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1 Introduction

We consider a model of Bénard-Marangoni convection using the Boussinesq equations

for the velocity, pressure and temperature :

Pi(ut+u-Vu)+Vp = Au—p(T)Vz, Vu =0, T1+u-VI = AT
r

in the strip {—1 < z < n(z,t), —0 < z < 0}, where p(T) = G —RaT is assumed for the
density of the fluid. |
We consider the boundary condition u = 0 and T = 1 on the bottom . The top surface

7(z,t) is deformable and has the kinematic boundary condition
M = Uz — UpOeN|z=n(zt) »
and the stress balance equation is satisfied on it :
((p — Pair)] — (Vu +tVu)) -n = oHn— (t-V)ot.

Here n and t are the normal and tangential unit vectors of -the surface and H is the

~curvature of the surface . The surface stress o is assumed to be given by

o0 = W—MaT + Vi(t-V)(u-t).
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We also have the boundary condition of temperature n - VI' 4+ BiT = —1 on the upper
surface .

These equations have a stationary solution

. . - Ra
n=0, u=0, T=T(2)=-2, p=pz)= -—E—ZZ—Gz+pair
representing the purely heat conducting state.
We will consider the stability of this stationary state. We assume that all functions
are periodic in z with period L. Perturbation (u,p,8,n) to the heat conducting state

satisfies a nonlinear system, whose linearization is

Pl?ut+Vp—-Au——Ra.0Vz=F, Vau=0, 6—A0—-u; = Fy in Q, (1)

m— usls, =0,
pn—(Vu+Vut) - n— (-WA, +G)nn — (MaV,(0 —n) — Vidgup)t = f,
6,+Bi(0—n) = fo on Sp, (2)
vu=0,0 =0 on Ss (3)

Here Q = {—1 < z < 0} is the domain occupied by the fluid at the heat conducting state
and Sp = {z =0} and Sp = {z = —1} are its boundaries.
We use Sobolev spaces H"(2) and H"(SF) and denote their norm by || - ||, and || - ||,s;

respectively, and we use the function spaces.

K" (@ % (0,00)) = HY(0,00; H'(Q)) N H*(0, 00; H())
KT (@x(0,00)) = {f:e"f €K (Qx(0,00))},
K™¥(Sp x (0,00)) = H(0,00; H™3(S)) N H/*(0, 00; H}(Sk))
K"3(Sp x (0,00) = {f:e"f € K™¥(Sp x (0,00))} .

il
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2 Existence for nonlinear problems

We have the following for the Laplace transform of the solution of the linearized system .

Proposition 1 Assume r > 2. For small constants Ra and Ma, there is a positive
constant v such that for non-zero A in {Re A > —v} and data F, Fy € H™2,
f, fo € H™"2+3(Sp), there is a unique solution u,0 € H",Vp e H"?,n € H™%(SF) and

this solution satisfy

r—2

: =2 s |
lw, 61l + (A2 |w, 6] + I Vpllr—z + [N T V| + lInll,1 1,50 + A7 Inlsy

r—2 r—=2,

< C(IF, Follr—z + N 1F, Fol) +C (I, foll,—3.50 + INF IS folly.s,) -

Here C does not depend on X . When Vi is positive, us|g, € H™%(Sy) and also

r—2

lunllrts,se + A7 |lunllz41 5, can be estimated by the right hand side above.

The nonlinear system has F, Fy, f, fo in (1)(2) which are quadratic or higher order -

terms of the unknowns and their derivatives. We have the following for small Ra and Ma.

Theorem 1 (See [4].) Assume 3 <t < 3.
(1) When Vi > 0, for small initial conditions io,00 € H™YQ), o, Uplg, € H™%(SF)
which satisfy conditions V-4y = 0, ﬁ°’§°|s = 0 and [nodz = 0, there exists a global in
B
‘ 1
time solution u,6 € K',p € K_’_T,z,n, uh'sp € KT;’(SF).
(2) When Vi = 0, for small initial conditions to,0 € H™*(), no € H™%(Sp) which
satisfy conditions V -4y = 0, 120,50‘5 =0 and [ nodz = 0, there exists a global in time
B
r+l
solution u,0 € K”_,p € K"?,n € K_i;’(Sp).

-

Remark The solution constructed in the theorem decays exponentially. Thus, the results

say that the purely heat conducting state is stable for small Ra and Ma.
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3 Eigenvalue problems

Here we increase Rayleigh number and Marangoni number in the system (1)-(3) to
investigate the instability of the purely heat conducting state. Rewrite the system using

the stream function 1/) for the linearized perturbed flow.

=0, ¢,=0, =0 on z=20. (4)
Ay, + PrRafd, = PrA%y, 6, + ¥, = A8 in 0<z<l1l. (5)
nt+¢a:=0, (6)

¢zz - ¢zz + Ma' (0.1: - 77:1:) + Vl 1/)zww = 0 )
1
—ﬁ "/)zt + 3'¢a:wz + ¢zzz + Wna:zm - G'r]m =0 ’

6,+Bi(d—n) =0 on =z =1.
We can consider ¥, § and 7 of the form

Y = p(2)exp(inz + At),

6 = 6(z)exp(inz + At), n = nexp(inz + At).

