ON INERT EXTENSIONS OF GRADED INTEGRAL DOMAINS ## 松田隆輝 (Ryûki Matsuda) Faculty of Science, Ibaraki University A torsion-free cancellative commutative semigroup (written additively) $\ni 0$ is called a torsionless grading monoid. By a graded integral domain $\bigoplus_S R_s$, we mean an integral domain graded by a torsionless grading monoid S with the assumption that each R_s is nonzero. In [1], Anderson-Anderson investigate different ways to regrade $\bigoplus_S R_s$. Let Γ be a torsionless grading monoid, S be a submonoid of Γ and $\bigoplus_{\Gamma} R_{\alpha}$ be a Γ -graded integral domain. We define an extension of domains $D \subset E$ to be inert if whenever $0 \neq xy \in D$ for some $x, y \in E$, then $xu, yu^{-1} \in D$ for some unit u of E. We define $D \subset E$ to be strongly inert if whenever $0 \neq xy \in D$ for some $x, y \in E$, then $x, y \in D$. We say that S is saturated in Γ if whenever $\alpha + \beta \in S$ for some $\alpha, \beta \in \Gamma$, then $\alpha, \beta \in S$. Among other theorems, Anderson-Anderson proved the following, **Theorem 1**([1,Theorem 3.8]). Let $\bigoplus_{\Gamma} R_{\alpha}$ be a graded integral domain. Then $\bigoplus_{S} R_{s} \subset \bigoplus_{\Gamma} R_{\alpha}$ is strongly inert if and only if $S \subset \Gamma$ is saturated. Anderson-Anderson state: It would be very interesting to determine necessary and sufficient conditions on S for $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ to be an inert extension. The aim of this paper is to determine necessary and sufficient conditions on S for $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ to be an inert extension. The quotient group $\{s_1 - s_2 \mid s_i \in S\}$ of S is denoted by q(S). q(S) is a subgroup of $q(\Gamma)$ and $q(\Gamma)$ is a totally ordered abelian group. **Lemma 2.** Assume that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Set $\Gamma \cap q(S) = T$. Then $\bigoplus_{S} R_s \subset \bigoplus_{T} R_t$ is inert. Proof. Assume that $0 \neq \varphi_1 \varphi_2 \in \bigoplus_S R_s$ for $\varphi_1, \varphi_2 \in \bigoplus_T R_t$. Then $\varphi_1 u, \varphi_2 u^{-1} \in \bigoplus_S R_s$ for some unit $u \in R_{\alpha_1}$ of $\bigoplus_{\Gamma} R_{\alpha}$. It follows that $\alpha_1, -\alpha_2 \in T$. The submonoid $\{\alpha \in \Gamma \mid \alpha + \alpha' \in S \text{ for some } \alpha' \in \Gamma\}$ of Γ is called saturation of S in Γ . **Lemma 3.** Assume that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Set $\Gamma \cap q(S) = T$ and let Γ^* be the saturation of S in Γ . Then $T \subset \Gamma^*$, and $\bigoplus_T R_t \subset \bigoplus_{\Gamma^*} R_{\beta}$ is inert. Proof. Assume that $0 \neq F_1F_2 = f \in \bigoplus_T R_t$ for some $F_1, F_2 \in \bigoplus_{\Gamma^*} R_\beta$ and $f \in \bigoplus_T R_t$. Then we have $fa \in \bigoplus_S R_s$ for some $0 \neq a \in R_{s_1}$ and $s_1 \in S$. Hence we have $F_1u, F_2au^{-1} \in \bigoplus_S R_s$ for some unit $u \in R_{\alpha_1}$ of $\bigoplus_\Gamma R_{\alpha}$. Then we have $\alpha_1, -\alpha_1 \in \Gamma^*$. Therefore $F_2u^{-1} \in \bigoplus_T R_t$. **Lemma 4.