£5). v (), A) — 0,

which contradicts (2.8).
Hence, A is stable. This completes the proof. [

3. Bl

COMRESTHBE LB UL S K LT, UEERFHEBHFHED
INEE WA K Y Zakharov AR OINLIEIAE DR EHIZE U THU O
%73‘?"( Y. Wu 21 IZL D REINTOWA I EAHZTHSZH L,

CIZEE LTS NSRRI N I U g, ks L TR, BIBALERE
DANRY N IVIENTZ 47U Grillakis, Shatah and Strauss [8] 12X 5 R 1
Mm% Zakharov FFERITHE)IL L T 5, GEFAA LT 5 &40 ETHRA
LTc XD BESAHEDOFDPEBENTHD, BHETHL L IZEDLNS,
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