<table>
<thead>
<tr>
<th>Title</th>
<th>On representations of locally inverse \ast-semigroups (Semigroups, Formal Languages and Combinatorics on Words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>IMAOKA, Teruo; INATA, Isamu; YOKOYAMA, Hiroaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1995(910): 19-26</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59543</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On representations of locally inverse \ast-semigroups

Teruo IMAOKA (今岡 輝男)
Isamu INATA (稲田 勇)
Hiroaki YOKOYAMA (横山 浩明)

Abstract

The purpose of this paper is to obtain an analogous representation of the Preston-Vagner Representation for locally inverse \ast-semigroups which is a generalization of [7].

Firstly, by introducing a concept of a π-set (which is slightly different from the one in [7]), we shall construct the π-symmetric locally inverse \ast-semigroup $\mathcal{L}\mathcal{I}_{X(\pi')}(\mathcal{M})$ on a π-set $X(\pi';\omega;\{\sigma_{e,f}\})$, and show that $\mathcal{L}\mathcal{I}_{X(\pi')}(\mathcal{M})$ is a locally inverse \ast-semigroup and that any locally inverse \ast-semigroup can be embedded up to \ast-isomorphism in $\mathcal{L}\mathcal{I}_{X(\pi')}(\mathcal{M})$ on a π-set $X(\pi';\omega;\{\sigma_{e,f}\})$. Moreover, we shall show that the wreath product (in the sense of Cowan[1]) of locally inverse \ast-semigroups is also a locally inverse \ast-semigroup.

1 Introduction

A semigroup S with a unary operation $\ast : S \to S$ is called a regular \ast-semigroup if it satisfies

(i) \((x^\ast)^\ast = x,\)
(ii) \((xy)^\ast = y^\ast x^\ast,\)
(iii) \(xz^\ast x = x.\)

Let S be a regular \ast-semigroup. An idempotent e in S is called a projection if it satisfies $e^\ast = e$. For any subset A of S, denote the sets of idempotents and projections of A by $E(A)$ and $P(A)$, respectively. The following result is well-known, and we use it frequently throughout this paper.

\(^1\)This is the abstract and the details will be published elsewhere. The results of § 2 and 4 were obtained after the conference.
Result 1.1 (see [4]). Let S be a regular \ast-semigroup. Then we have the followings:

1. $E(S) = P(S)^2$, more precisely, for any $e \in E(S)$, there exist $f, g \in P(S)$ such that $f\Re Lg$ and $e = fg$;
2. for any $a \in S$ and $e \in P(S)$, $a^* e a \in P(S)$;
3. each \mathcal{L}-class and each \mathcal{R}-class have one and only one projection.

A regular \ast-semigroup S is called a locally inverse \ast-semigroup if, for any $e \in E(S)$, eSe is an inverse subsemigroup of S.

Lemma 1.2 A regular \ast-semigroup S is a locally inverse \ast-semigroup if and only if, for each $e \in P(S)$, eSe is an inverse subsemigroup of S.

A regular \ast-semigroup S is called a generalized inverse \ast-semigroup if $E(S)$ forms a normal band, that is, $E(S)$ satisfies the identity $xyzz = zzyx$. It is obvious that a generalized inverse \ast-semigroup is a locally inverse \ast-semigroup.

Remark. It is clear that a regular \ast-semigroup S is a generalized inverse \ast-semigroup if and only if it satisfies the following condition:

for any $e, f, g, h \in P(S)$, $efgh = egfh$ (in S).

However, we remark that even if a locally inverse \ast-semigroup S satisfies the condition

for any $e, f, g \in P(S)$, $efge = egfe$ (in S),

it is not always a generalized inverse \ast-semigroup. The second remark of [6] is its counterexample.

Let X be a set. If $X = \bigcup\{X_i : i \in I\}$ is a partition of X, denote it by $X = \Sigma\{X_i : i \in I\}$. For a mapping $\alpha : A \to B$, denote the domain and the range of α by $d(\alpha)$ and $r(\alpha)$, respectively. For a subset C of A, $\alpha|_C$ means the restriction of α to C.