** Let Γ^* be the saturation of S in Γ . Then $\bigoplus_{\Gamma^*} R_{\beta} \subset \bigoplus_{\Gamma} R_{\alpha}$ is strongly inert. Proof. By Theorem 1. Let $x \in \bigoplus_S R_s$, with $x = x_1 + \dots + x_n$, where $0 \neq x_i \in R_{s_i}$ for each i and $s_1 < \dots < s_n$. Then the subset $\{s_1, \dots, s_n\}$ of S is called support of x, and is denoted by $\operatorname{Supp}(x)$. Let I_1, I_2 be subsets of $\operatorname{q}(S)$. Then the subset $\{x_1 + x_2 \mid x_i \in I_i \text{ for each } i\}$ of $\operatorname{q}(S)$ is denoted by $I_1 + I_2$. $\underbrace{I + \dots + I}_n$ is denoted by $I_1 + I_2$. Next, the subset $\{x_1 \in S \mid R_s \text{ contains a unit of } \bigoplus_S R_s\}$ is denoted by $I_1 \in I$. Next, the subset $\{x_1 \in S \mid R_s \text{ contains a unit of } \bigoplus_S R_s\}$ is denoted by $I_1 \in I$. **Lemma 5.** Assume that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Let I_1, I_2 be non-empty finite subsets of Γ such that $I_1 + I_2 \subset S$. Then we have $(S:I_1)_{\Gamma^{(0)}} + (S:I_2)_{\Gamma^{(0)}} \ni 0$. Proof. We take $F_1, F_2 \in \bigoplus_{\Gamma} R_{\alpha}$ such that $\operatorname{Supp}(F_1) = I_1$, $\operatorname{Supp}(F_2) = I_2$. Then $F_1F_2 \in \bigoplus_S R_s$. Hence we have $F_1u, F_2u^{-1} \in \bigoplus_S R_s$ for some unit $u \in R_{\alpha_1}$ of $\bigoplus_{\Gamma} R_{\alpha}$. Then $\alpha_1 \in (S:I_1)_{\Gamma^{(0)}}$ and $-\alpha_1 \in (S:I_2)_{\Gamma^{(0)}}$. **Lemma 6.** Assume that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Then S is integrally closed in Γ . Proof. Assume that $0 \neq \alpha_1 \in \Gamma$ is integral over S. We have $n\alpha_1 \in S$ for some $n \in \mathbb{N}$. Take $0 \neq x \in R_{\alpha_1}$. We have $\bigoplus_S R_s \ni 1 - x^n = (1-x)(1+x+\cdots+x^{n-1})$. Hence there exists a unit $u \in R_{\alpha_2}$ of $\bigoplus_{\Gamma} R_{\alpha}$ such that $(1-x)u, (1+x+\cdots+x^{n-1})u^{-1} \in \bigoplus_S R_s$. Then it follows $\alpha_1 \in S$. We say that S satisfies (*) in Γ if whenever $n\alpha \in q(S)$ for some $\alpha \in \Gamma$ and $n \in \mathbb{N}$, then $\alpha \in S$. **Lemma 7.** Assume that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Set $\Gamma \cap q(S) = T$ and let Γ^* be the saturation of S in Γ . Then T satisfies (*) in Γ^* . Proof. Assume that $n\beta \in q(T)$ for some $\beta \in \Gamma^*$ and $n \in \mathbb{N}$. Since q(T) = q(S), we have $n\beta + s \in S$ for some $s \in S$. Then $n(\beta + s) \in S$. Lemma 6 implies that $\beta + s \in S$. Hence $\beta \in T$. Let $\alpha_1, \alpha_2 \in \Gamma$. If $n(\alpha_1 - \alpha_2) \in q(S)$ for some $n \in \mathbb{N}$, we define $\alpha_1 \sim_{(S,\Gamma)} \alpha_2$. Then $\sim_{(S,\Gamma)}$ is an equivalence relation on Γ . The equivalence class of $\alpha \in \Gamma$ is denoted