<table>
<thead>
<tr>
<th>Title</th>
<th>Some remarks on representations of fundamental generalized inverse \ast-semigroups (Semigroups, Formal Languages and Combinatorics on Words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Imaoka, Teruo; Inata, Isamu; Yokoyama, Hiroaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1995), 910: 14-18</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59544</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Some remarks on representations of fundamental generalized inverse $*$-semigroups

Teruo Imaoka (今岡 輝男)
Isamu Inata (稲田 勇)
Hiroaki Yokoyama (横山 浩明)

Abstract

W.D. Munn [4] described that every fundamental inverse semigroup can be faithfully represented by isomorphisms among principal ideals of the semilattice of idempotents of it. Also T. Imaoka [3] has given a generalization of the Preston-Vagner representation for generalized inverse $*$-semigroups by using a concept of a structure sandwich set of an inverse subsemigroup of the symmetric inverse semigroup on a set.

In this paper, we shall construct a fundamental regular $*$-semigroup $\mathcal{F}GI_{X}(\pi)$ on a set X with a partition $\pi : X = \Sigma\{X_{i} : i \in I\}$, and obtain a faithful representation of a fundamental generalized inverse $*$-semigroup into $*$-semigroup $\mathcal{F}GI_{X(\pi)}$ on a set $X(\pi)$.

1 Introduction

A semigroup S with a unary operation $* : S \rightarrow S$ is called a regular $*$-semigroup if it satisfies followings

1. $(x^*)^* = x$
2. $(xy)^* = y^*x^*$
3. $xx^*x = x$

Let S be a regular $*$-semigroup. Then an idempotent e of S is called a projection if it satisfies $e^* = e$. For any subset A of S, denote the sets of idempotents and projections of A by $E(A)$ and $P(A)$, respectively. The following result is well-known and we use it frequently throughout this paper.

Result 1.1 (see [2]) Let S be a regular $*$-semigroup. Then we have the followings:

1. $E(S) = P(S)^2$;
2. for any $a \in S$ and $e \in P(S), a^*ea \in P(S)$;
3. each L-class and each R-class have one and only one projection.
A regular *$*$-semigroup S is called a generalized inverse *$*$-semigroup if $E(S)$ forms a normal band, that is, $E(S)$ satisfies the identity $xyz = xzyx$, equivalently, $P(S)$ satisfies the identity $xyzw = xzyw$.

Let S be a regular *$*$-semigroup and ρ a congruence on S. Then ρ is called a *$*$-congruence if $(x, y) \in \rho$ implies $(x^*, y^*) \in \rho$.

Result 1.2 (see [2]) Let S be a regular *$*$-semigroup. Then,

$$
\mu = \{(a, b) \in S \times S : aea^* = beb^* \text{ and } a^*ea = b^*eb \text{ for all } e \in P(S)\}
$$

is the maximum idempotent separating *$*$-congruence on S.

A regular *$*$-semigroup S is said to be fundamental if μ is the equality relation on S.

The notation and terminology are those of [1] and [2] unless otherwise stated.

2 Structure sandwich sets

Let I_X be the symmetric inverse semigroup on a set X. For any subset A of X, 1_A means the identity mapping on A. let \mathcal{A} be an inverse subsemigroup of I_X and $\theta : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ a mapping. Denote the image $(\alpha, \beta)\theta$ of an ordered pair (α, β) by $\theta_{\alpha, \beta}$. Set $\mathcal{M} = \{\theta_{\alpha, \beta} : \alpha, \beta \in A\}$. If \mathcal{M} satisfies the following conditions:

(1) $\theta_{\alpha, \beta}^{-1} = \theta_{\beta^{-1}, \alpha^{-1}}$,
(2) $\theta_{\alpha, \alpha^{-1}} = 1_{r(\alpha)}$,
(3) $\theta_{1_{d(\alpha)}, \alpha} = 1_{d(\alpha)}$,
(4) $\theta_{\alpha, \beta}\theta_{\alpha^* \alpha, \beta^* \gamma} = \theta_{\alpha, \beta}\theta_{\alpha, \beta^* \gamma}$,

we call it the structure sandwich set of A determined by θ. The following lemma and theorem are obvious by the definition.

Lemma 2.1 Let \mathcal{M} be the structure sandwich set of A determined by θ. Then,

$$
\theta_{\alpha, 1_{r(\alpha)}} = 1_{r(\alpha)}.
$$

Theorem 2.2 (see [3]) Let \mathcal{A} be an inverse subsemigroup of the symmetric inverse semigroup I_X on a set X, and \mathcal{M} the structure sandwich set of \mathcal{A} determined by a mapping $\theta : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$. Define a multiplication \circ and a unary operation \ast on \mathcal{A} as follows:

$$
\alpha \circ \beta = \alpha \theta_{\alpha, \beta} \beta, \quad \alpha^* = \alpha^{-1}.
$$

Then $\mathcal{A}(\circ, \ast)$ becomes a regular *$*$-semigroup with $E(\mathcal{A}(\circ, \ast)) = \{\alpha \in \mathcal{A}(\circ, \ast) : \theta_{\alpha, \alpha} = \alpha^{-1}\}$ and $P(\mathcal{A}(\circ, \ast)) = \{1_{d(\alpha)} : \alpha \in \mathcal{A}(\circ, \ast)\}$.