Let I_X be the symmetric inverse semigroup on a set X. For a subset A of X, 1_A means the identity mapping on A. Let \mathcal{A} be an inverse subsemigroup of I_X and $\theta : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ a mapping. Denote the image $(\alpha, \beta)\theta$ of an ordered pair (α, β) by $\theta_{\alpha,\beta}$. Set $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha, \beta \in \mathcal{A}\}$. If \mathcal{M} satisfies the following conditions:

\begin{enumerate}
\item[(C1)] $\theta_{\alpha,\beta}^{-1} = \theta_{\beta^{-1},\alpha^{-1}}$,
\item[(C2)] $\theta_{\alpha,\alpha^{-1}} = 1_{r(\alpha)}$,
\item[(C3)] $\theta_{1_{d(\alpha)},\alpha} = 1_{d(\alpha)}$,
\item[(C4)] $\theta_{\alpha,\beta}\theta_{\alpha,\beta} \beta = \theta_{\alpha,\beta,\beta,\gamma}(\theta_{\beta,\gamma})$,
\end{enumerate}

we call it the structure sandwich set of \mathcal{A} determined by θ.
Result 1.3 (see [7]) Let A be an inverse subsemigroup of the symmetric inverse semigroup I_X on a set X, and M the structure sandwich set of A determined by a mapping $\theta : A \times A \to A$. Define a multiplication \circ and a unary operation \ast on A as follows:

$$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta,$$

$$\alpha^\ast = \alpha^{-1}$$

Then $A(\circ, \ast)$ becomes a regular \ast-semigroup.

Hereafter, we call such a semigroup $A(\circ, \ast)$ a regular \ast-semigroup of partial one-to-one mappings determined by the structure sandwich set M, and denote it by $A(M)$. The notation and terminology are those of [3] and [4], unless otherwise stated.

In § 2, we shall firstly consider a π-set $X(\pi'; \omega; \{\sigma_{e,f}\})$ which is a set X with a partition $\pi' : X = \sum\{X_e : e \in \Lambda\}$, a reflexive and symmetric relation ω on Λ and a set of mappings $\{\sigma_{e,f} : (e, f) \in \omega\}$, where $\sigma_{e,f}$ is a bijection of X_e onto X_f. We remark that a π-set, defined in this paper, is slightly different from the one in [7], which is called a strong π-set in this paper. The set $LI_{X(\pi')}$, say, of all partial one-to-one π-mappings on $X(\pi'; \omega; \{\sigma_{e,f}\})$ is an inverse subsemigroup of I_X. By using $\{\sigma_{e,f} : (e, f) \in \omega\}$, we shall construct a structure sandwich set M, and show that $LI_{X(\pi')}(M)$ is a locally inverse \ast-semigroup. We call such a semigroup $LI_{X(\pi')}(M)$ the π-symmetric locally inverse \ast-semigroup on a π-set $X(\pi'; \omega; \{\sigma_{e,f}\})$ with the structure sandwich set M.

In § 3, we shall show that any locally inverse \ast-semigroup is embedded up to \ast-isomorphism in the π-symmetric locally inverse \ast-semigroup $LI_{X(\pi')}(M)$ on a π-set $X(\pi'; \omega; \{\sigma_{e,f}\})$.

As a generalization of [2], Cowan [1] gave us the definition of the wreath product $SwrT(X)$ of inverse semigroups S and $T(X)$, where $T(X)$ is an inverse subsemigroup of I_X. And he showed that the wreath product $SwrT(X)$ is also an inverse semigroup. In § 4, we shall show that the wreath product of locally inverse \ast-semigroups S and $T(X)$ ($\subseteq LI_{X(\pi')}$) is a locally inverse \ast-semigroup. Moreover, we shall obtain that the wreath product of generalized inverse \ast-semigroups is also a generalized inverse \ast-semigroup.