by $\bar{\alpha}$. For $\alpha \in \Gamma$, we define $R_{\bar{\alpha}} = \sum_{\alpha' \in \bar{\alpha}} R_{\alpha'}$. **Lemma 8** ([1,Theorem 3.1]). Assume that S satisfies (*) in Γ . Then the quotient set $\bar{\Gamma}$ of Γ by $\sim_{(S,\Gamma)}$ is a grading monoid. Moreover, $\bigoplus_{\bar{\Gamma}} R_{\bar{\alpha}}$ is a $\bar{\Gamma}$ -graded domain and $R_{\bar{0}} = \bigoplus_{S} R_{s}$. **Lemma 9** ([1, Proposition 3.3,(1)]). $R_0 \subset \bigoplus_S R_s$ is inert if and only if $S^{(0)}$ is the units of S. **Lemma 10.** Assume that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Assume that S satisfies (*) in Γ and the saturation of S in Γ is Γ . Let $\beta \in \Gamma$. Then there exists $\beta_1 \in \Gamma^{(0)}$ such that $\beta \sim_{(S,\Gamma)} \beta_1$. Proof. Then the quotient set $\bar{\Gamma}$ is a group. $\bigoplus_{\Gamma} R_{\alpha} = \bigoplus_{\bar{\Gamma}} R_{\bar{\alpha}}$ is a $\bar{\Gamma}$ -graded domain and $R_{\bar{0}} = \bigoplus_{S} R_{s}$ by Lemma 8. By Lemma 9, $R_{\bar{\beta}}$ contains a unit u of $\bigoplus_{\bar{\Gamma}} R_{\bar{\alpha}}$. Hence there exists $\beta_{1} \in \Gamma^{(0)}$ such that $\beta \sim_{(S,\Gamma)} \beta_{1}$ and $u \in R_{\beta_{1}}$. **Lemma 11.** Assume that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Let Γ^* be the saturation of S in Γ . Let $\beta \in \Gamma^*$. Then there exists $\beta_1 \in (\Gamma^*)^{(0)}$ such that $\beta \sim_{(S,\Gamma)} \beta_1$. Proof. We set $\Gamma \cap q(S) = T$. T satisfies (*) in Γ^* by Lemma 7. Lemma 3 implies that $\bigoplus_T R_t \subset \bigoplus_{\Gamma^*} R_\beta$ is inert. Hence there exists $\beta_1 \in (\Gamma^*)^{(0)}$ such that $\beta \sim_{(T,\Gamma^*)} \beta_1$. Then we have $\beta \sim_{(S,\Gamma)} \beta_1$. **Lamma 12**. Assume that S satisfies (*) in Γ and the saturation of S in Γ is Γ . Assume that for each $\alpha \in \Gamma$ there exists $\alpha' \in \Gamma^{(0)}$ such that $\alpha \sim_{(S,\Gamma)} \alpha'$. Then $\bigoplus_S R_s \subset \bigoplus_{\Gamma} \Gamma_{\alpha}$ is inert. Proof. The quotient set $\bar{\Gamma}$ is a group. $\bigoplus_{\Gamma} R_{\bar{\alpha}} = \bigoplus_{\bar{\Gamma}} R_{\bar{\alpha}}$ is a $\bar{\Gamma}$ -graded domain, and $R_{\bar{0}} = \bigoplus_{S} R_{s}$. Lemma 9 implies that $\bigoplus_{S} R_{s} \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. **Lemma 13.** Let f, g be non-zero elements of $\bigoplus_S R_s$ and set $|\operatorname{Supp}(g)| = k$. Then we have $k \operatorname{Supp}(f) + \operatorname{Supp}(g) = (k-1)\operatorname{Supp}(f) + \operatorname{Supp}(fg)$. Proof. The proof is similar with that of [2, 6.2.Proposition]. **Lemma 14.