We denote $\mathcal{A}(\circ, \ast)$, defined above, by $\mathcal{A}(\mathcal{M})$.
3 Construction

Let X be a set and $\pi : X = \Sigma\{X_i : i \in I\}$ a partition of X. In this case, we denote X by $X(\pi)$. A subset A of X is called a π-singleton subset of $X(\pi)$ if $|A \cap X_i| \leq 1$ for all $i \in I$. A mapping $\alpha \in I_X$ is called a π-singleton bijection of $X(\pi)$ if $d(\alpha)$ and $r(\alpha)$ are π-singleton subsets of $X(\pi)$. Denote the set of all π-singleton bijections of $X(\pi)$ by $\mathcal{F}\mathcal{G}\mathcal{I}_{X(\pi)}$. The following lemma is clear.

Lemma 3.1 The set $\mathcal{F}\mathcal{G}\mathcal{I}_{X(\pi)}$, defined above, is an inverse subsemigroup of I_X.

For any $\alpha, \beta \in \mathcal{F}\mathcal{G}\mathcal{I}_{X(\pi)}$, define a mapping $\theta_{\alpha, \beta}$ as follows:

$$d(\theta_{\alpha, \beta}) = \{e \in r(\alpha) : \text{there exist } i \in I \text{ and } f \in d(\beta) \text{ such that } e, f \in X_i\},$$

$$r(\theta_{\alpha, \beta}) = \{f \in d(\beta) : \text{there exist } i \in I \text{ and } e \in r(\alpha) \text{ such that } e, f \in X_i\}.$$

$$e\theta_{\alpha, \beta} = f, \text{ where } r(\alpha) \cap X_i = \{e\} \text{ and } d(\beta) \cap X_i = \{f\}.$$

Proposition 3.2 The set $\mathcal{M} = \{\theta_{\alpha, \beta} : \alpha, \beta \in \mathcal{F}\mathcal{G}\mathcal{I}_{X(\pi)}\}$ is the structure sandwich set of $\mathcal{F}\mathcal{G}\mathcal{I}_{X(\pi)}$ determined by a mapping $\theta : (\alpha, \beta) \mapsto \theta_{\alpha, \beta}$. Therefore $\mathcal{F}\mathcal{G}\mathcal{I}_{X(\pi)}(\mathcal{M})$ is a regular \ast-semigroup. Furthermore $\mathcal{F}\mathcal{G}\mathcal{I}_{X(\pi)}(\mathcal{M})$ becomes a fundamental generalized inverse \ast-semigroup.

Proof. We can prove the proposition by similar argument of Lemma 3.4 and Lemma 3.5 of [3].

4 Representation

Let S be a fundamental generalized inverse \ast-semigroup. In this section, we denote $E(S)$ and $P(S)$ simply by E and P, respectively. Let $E \sim \Sigma\{E_i : i \in I\}$ be the structure decomposition of the normal band E. Then $\pi : P = \Sigma\{P_i : i \in I\}$ is a partition of P, where $P_i = P(E_i)$. Then $\mathcal{F}\mathcal{G}\mathcal{I}_{P(\pi)}(\mathcal{M})$, constructed in the preceding section, is a fundamental generalized inverse \ast-semigroup.

Lemma 4.1 For any $a \in S$, $S_a \cap P(= S_a^* a \cap P)$ is a π-singleton subset of $P(\pi)$.

Proof. Put $a^* a = e$ and assume that $f, g \in S_e \cap P_i$. Then there exist $x, y \in S$ such that $f = xe$ and $g = ye$. Hence $f = efe$ and $g = ege$. Since E_i is a rectangular band and E is a normal band, $f = fgf = efegefe = egefege = gfg = g$. This shows that $S_a \cap P$ is a π-singleton subset of $P(\pi)$.

Lemma 4.2 For any $a \in S$, let $\tau_a : S_a^* \cap P \rightarrow S_a \cap P$ be a mapping defined by

$$e\tau_a = a^* ea.$$

Then, for any $a \in S$, $\tau_a \in \mathcal{F}\mathcal{G}\mathcal{I}_{P(\pi)}(\mathcal{M})$ and $\tau_a^{-1} = \tau_a^*$.

Proof. By Lemma 4.1, $d(\tau_a)$ and $r(\tau_a)$ are π-singleton subsets of $P(\pi)$. Let e and f are any elements of $Sa^* \cap P$ such that $e\tau_a = f\tau_a$, that is, $a^*ea = a^*fa$. Then there exist $x, y \in S$ such that $e = xa^*$ and $f = ya^*$. Thus $e = e^*e = ax^*xa^* = aa^*ax^*xa^*aa^* = aa^*eaa^* = aa^*fqa^* = aa^*fqa^*$ implies $ay^*ya^* = a^*y^*ya^* = f^*f = f$. This implies that τ_a is injective. Next, let f be any element of $S a \cap P$. Then there exists $x \in S$ such that $f = xa$. Put $e = aa^*x^*xa^*$. Then $e \in Sa^* \cap P$ and $e\tau_a = a^*(aa^*x^*xa^*)a = a^*x^*xa = f$. This implies that τ_a is bijective. The last statement of the lemma is obvious.

