Some remarks on representations of fundamental generalized inverse *-semigroups

Teruo Imaoka (今岡 輝男)
Isamu Inata (稲田 勇)
Hiroaki Yokoyama (横山 浩明)

Abstract

W.D.Munn [4] described that every fundamental inverse semigroup can be faithfully represented by isomorphisms among principal ideals of the semilattice of idempotents of it. Also T.Imaoka [3] has given a generalization of the Preston-Vagner representation for generalized inverse *-semigroups by using a concept of a structure sandwich set of an inverse subsemigroup of the symmetric inverse semigroup on a set.

In this paper, we shall construct a fundamental regular *-semigroup $\mathcal{FGI}_{X(\pi)}$ on a set X with a partion $\pi: X = \Sigma\{X_i: i \in I\}$, and obtain a faithful representation of a fundamental generalized inverse *-semigroup into *-semigroup $\mathcal{FGI}_{X(\pi)}$ on a set $X(\pi)$.

1 Introduction

A semigroup S with a unary operation $*: S \to S$ is called a regular *-semigroup if it satisfies followings

- $(1) (x^*)^* = x,$
- $(2) (xy)^* = y^*x^*,$
- $(3) xx^*x = x.$

Let S be a regular *-semigroup. Then an idempotent e of S is called a projection if it satisfies $e^* = e$. For any subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively. The following result is well-known and we use it frequently throughout this paper.

Result 1.1 (see [2]) Let S be a regular *-semigroup. Then we have the followings:

- (1) $E(S) = P(S)^2$;
- (2) for any $a \in S$ and $e \in P(S)$, $a^*ea \in P(S)$;
- (3) each \mathcal{L} -class and each \mathcal{R} -class have one and only one projection.

A regular *-semigroup S is called a generalized inverse *-semigroup if E(S) forms a normal band, that is, E(S) satisfies the identity xyzx = xzyx, equivalently, P(S) satisfies the identity xyzw = xzyw.

Let S be a regular *-semigroup and ρ a congruence on S. Then ρ is called a *-congruence if $(x, y) \in \rho$ implies $(x^*, y^*) \in \rho$.

Result 1.2 (see [2]) Let S be a regular *-semigroup. Then,

$$\mu = \{(a,b) \in S \times S : aea^* = beb^* \text{ and } a^*ea = b^*eb \text{ for all } e \in P(S)\}$$

is the maximum idempotent separating *-congruence on S.

A regular *-semigroup S is said to be fundamental if μ is the equality relation on S. The notation and terminology are those of [1] and [2] unless otherwise stated.

2 Structure sandwich sets

Let \mathcal{I}_X be the symmetric inverse semigroup on a set X. For any subset A of X, 1_A means the identity mapping on A. let \mathcal{A} be an inverse subsemigroup of \mathcal{I}_X and $\theta: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ a mapping. Denote the image $(\alpha, \beta)\theta$ of an ordered pair (α, β) by $\theta_{\alpha, \beta}$. Set $\mathcal{M} = \{\theta_{\alpha, \beta}: \alpha, \beta \in \mathcal{A}\}$. If \mathcal{M} satisfies the following conditions:

- (1) $\theta_{\alpha,\beta}^{-1} = \theta_{\beta^{-1},\alpha^{-1}},$
- (2) $\theta_{\alpha,\alpha^{-1}} = 1_{r(\alpha)},$
- (3) $\theta_{1_{d(\alpha)},\alpha} = 1_{d(\alpha)},$
- (4) $\theta_{\alpha,\beta}\beta\theta_{\alpha\theta_{\alpha,\beta}\beta,\gamma} = \theta_{\alpha,\beta\theta_{\beta,\gamma}\gamma}\beta\theta_{\beta,\gamma},$

we call it the structure sandwich set of A determined by θ . The following lemma and theorem are obvious by the definition.

Lemma 2.1 Let \mathcal{M} be the structure sandwich set of \mathcal{A} determined by θ . Then,

$$\theta_{\alpha,1_{r(\alpha)}} = 1_{r(\alpha)}.$$

Theorem 2.2 (see [3]) Let A be an inverse subsemigroup of the symmetric inverse semigroup \mathcal{I}_X on a set X, and M the structure sandwich set of A determined by a mapping $\theta: A \times A \to A$. Define a multiplication \circ and a unary operation * on A as follows:

$$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta,$$
$$\alpha^* = \alpha^{-1}.$$

Then $\mathcal{A}(\circ,*)$ becomes a regular *-semigroup with $E(\mathcal{A}(\circ,*)) = \{\alpha \in \mathcal{A}(\circ,*) : \theta_{\alpha,\alpha} = \alpha^{-1}\}$ and $P(\mathcal{A}(\circ,*)) = \{1_{d(\alpha)} : \alpha \in \mathcal{A}(\circ,*)\}.$

We denote $\mathcal{A}(0,*)$, defined above, by $\mathcal{A}(\mathcal{M})$.

