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ON INERT EXTENSIONS
OF GRADED INTEGRAL DOMAINS

A (Ryiki Matsuda)
Faculty of Science, Ibaraki University

A torsion-free cancellative commutative semigroup (written additively)
> 0 is called a torsionless grading monoid. By a graded integral do-
main @sR;, we mean an integral domain graded by a torsionless grading
monoid S with the assumption that each R, is nonzero.

In [1], Anderson-Anderson investigate different ways to regrade ®gR;.

Let I' be a torsionless grading monoid, S be a submonoid of ' and
®rR, be a I'-graded integral domain. '

We define an extension of domains D C E to be inert if whenever
0 # zy € D for some z,y € E, then zu,yu"' € D for some unit u of E.
We define D C E to be strongly inert if whenever 0 # zy € D for some
z,y € B, then z,y € D. We say that S is saturated in I' if whenever
a+ B € S for some o, €T, then o, B € S. o

Among other theorems, Anderson-Anderson proved the following,

Theorem 1([1,Theorem 3.8]). Let ®rR, be a graded integral do-
main. Then @sR, C @rR, is strongly inert if and only if S C T is
saturated.

Anderson-Anderson state: It would be very interesting to determine
necesary and sufficient conditions on S for @sR, C ®rR, to be an inert
extension.

The aim of this paper is to determine necessary and sufficient con-
ditions on S for ®sR, C @rR, to be an inert extension.

The quotient group {s; —s; | s; € S} of S is denoted by q(S). q(9) is
a subgroup of q(I') and g(T') is a totally ordered abelian group. '

Lemma 2. Assume that ®sR, C ®rR, is inert. Set I'N q(S) = T.



Then ®sR; C ®rR; is inert.

Proof. Assume that 0 # @19, € ®sR, for ¢1,, € OrR;. Then
©1u, pou~t € DsR, for some unit u € Ry, of ®rR,. It follows that

ay,—0Qg € T.

The submonoid {a € T' | a + &' € S for some o/ € T'} of T' is called
saturation of S in I'. :

Lemma 3. Assume that ®sR, C ®rR, is inert. Set 'n q(S) =T
and let T'* be the saturation of S in I'. Then T' C T, and &7 R; C @r-Rg

is inert.

Proof. Assume that 0 # F1F, = f € ®rR; for some Fy,F;, € ®r-Rp
and f € ®rR,. Then we have fa € ®sR, for some 0 # a € R,, and
s; € S. Hence we have Fiu, Foau™' € @sR, for some unit u € R,, of
®rR,. Then we have ay, —a; € I'*. Therefore Fhu™' € &1 R;.

Lemma 4. Let I'* be the saturation of S in I'. Then ®r-Rs C rRo
is strongly inert.

Proof. By Theorem 1.

Let z € ®gR,, with z = 2, +- - - +z,, where 0 # z; € R,, for each : and

$1 < -+ < 8,. Then the subset {sy, -, 8,} of S is called support of z,

and is denoted by Supp(z). Let I, I; be subsets of q(5). Then the subset

{z1 + x2 | z; € I, for each i} of q(S) is denoted by Iy + L. [+ ---+1is
NI

denoted by nI for I C q(S). The subset {a € I | I; + a C I} is denoted
by (I : I);. Next, the subset {s € S | R, contains a unit of ®sR,} is
denoted by S©.

Lemma 5. Assume that @gR, C &®rkR, is inert. Let I, I, be
non-empty finite subsets of I' such that I; + I, C S. Then we have

(S :hL)ro + (S : L)ro 30.
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Proof. We take Fy, F;, € ®rR, such that Supp(Fi) = I, Supp(F) =
I,. Then FiF; € ®sR,. Hence we have Fiu, Fu™! € @sR, for some unit
u € R,, of ®rR,. Then ey € (S : L)) and —a; € (S : I))-

Lemma 6. Assume that ©sR; C ®rR, is inert. Then S is inte-
grally closed in T'.

Proof. Assume that 0 # «a; € T is integral over S. We have nay € S
for some n € N. Take 0 # =z € R,,.- We have ®sR, 5 1 — z" =
(1—z)(1+z+---+z"1). Hence there exists a unit u € R, of ®rR,
such that (1—z)u,(14+z+---+2" Hu~! € ®sR,. Then it follows oy € S.

We say that S satisfies (*) in I' if whenever na € g(S) for some a € T
and n € N, then a € S.

Lemma 7. Assume that ®sR, C ®rR, is inert. Set I'n q(S) =T
and let I'* be the saturation of S in I'. Then T satisfies (*) in I'*.

Proof. Assume that nf € q(T) for some 8 € I'™* and n € N. Since
q(T) =q(S), we have nf + s € S for some s € S. Then n(f +s) € S.
Lemma 6 implies that 8+ s € S. Hence B € T'.