Lemma 4.3 For any $a, b \in S$, $\theta_{\tau_a, \tau_b} = \tau_{a^*abb^*}$.

Proof. Let e be any element of $d(\theta_{\tau_a, \tau_b})$. Then $e \in Sa \cap P$ and there exist $i \in I$ and $f \in S b^* \cap P$ such that $e, f \in P$. Hence there exist $x, y \in S$ such that $e = xa$ and $f = yb^*$. Thus $e = efe = xayb^*xa = xayb^*xabb^*a^*a \in S b^*a^*a \cap P = d(\tau_{aabb^*})$.

Conversely let e be any element of $d(\tau_{aabb^*}) = S b^*a^*a \cap P$. Then there exists $x \in S$ such that $e = xbb^*a^*a$. Hence $e \in Sa \cap P$. Put $f = b^*a^*ax^*xa^*abb^*$. Then $f \in S b^* \cap P$ and it is clear that e and f are contained in a same P_i. Therefore $e \in d(\theta_{\tau_a, \tau_b})$ and $e\tau_{aabb^*} = b^*a^*aeab^*abb^* = b^*a^*ax^*xa^*abb^* = f = e\tau_{\tau_a, \tau_b}$.

Lemma 4.4 Define a mapping $\phi : S \to F G I P(\pi)(M)$ by

$$a\phi = \tau_a.$$

Then ϕ is a $*$-monomorphism.

Proof. To prove that ϕ is a homomorphism it is sufficient to show that, for any $a, b \in S$, $d(\tau_a \circ \tau_b) = d(\tau_{ab})$. Let a and b be any elements of S. Then,

$$d(\tau_a \circ \tau_b) = d(\tau_a \tau_{a^*abb^*} \tau_b) \quad \text{(by Lemma 4.3)}$$

$$= \{Sa \cap P \cap (Sa^*abb^* \cap P \cap Sb^*)\tau_{a^*abb^*}^{-1}\} \tau_a^{-1}$$

$$= \{Sa \cap P \cap (Sa^*abb^* \cap P)\tau_{a^*abb^*}^{-1}\} \tau_a^{-1}$$

$$= (Sa \cap P \cap S b^*a^*a)\tau_a^{-1} \quad \text{(since } \tau_{a^*abb^*}^{-1} = \tau_{b^*a^*a})$$

$$= (S b^*a^*a \cap P)\tau_a^{-1}.$$

Hence let e be any element of $d(\tau_a \circ \tau_b)$. Then there exists $f \in S b^*a^*a \cap P$ such that $e\tau_a = f\tau_a$, that is $a^*ea = f$. Since $e \in Sa^*$ and $f \in S b^*a^*a$, there exist $x, y \in S$ such that $e = xa^*$ and $f = yb^*a^*a$. Thus $e = e^*e = ax^*xa^* = aa^*(ax^*xa^*)a^* = a\phi(a^*e)$ and $a^*fa = ayb^*a^* \in S b^*a^*a \cap P = d(\tau_{ab})$.

Conversely let e be any element of $d(\tau_{ab}) = S b^*a^*a \cap P$. Then there exists $x \in S$ such that $e = xbb^*a^*$. Hence $e\tau_a = xbb^*a^*\tau_a = a^*xb^*a^*a \in S b^*a^*a \cap P$. Thus $e \in (S b^*a^*a \cap P)\tau_a^{-1}$ and so $d(\tau_a \circ \tau_b) = d(\tau_{ab})$.

Let a and b be any elements of S such that $a\phi = b\phi$, that is, $\tau_a = \tau_b$. Then it is easy to show that $a^*e = b\phi$, that $a^*e = b\phi$. Hence assume that $(a, b) \not\in \mu$. Then there exists $e \in P$ such that $a e a^* \neq b^*eb$ or $a^*e = b^*eb$.
If $aea^* \neq beb^*$, we have $aea^* \tau_a = beb^* \tau_b$, since $a^*aea^*a = b^*beb^*b$. This contradicts that $\tau_a = \tau_b$ is injective. Similarly, if $a^*ea \neq b^*eb$, we have $aa^*ea^*a = bb^*eb^*b$, that is, $a^*ea = b^*eb$. This contradicts the hypothesis. Therefore, $(a, b) \in \mu$. Since S is fundamental, we have that $a = b$. Thus ϕ is injective.

By Lemma 4.2, ϕ is compatible with a unary operation $*$ and so ϕ is a $*$-monomorphism.

Now we have the following theorem.

Theorem 4.5 Every fundamental generalized inverse $*$-semigroup has a faithful representation into $\mathcal{FGL}_X(\pi)$ on a set $X(\pi)$.

References

Department of Mathematics
Shimane University
Matsue, Shimane 690, Japan