2 π-Symmetric locally inverse \ast-semigroups

Let X be a non-empty set. If there exist a partition $X = \sum\{X_e : e \in \Lambda\}$ and a reflexive and symmetric relation ω on Λ such that

(i) for each $(e, f) \in \omega$, there exists a bijection $\sigma_{e,f} : X_e \to X_f$,

(ii) for all $e \in \Lambda$, $\sigma_{e,e} = 1_{X_e}$,

(iii) for any $(e, f) \in \omega$, $\sigma_{f,e} = \sigma_{e,f}^{-1}$,
then X is called a π-set with a partition $\pi' : X = \sum \{ X_e : e \in \Lambda \}$, a relation ω and a set of mappings $\{ \sigma_{e,f} : (e, f) \in \omega \}$, and denote it by $X(\pi'; \omega; \{\sigma_{e,f}\})$, or simply by $X(\pi')$. If a π-set $X(\pi'; \omega; \{\sigma_{e,f}\})$ satisfies the following two conditions

(v) ω is transitive, that is, it is an equivalence relation,
(v) for $(e, f), (f, g) \in \omega$, $\sigma_{e,f}\sigma_{f,g} = \sigma_{e,g}$,

it is called a strong π-set.

Let $X(\pi'; \omega; \{\sigma_{e,f}\})$ be a π-set. A subset A of X is called a π-single subset of X if for each $e \in \Lambda$, there exists at most one element $f \in \Lambda$ such that $X_f \cap A \neq \emptyset$ and $(e, f) \in \omega$. We consider the empty set as a π-single subset. Denote the family of all π-single subsets of $X(\pi'; \omega; \{\sigma_{e,f}\})$ by T.

A mapping α in the symmetric inverse semigroup I_X on X is called a partial one-to-one π-mapping of $X(\pi'; \omega; \{\sigma_{e,f}\})$ if $d(\alpha)$ and $r(\alpha)$ are π-single subsets. Let $LI_X(\pi')$ be the set of all partial one-to-one π-mappings of $X(\pi'; \omega; \{\sigma_{e,f}\})$, that is, $LI_X(\pi') = \{ \alpha \in I_X : d(\alpha), r(\alpha) \in T \}$. The following lemma is clear.

Lemma 2.1 The set $LI_X(\pi')$, defined above, is an inverse subsemigroup of I_X.

For $A, B \in T$, define a mapping $\theta_{A,B}$ as follows:

\[
d(\theta_{A,B}) = \{ x \in A : \text{there exist } e, f \in \Lambda \text{ such that } (e, f) \in \omega, x \in X_e \text{ and } x\sigma_{e,f} \in B \},
\]

\[
(3.1) \quad r(\theta_{A,B}) = \{ y \in B : \text{there exist } e, f \in \Lambda \text{ such that } (e, f) \in \omega, y \in X_f \text{ and } y\sigma_{f,e} \in A \},
\]

\[
x\theta_{A,B} = x\sigma_{e,f} \quad (x \in d(\theta_{A,B}) \cap X_e, (e, f) \in \omega).
\]

For any $\alpha, \beta \in LI_X(\pi')$, define $\theta_{\alpha,\beta} = \theta_{r(\alpha), d(\beta)}$. Since a subset of π-single subset is also a π-single subset, we have that $\theta_{\alpha,\beta} \in LI_X(\pi')$ for all $\alpha, \beta \in LI_X(\pi')$. Let $M = \{ \theta_{\alpha,\beta} : \alpha, \beta \in LI_X(\pi') \}$.

Lemma 2.2 The set M, defined above, is the structure sandwich set of $LI_X(\pi')$ determined by a mapping $\theta : LI_X(\pi') \times LI_X(\pi') \rightarrow LI_X(\pi') ((\alpha, \beta) \mapsto \theta_{\alpha,\beta})$. Therefore, $LI_X(\pi')(M)$ is a regular $*$-semigroup.

We call the set M, defined above, the structure sandwich set determined by a π-set $X(\pi'; \omega; \{\sigma_{e,f}\})$.