Let ai,a0 € T. If n(oy — a3) € q(S) for some n € N, we define
a; ~(sr) &2. Then ~(sr) is an equivalence relation on I'. The equiva-
lence class of o € I'is denoted by a. For a € T', we define Rz = )" yic5 Rar-

Lemma 8 ([1,Theorem 3.1]). Assume that S satisfies (*) in I'. Then
the quotient set T of ' by ~(sr) is a grading monoid. Moreover, ®rR, =
®r R is a I'-graded domain and R = ®sR,.

Lemma 9 ([1, Proposition 3.3,(1)]). Ry C ®sR; is inert if and only if
50 is the units of S.

Lemma 10. Assume that sR, C ®rR, is inert. Assume that S
satisfies (*) in I and the saturation of S in I'is . Let # € T'. Then there
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exists B € I'® such that 3 ~sr) B

Proof. Then the quotient set I' is a group. ®rR, = OrRs is a I-
graded domain and Ry = @sR, by Lemma 8. By Lemma 9, R contains
a unit u of ®pR5. Hence there exists f; € I'® such that 3 ~(sr) P and
u € Rﬁl'

Lemma 11. Assume that ®sR, C ®rR, is inert. Let I'* be the
saturation of S in T'. Let 8 € I'*. Then there exists §; € (I'*)© such that

B ~sr) Br-

Proof. We set I'N q(S) = T'. T satisfies (*) in I'* by Lemma 7. Lemma
3 implies that @7R; C @r+Rp is inert. Hence there exists §; € (P*)(O)
such that § ~rr+) B1. Then we have 8 ~sr) b1

Lamma 12. Assume that S satisfies (*) in I' and the saturation
of $in ' is . Assume that for each « € T there exists o/ € I'® such
that a ~(sr) o. Then @sR; C ®rls is inert.

Proof. The quotient set T is a group. ®rRs = ®rRs is a f‘—graded_

domain, and Ry = ®sR,. Lemma 9 implies that sk, C ®rR, is inert.

Lemma 13. Let f, g be non-zero elements of ®sR, and set | Supp(g) |=
k. Then we have k Supp(f)+Supp(g) = (k — 1)Supp(f)+Supp(fg).

Proof. The proof is similar with that of [2, 6.2.Proposition].

Lemma 14. Assume that I' C q(5) and S is integrally closed in
I'. Assume that (S : ) + (S : ;) O 0 for every non-empty finite
subsets I, I of I such that Iy + I C S. Then ®sR; C ®rR, is inert.

Proof. Assume that 0 # FiF; € ®sR, for some Fy,F; € @OrR,.
Lemma 13 implies that (m + 1)Supp(F;)+Supp(F2) = mSupp(F1)+Supp
(FyF,) for some m €N. Let {Vi | A € A} be the set of valuation over-
semigroups of S. Then N,V, is the integral closure of 5. We have
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(m + 1)Supp(F1)+ Supp(Fz) + Vo = m Supp(F1)+Supp(F Fy) + Vy for
each A. It follows that Supp(Fy)+Supp(F2) + Vi =Supp(F1F2)+V\ C V)
for each A\. Hence Supp(F;)+Supp(F3) is contained in the integral closure
of S. Then Supp(F1)+Supp(F2) C S. By the assumption, there exists
oy € (S :Supp(F1))re with —ay € (S :Supp(F,))rey. We take a unit
u € Ry, of ®rR,. Then Fiuy, Fou™t € ®sR,.

Theorem 15. Set I'N q(S) = T and let I'* be the saturation of S
in I'. Then &sR, C ®rR, is inert if and only if the following (1) ~ (4)
hold.

(1) S is integrally closed in T

(2) (S : L) + (S : I)p@ 2 0 for every non-empty finite subsets
I, I, of T such that I; + I, C S.

(3) T satisfies (*) in I'™*.

(4) For each B € I, there exists #; € (I'™)© with 8 ~sr) Bi.

Proof. Assume that ®sR, C ®rR, is inert. Then Lemma 6 implies
(1). ®sR; C 7R, is inert by Lemma 2. Lemma 5 implies (2). Lemma
7 implies (3). Lemma 11 implies (4). Conversely, assume (1),(2),(3) and
(4). Then @sRs C PrR: is inert by Lemma 14. For each g € I'*, there
exists f € (I*)© with 8 ~(sr) f1. Then we have 8 ~(rr) Bi. Then
®rR: C ®r«Rp is inert by Lemma 12. @r.Rz C ®rR, is strongly inert
by Lemma 4. It follows that ®sR; C @rR, is inert.

Remark 16. Assume that @rR, is the semigroup ring D[X;T'] over
a domain D with R, = DX® for each a. Then I'® is the set of units of
I'. The conditions for D[X;S] C D[X;T] to be inert in Theorem 15 are
conditions mearly for S C T'.
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