3 Construction

Let X be a set and $\pi: X = \Sigma\{X_i : i \in I\}$ a partition of X. In this case, we denote X by $X(\pi)$. A subset A of X is called a π -singleton subset of $X(\pi)$ if $|A \cap X_i| \leq 1$ for all $i \in I$. A mapping $\alpha \in \mathcal{I}_X$ is called a π -singleton bijection of $X(\pi)$ if $d(\alpha)$ and $r(\alpha)$ are π -singleton subsets of $X(\pi)$. Denote the set of all π -singleton bijections of $X(\pi)$ by $\mathcal{FGI}_{X(\pi)}$. The following lemma is clear.

Lemma 3.1 The set $\mathcal{FGI}_{X(\pi)}$, defined above, is an inverse subsemigroup of \mathcal{I}_X .

For any $\alpha, \beta \in \mathcal{FGI}_{X(\pi)}$, define a mapping $\theta_{\alpha,\beta}$ as follows:

$$d(\theta_{\alpha,\beta}) = \{e \in r(\alpha) : \text{there exist } i \in I \text{ and } f \in d(\beta) \text{ such that } e, f \in X_i\},$$

$$r(\theta_{\alpha,\beta}) = \{f \in d(\beta) : \text{there exist } i \in I \text{ and } e \in r(\alpha) \text{ such that } e, f \in X_i\}.$$

$$e\theta_{\alpha,\beta} = f, \text{ where } r(\alpha) \cap X_i = \{e\} \text{ and } d(\beta) \cap X_i = \{f\}.$$

Proposition 3.2 The set $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha, \beta \in \mathcal{FGI}_{X(\pi)}\}$ is the structure sandwich set of $\mathcal{FGI}_{X(\pi)}$ determined by a mapping $\theta : (\alpha, \beta) \mapsto \theta_{\alpha,\beta}$. Therefore $\mathcal{FGI}_{X(\pi)}(\mathcal{M})$ is a regular *-semigroup. Furthermore $\mathcal{FGI}_{X(\pi)}(\mathcal{M})$ becomes a fundamental generalized inverse *-semigroup.

Proof. We can prove the proposition by similar argument of Lemma 3.4 and Lemma 3.5 of [3].

4 Representation

Let S be a fundamental generalized inverse *-semigroup. In this section, we denote E(S) and P(S) simply by E and P, respectively. Let $E \sim \Sigma\{E_i : i \in I\}$ be the structure decomposition of the normal band E. Then $\pi : P = \Sigma\{P_i : i \in I\}$ is a partition of P, where $P_i = P(E_i)$. Then $\mathcal{FGI}_{P(\pi)}(\mathcal{M})$, constructed in the preceding section, is a fundamental generalized inverse *-semigroup.

Lemma 4.1 For any $a \in S$, $Sa \cap P (= Sa^*a \cap P)$ is a π -singleton subset of $P(\pi)$.

Proof. Put $a^*a = e$ and assume that $f, g \in Se \cap P_i$. Then there exist $x, y \in S$ such that f = xe and g = ye. Hence f = efe and g = ege. Since E_i is a rectangular band and E is a normal band, f = fgf = efegefe = egefege = gfg = g. This shows that $Sa \cap P$ is a π -singleton subset of $P(\pi)$.

Lemma 4.2 For any $a \in S$, let $\tau_a : Sa^* \cap P \to Sa \cap P$ be a mapping defined by $e\tau_a = a^*ea$.

Then, for any $a \in S$, $\tau_a \in \mathcal{FGI}_{P(\pi)}(\mathcal{M})$ and $\tau_a^{-1} = \tau_{a^*}$.

Proof. By Lemma 4.1, $d(\tau_a)$ and $r(\tau_a)$ are π -singleton subsets of $P(\pi)$. Let e and f are any elements of $Sa^* \cap P$ such that $e\tau_a = f\tau_a$, that is, $a^*ea = a^*fa$. Then there exist $x, y \in S$ such that $e = xa^*$ and $f = ya^*$. Thus $e = e^*e = ax^*xa^* = aa^*ax^*xa^*aa^* = aa^*eaa^* = aa^*faa^* = aa^*f^*faa^* = aa^*ay^*ya^*aa^* = ay^*ya^* = f^*f = f$. This implies that τ_a is injective. Next, let f be any element of $Sa \cap P$. Then there exists $x \in S$ such that f = xa. Put $e = aa^*x^*xaa^*$. Then $e \in Sa^* \cap P$ and $e\tau_a = a^*ea = a^*(aa^*x^*xaa^*)a = a^*x^*xa = f$. This implies that τ_a is bijective. The last statement of the lemma is obvious.

Lemma 4.3 For any $a, b \in S$, $\theta_{\tau_a, \tau_b} = \tau_{a^*abb^*}$.