It is clear that each projection of $LI_X(\pi')(M)$ is the identity mapping 1_A on a π-single subset A. Let 1_A be any projection and let α, β be any projections of $1_A \circ LI_X(\pi') \circ 1_A$. There exist $B, C \in T$ such that $\alpha = 1_A \circ 1_B \circ 1_A$ and $\beta = 1_A \circ 1_C \circ 1_A$. Then $\alpha = \theta_{A,B}\theta_{A,B}^{-1} = 1d(\theta_{A,B})$ and $\beta = 1d(\theta_{A,C})$. Since $d(\theta_{A,B}) \subseteq A$ and $d(\theta_{A,C}) \subseteq A$, $\theta_{A,B}\theta_{A,B}^{-1} \subseteq \theta_{A,A} = 1_A$.

\[22\]
Similarly $\theta_{1^{\pi_{A,C}^{*}}}^{A,B} \subseteq 1_{A}$. Then $\alpha \circ \beta = \beta \circ \alpha$. Therefore, $LI_{X(\pi)}(M)$ is a locally inverse $*$-semigroup. We call it the π-symmetric locally inverse $*$-semigroup on $X(\pi'; \omega; \{\sigma_{e,f}\})$ with the structure sandwich set M. Now, we have the following theorem.

Theorem 2.3 Let X be a π-set with a partition $\pi' : X = \sum\{X_{e} : e \in \Lambda\}$, a relation ω on Λ and a set of mappings $\{\sigma_{e,f} : (e, f) \in \omega\}$, and let M be the structure sandwich set determined by $X(\pi'; \omega; \{\sigma_{e,f}\})$. Then $LI_{X(\pi')}(M)$ is an inverse subsemigroup of I_{X}. Moreover, $LI_{X(\pi')}(M)$ is a locally inverse $*$-semigroup.

Let $X(\pi'; \omega; \{\sigma_{e,f}\})$ be a strong π-set, where $\pi' = \sum\{X_{e} : e \in \Lambda\}$. Since ω is an equivalence relation on Λ, there exists the partition $\Lambda = \sum\{\Lambda_{i} : i \in I\}$ induced by ω. For each $i \in I$, denote the subset $\cup\{X_{e} : e \in \Lambda_{i}\}$ by X_{i}.

Lemma 2.4 A subset A of X is a π-single subset if and only if it satisfies the condition that for any $i \in I$, $A \cap X_{i} \neq \emptyset$ implies $A \cap X_{e} \subseteq X_{e}$ for some $e \in \Lambda_{i}$.

Let M be the structure sandwich set determined by $X(\pi'; \omega; \{\sigma_{e,f}\})$. By Theorem 3.6 of [7], $LI_{X(\pi')}(M)$ is a generalized inverse $*$-semigroup. We call such a semigroup the π-symmetric generalized inverse $*$-semigroup and denote it by $GI_{X(\pi')}(M)$ instead of $LI_{X(\pi')}(M)$.

Corollary 2.5 (Theorem 3.6 [7]) Let X be a strong π-set with a partition $\pi' : X = \sum\{X_{e} : e \in \Lambda\}$, an equivalence relation ω on Λ and a set of mappings $\{\sigma_{e,f} : (e, f) \in \omega\}$, and let M be the structure sandwich set determined by $X(\pi'; \omega)$. Then $GI_{X(\pi')} (M)$ is a generalized inverse $*$-semigroup.

3 Representations

Let S be a locally inverse $*$-semigroup and I_{S} the symmetric inverse semigroup on S. In this section, denote $E(S)$ and $P(S)$ simply by E and P, respectively. Since each L-class has one and only one projection, $\pi' : S = \sum\{L_{e} : e \in P\}$ is a partition of S, where L_{e} denotes the L-class containing e. Let $\omega = \{(e, f) \in P \times P : e \mathcal{R} g \mathcal{L} f \text{ for some } g \in E\}$. It is clear that ω is a reflexive and symmetric relation on P. For $(e, f) \in \omega$, define $\sigma_{e,f} : L_{e} \rightarrow L_{f}$ by $x \sigma_{e,f} = xf$. It follows from Green's Lemma that $S(\pi'; \omega; \{\sigma_{e,f}\})$ is a π-set. Let T be the set of all π-single subsets of $S(\pi'; \omega; \{\sigma_{e,f}\})$ and M the structure sandwich set determined by $S(\pi'; \omega; \{\sigma_{e,f}\})$. By Theorem 2.5, $LI_{S(\pi')}(M)$ is a locally inverse $*$-semigroup.