** Assume that $\Gamma \subset q(S)$ and S is integrally closed in Γ . Assume that $(S:I_1)_{\Gamma^{(0)}} + (S:I_2)_{\Gamma^{(0)}} \ni 0$ for every non-empty finite subsets I_1, I_2 of Γ such that $I_1 + I_2 \subset S$. Then $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Proof. Assume that $0 \neq F_1F_2 \in \bigoplus_S R_s$ for some $F_1, F_2 \in \bigoplus_{\Gamma} R_{\alpha}$. Lemma 13 implies that $(m+1)\operatorname{Supp}(F_1)+\operatorname{Supp}(F_2)=m\operatorname{Supp}(F_1)+\operatorname{Supp}(F_1F_2)$ for some $m \in \mathbb{N}$. Let $\{V_{\lambda} \mid \lambda \in \Lambda\}$ be the set of valuation oversemigroups of S. Then $\bigcap_{\lambda} V_{\lambda}$ is the integral closure of S. We have $(m+1)\operatorname{Supp}(F_1)+\operatorname{Supp}(F_2)+V_{\lambda}=m\operatorname{Supp}(F_1)+\operatorname{Supp}(F_1F_2)+V_{\lambda}$ for each λ . It follows that $\operatorname{Supp}(F_1)+\operatorname{Supp}(F_2)+V_{\lambda}=\operatorname{Supp}(F_1F_2)+V_{\lambda}\subset V_{\lambda}$ for each λ . Hence $\operatorname{Supp}(F_1)+\operatorname{Supp}(F_2)$ is contained in the integral closure of S. Then $\operatorname{Supp}(F_1)+\operatorname{Supp}(F_2)\subset S$. By the assumption, there exists $\alpha_1\in (S:\operatorname{Supp}(F_1))_{\Gamma^{(o)}}$ with $-\alpha_1\in (S:\operatorname{Supp}(F_2))_{\Gamma^{(o)}}$. We take a unit $u\in R_{\alpha_1}$ of $\oplus_{\Gamma}R_{\alpha}$. Then $F_1u_1,F_2u^{-1}\in \oplus_SR_s$. **Theorem 15.** Set $\Gamma \cap q(S) = T$ and let Γ^* be the saturation of S in Γ . Then $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert if and only if the following (1) \sim (4) hold. - (1) S is integrally closed in Γ . - (2) $(S:I_1)_{T^{(0)}}+(S:I_2)_{T^{(0)}}\ni 0$ for every non-empty finite subsets I_1,I_2 of T such that $I_1+I_2\subset S$. - (3) T satisfies (*) in Γ^* . - (4) For each $\beta \in \Gamma^*$, there exists $\beta_1 \in (\Gamma^*)^{(0)}$ with $\beta \sim_{(S,\Gamma)} \beta_1$. Proof. Assume that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Then Lemma 6 implies (1). $\bigoplus_S R_s \subset \bigoplus_T R_t$ is inert by Lemma 2. Lemma 5 implies (2). Lemma 7 implies (3). Lemma 11 implies (4). Conversely, assume (1),(2),(3) and (4). Then $\bigoplus_S R_s \subset \bigoplus_T R_t$ is inert by Lemma 14. For each $\beta \in \Gamma^*$, there exists $\beta_1 \in (\Gamma^*)^{(0)}$ with $\beta \sim_{(S,\Gamma)} \beta_1$. Then we have $\beta \sim_{(T,\Gamma)} \beta_1$. Then $\bigoplus_T R_t \subset \bigoplus_{\Gamma^*} R_{\beta}$ is inert by Lemma 12. $\bigoplus_{\Gamma_*} R_{\beta} \subset \bigoplus_{\Gamma} R_{\alpha}$ is strongly inert by Lemma 4. It follows that $\bigoplus_S R_s \subset \bigoplus_{\Gamma} R_{\alpha}$ is inert. Remark 16. Assume that $\bigoplus_{\Gamma} R_{\alpha}$ is the semigroup ring $D[X; \Gamma]$ over a domain D with $R_{\alpha} = DX^{\alpha}$ for each α . Then $\Gamma^{(0)}$ is the set of units of Γ . The conditions for $D[X; S] \subset D[X; \Gamma]$ to be inert in Theorem 15 are conditions mearly for $S \subset \Gamma$. ## REFERENCES - [1] D.D.Anderson and D.F.Anderson, Grading integral domains, Comm. Algebra 11(1983),1-19. - [2] R.Gilmer and T.Parker, Divisibility properties in semigroup rings, Michigan Math. Journ. 21(1974),65-86.