Proof. Let e be any element of $d(\theta_{\tau_a,\tau_b})$. Then $e \in Sa \cap P$ and there exist $i \in I$ and $f \in Sb^* \cap P$ such that $e, f \in P_i$. Hence there exist $x, y \in S$ such that e = xa and $f = yb^*$. Thus $e = efe = xayb^*xa = xayb^*bb^*xaa^*a = xayb^*xabb^*a^*a \in Sbb^*a^*a \cap P = d(\tau_{a^*abb^*})$.

Conversely let e be any element of $d(\tau_{a^*abb^*}) = Sbb^*a^*a \cap P$. Then there exists $x \in S$ such that $e = xbb^*a^*a$. Hence $e \in Sa \cap P$. Put $f = bb^*a^*ax^*xa^*abb^*$. Then $f \in Sb^* \cap P$ and it is clear that e and f are contained in a same P_i . Therefore $e \in d(\theta_{\tau_a,\tau_b})$ and $e\tau_{a^*abb^*} = bb^*a^*aea^*abb^* = bb^*a^*ax^*xa^*abb^* = f = e\theta_{\tau_a,\tau_b}$.

Lemma 4.4 Define a mapping
$$\phi: S \to \mathcal{FGI}_{P(\pi)}(\mathcal{M})$$
 by $a\phi = \tau_a$.

Then ϕ is a *-monomorphism.

Proof. To prove that ϕ is a homomorphism it is sufficient to show that, for any $a, b \in S$, $d(\tau_a \circ \tau_b) = d(\tau_{ab})$. Let a and b be any elements of S. Then,

$$d(\tau_{a} \circ \tau_{b}) = d(\tau_{a}\tau_{a^{*}abb^{*}}\tau_{b}) \quad \text{(by Lemma 4.3)}$$

$$= \{Sa \cap P \cap (Sa^{*}abb^{*} \cap P \cap Sb^{*})\tau_{a^{*}abb^{*}}^{-1}\}\tau_{a}^{-1}$$

$$= \{Sa \cap P \cap (Sa^{*}abb^{*} \cap P)\tau_{a^{*}abb^{*}}^{-1}\}\tau_{a}^{-1}$$

$$= (Sa \cap P \cap Sbb^{*}a^{*}a)\tau_{a}^{-1} \quad \text{(since } \tau_{a^{*}abb^{*}}^{-1} = \tau_{bb^{*}a^{*}a})$$

$$= (Sbb^{*}a^{*}a \cap P)\tau_{a}^{-1}.$$

Hence let e be any element of $d(\tau_a \circ \tau_b)$. Then there exists $f \in Sbb^*a^*a \cap P$ such that $e\tau_a = f$, that is $a^*ea = f$. Since $e \in Sa^*$ and $f \in Sbb^*a^*a$, there exist $x, y \in S$ such that $e = xa^*$ and $f = ybb^*a^*a$. Thus $e = e^*e = ax^*xa^* = aa^*(ax^*xa^*)aa^* = a(a^*ea)a^* = afa^* = aybb^*a^* \in Sb^*a^* \cap P = d(\tau_{ab})$.

Conversely let e be any elment of $d(\tau_{ab}) = Sb^*a^* \cap P$. Then there exists $x \in S$ such that $e = xb^*a^*$. Hence $e\tau_a = xb^*a^*\tau_a = a^*xb^*a^*a \in Sbb^*a^*a \cap P$. Thus $e \in (Sbb^*a^*a \cap P)\tau_a^{-1}$ and so $d(\tau_a \circ \tau_b) = d(\tau_{ab})$.

Let a and b be any elements of S such that $a\phi = b\phi$, that is, $\tau_a = \tau_b$. Then it is easy to show that $aa^* = bb^*$ and $a^*a = b^*b$. Hence assume that $(a, b) \notin \mu$. Then there exists $e \in P$ such that $aea^* \neq beb^*$ or $a^*ea \neq b^*eb$.

If $aea^* \neq beb^*$, we have $aea^*\tau_a = beb^*\tau_b$, since $a^*aea^*a = b^*beb^*b$. This contradicts that $\tau_a = \tau_b$ is injective. Similarly, if $a^*ea \neq b^*eb$, we have $aa^*eaa^*\tau_a = bb^*ebb^*\tau_b$, that is, $a^*ea = b^*eb$. This contradicts the hypothesis. Therefore, $(a,b) \in \mu$. Since S is fundamental, we have that a = b. Thus ϕ is injective.

By Lemma 4.2, ϕ is compatible with a unary operation * and so ϕ is a *-monomorphism.

Now we have the following theorem.

Theorem 4.5 Every fundamental generalized inverse *-semigroup has a faithful representation into $\mathcal{FGI}_{X(\pi)}$ on a set $X(\pi)$.

References

- [1] J. M. Howie, An Introduction to semigroup theory, Academic Press, London, 1976.
- [2] T. Imaoka, On fundamental regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 14 (1980) 19 23.
- [3] T. Imaoka, Representations of generalized inverse *-semigroups, submitted.
- [4] W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Quart. J. Math. Oxford (2) 17 (1966) 151 159.

Department of Mathematics Shimane University Matsue, Shimane 690, Japan