For any $a \in S$, let $\rho_{a} : Sa^{*} \rightarrow Sa$ be a mapping defined by $x \rho_{a} = xa$.

It is trivial that ρ_a and ρ_{a^*} are mutually inverse mappings of Sa^* and Sa onto each other, and hence $\rho_a \in I_S$. A subset of S is said to be L-full if it is a union of some L-classes of S.

Lemma 3.1 (1) For any $a \in S$, $\rho_a \in LI_S(\pi')$.
(2) For any $a, b \in S$, $\theta_{\rho_a, \rho_b} = \rho_{a^*a}b^*b$. Therefore, $\rho_a \circ \rho_b = \rho_a \rho_{a^*a}b^*b \rho_b$.

By the lemma above and Theorem 2.2 of [5], we can easily see the following lemma.

Lemma 3.2 Define a mapping $\phi : S \rightarrow LI_S(\pi')(M)$ by

$$a\phi = \rho_a.\$$

Then ϕ is a $*$-monomorphism.

Now, we have the main theorem.

Theorem 3.3 A locally inverse $*$-semigroup can be embedded up to $*$-isomorphism in the π-symmetric locally inverse $*$-semigroup $LI_{X(\pi')}(M)$ on a π-set $X(\pi'; \omega; \{\sigma_{e,f}\})$ with the structure sandwich set M determined by $X(\pi'; \omega; \{\sigma_{e,f}\})$.

If S is a generalized inverse $*$-semigroup, then a π-set $S(\pi'; \omega; \{\sigma_{e,f}\})$, constructed above, is a strong π-set. For, let $(e, f), (f, g) \in \omega$. Then there exist $h, k \in E(S)$ such that $eRhlf$ and $fRkhg$. Since S is a generalized inverse $*$-semigroup, $efg = eg \in E(S)$ and $eRegLg$. In this case, it follows from [7] that $\sigma_{e,f}\sigma_{f,g} = \sigma_{e,g}$, and hence $S(\pi'; \omega; \{\sigma_{e,f}\})$ is a strong π-set. Then we have the following corollary.

Corollary 3.4 (Theorem 4.8 [7]). A generalized inverse $*$-semigroup can be embedded up to $*$-isomorphism in $GI_{X(\pi')}$ on a strong π-set $X(\pi'; \omega; \{\sigma_{e,f}\})$.

4 Wreath products

Let S and T be locally inverse $*$-semigroups. By Theorem 3.3, T can be embedded in the π-symmetric locally inverse $*$-semigroup $LI_{X(\pi')}(M)$ on a π-set $X(\pi'; \omega; \{\sigma_{e,f}\})$ with the structure sandwich set M determined by $X(\pi'; \omega; \{\sigma_{e,f}\})$. In this case, we can consider T as a locally inverse $*$-subsemigroup of $LI_{X(\pi')}(M)$, and so denote it by $T(X)$.

By $X S$, denote the set of all mappings from the family T of π-single subsets of $X(\pi'; \omega; \{\sigma_{e,f}\})$ into S, and define a multiplication on XS by

$$d(\psi_1 \psi_2) = d(\psi_1) \cap d(\psi_2),$$
$$x(\psi_1 \psi_2) = (x\psi_1)(x\psi_2).$$
For any $\alpha \in \mathcal{L}_{x_\pi}$ and $\psi \in xS$, let us define $^a\psi (\in xS)$ by

$$^a\psi = \alpha \theta_{\alpha, \psi} \psi,$$

where $\theta_{\alpha, \psi} = \theta_{r(\alpha), d(\psi)} \in \mathcal{M}$.

Let $\psi \in xS$ and $\alpha \in \mathcal{L}_{x_\pi}$ such that $d(\psi) = d(\alpha)$. Define a mapping $\psi^*_{\alpha} (\in xS)$ by

$$d(\psi^*_{\alpha}) = d(\alpha^{-1}),$$

$$x \psi^*_{\alpha} = (x \alpha^{-1} \theta_{\alpha^{-1}, \psi} \psi^*)^*.$$

Since $r(\alpha^{-1}) = d(\alpha) = d(\psi)$, $\theta_{\alpha^{-1}, \psi} = 1_{d(\alpha)}$ and hence $x \psi^*_{\alpha} = (x \alpha^{-1} \psi)^*$ for all $x \in d(\psi^*_{\alpha})$.

Now, we define the (right) wreath product $S \wreath T(x)$ of S and $T(x)$ as follows:

$$S \wreath T(x) = \{(\psi, \alpha) \in xS \times T(x) : d(\psi) = d(\alpha)\},$$

$$(\psi, \alpha)(\varphi, \beta) = (\psi^\alpha \varphi, \alpha \circ \beta),$$

$$(\psi, \alpha) = (\psi^*_{\alpha}, \alpha^{-1}).$$

Let $(\psi, \alpha), (\varphi, \beta) \in S \wreath T(x)$. Then

$$x \in d(\psi^\alpha \varphi) \iff x \in d(\psi) \text{ and } x \in d(\alpha^{-1}) = d(\alpha \theta_{\alpha, \psi} \psi),$$

$$x \in d(\alpha), x \alpha \in d(\theta_{\alpha, \psi}) \text{ and } x \alpha \theta_{\alpha, \psi} \in d(\varphi),$$

$$x \in d(\alpha), x \alpha \in d(\theta_{\alpha, \beta}) \text{ and } x \alpha \theta_{\alpha, \beta} \in d(\beta),$$

$$x \in d(\alpha \theta_{\alpha, \beta} \beta) = d(\alpha \circ \beta).$$

Then $(\psi, \alpha)(\varphi, \beta) = (\psi^\alpha \varphi) \in S \wreath T(x)$, and hence $S \wreath T(x)$ is closed under the multiplication. It immediately follows from the definition of ψ^*_{α} that $S \wreath T(x)$ is closed under the unary operation *.

Theorem 4.1 Let S and $T(x)$ be locally inverse *-semigroups. Then $S \wreath T(x)$ is a locally inverse *-semigroup. Moreover, we have

$$P(S \wreath T(x)) = \{(\psi, 1_A) \in S \wreath T(x): A \in T \text{ and } r(\psi) \subseteq P(S)\},$$

$$E(S \wreath T(x)) = \{(\psi, \alpha) \in S \wreath T(x): \alpha \in E(T(x)) \text{ and } r(\psi) \subseteq E(S)\}.$$

Next, we shall consider wreath products of generalized inverse *-semigroups. Let S and $T(x) (\subseteq \mathcal{G}I_{x_\pi}(\mathcal{M}))$ be generalized inverse *-semigroups.

Lemma 4.2 Let A, B, C be a π-single subsets of a strong π-set $X(\pi; \omega; \{\sigma_{e,f}\})$, and let $\psi \in xS$ such that $d(\psi) = C$. Then, for any $x \in d(1_{A} \circ 1_{B} \circ 1_{C})$, $x^{1_{A} \circ 1_{B}} \psi = x^{1_{A}} \psi$.

By using the lemma above, we have the following theorem.

Theorem 4.3 Let S and $T(x) (\subseteq \mathcal{G}I_{x_\pi}(\mathcal{M}))$ be generalized inverse *-semigroups, then $S \wreath T(x)$ is a generalized inverse *-semigroup.
References

Department of Mathematics
Shimane University
Matsue, Shimane 690, Japan