Thus the instability problem (4)-(6) is reduced to the eigenvalue problem of the ODE for

¢, 60 andn :
p(0) =0, &'(0) =0, 60 =0 oo z=0. (7)
Pr(¢™ — 2n%¢" + n*p) = PrRainf + X(¢" —n?y), (8)
6" —n%0 = inp + A\ in 0<z<l1.
An + ing(l) = 0, (9)

(p”(l) _ Vinz (p'(l) + n2<p(1) + Main (6(1) — n)

0,
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(1) = 'p}"\ ¢'(1) — 3n¢/(1) — (Wn® + G)inn = 0,
T
6'(1) + Bi((1)—n) = 0 on z=1.
By this formulation, the original problem of stability is reduced to investigate the behavior

of the real part of the eigenvalue A when the parameters Ra, Ma and n vary. The problem
is to find the critical Rayleigh number

Ra = Rc atwhich X = #iw (weR)

for certain periodicity in z , namely n fixed , and further to show

ORe
a Ra' Ra=Rc

> 0.

By this motion of eigenvalue and by the fact that the original evolution problem for the
linearized system forms a sectorial operator, we see that a sufficient condition given in the
paper of Crandall and Rabinowitz [1],[2] for the occurence of the stationary bifurcation
or the Hopf bifurcation for the infinite dimensional system holds . Hence, we see that

The heat conducting state becomes unstable for Ra > Rc and the stationary bifurcation

or the Hopf bifurcation occurs at Ra = Rc corresponding tow = 0 or w # 0 respectively.

In order to justify the above argument about the instability and the bifurcation we use
the method given in [6] to prove the existence of the eigenvalue and the critical Rayleigh
number in a small neighbourhood of the computed eigenvalue and critical Rayleigh num-
ber based on the Newton method. |
(i) the shooting method and the Newton method to obtain an approximate eigenvalue,
eigen function and critical Rayleigh numbér of the problem (7) -(9) by numerical compu-

tation using the fourth order Taylor finite difference scheme for the fundamental solutions
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(ii) the interval analysis by a computer software for the bound of round-off errors in the
computation of the fundamental solutions ,

(iii) the theory of pseudo trajectory to estimate the difference of the fundamental solu-
tions and the computed fundamental solutions and

(iv) a theorem of criterion to guarantee the existence of the pure imaginary eigenvalue
at the critical Rayleigh number in the neighbourhood of the computed eigenvalue and
critical Rayleigh number based on the simplified Newton method.

Example 1. Wetake G =400, W=0,Pr=1,Vi=0,Bi=0 and Ma=0.

MA=0 for Ro = 1108.10829 10299 and n=1

23 = 0.00601 95610 .
OR |rn,

Mo=0 for Ry, = 670.28924 90412 and n =2
23 = 0.01176 43040 .
OR |z,

Mo=0 for Ry = 782.7826539432 and n =3
2 = 0.01623 62555 .
OR |r,

do=0 for Ry = 1131.0427217360 and n =4
2 = 0.01723 00682 .
OR |rn,

For this gravity G we see the stationary bifurcation.

Example 2. Wetake G=100, W=0,Pr=1,Vi=0,Bi=0 and Ma=0.

Ao =1 x 2.91543 59477 for Ry = 447.81500 11036 and = =0.5
N :

—_— = 0.00323 04147 — 7 x 0.00182 89195 .
R R=R
=Ro



Ao =1 X 4.55206 09938 for Ro = 391.30728 48837 and n=1

_(91 = 0.00739 43320 — 7 x 0.00639 79827 .
R |,
Ao =1 X 5.15597 17779 for Ry = 424.67690 19853 and n =2
2/\— = 0.01092 75779 — 1 x 0.01304 26310 .
OR |,
Ao =1 x 5.83570 00744 for Ry = 514.01005 34704 and n =3
8_)\ = 0.01003 54801 — 7 x 0.01216 26611 .
| R |pen,
o =ix6.52511 06375 for R = 749.27424 80405 and n=4
ﬂ = 0.00818 05053 — 7 x 0.00902 53196 .
R |pn,

For this gravity G we see the Hopf bifurcation.

Example 3. We give another interesting example taking G =100, W =20,
Pr=1,Vi=0,Bi=0 and Ma~ —43.73, and n==1.

Ao = i x 0.29905 33540 for Rg = 712.52096 87507, M, = —43.735

9 = —0.00047 64522 F i x 0.20119 02855 .
R |pen, |
Ao =0 for Re = 713.26310 60036, M, = —43.735
23 = 162.83867 58322 .
6 R=Ro ;
Mo =0 for Ro = 713.27868 68247, M, = —43.73
[2) — —352.57204 77357 .
OR |,

Thus it suggests an existence of the double zero eigenvalue of the determinant at

Ra =~ 713, Ma ~ —43.73 . Detailed arguements will be given elsewhere.

109
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Example 4. We give another example taking G=100, W=0,Pr=1,Vi=0,
Bi=0 and Ma=x38, and n= 1 or 2.

Ao =1 X 4.43652 66171 for Ry = 374.05568 57561, Ma = 8.0 and n=1

oA = 0.00814 67572 — ¢ x 0.00575 47700 .
aR R=Ro
Ao =1x4.43483 51773  for Ry = 373.85774 26405, Ma = 8.1 and n=1
23 = 0.00815 64085 — i x 0.00574 64556 .
. IR |p—r,
Ao =1x5.75871 35816  for Ry = 374.2123543595, Ma = 8.0 and n =2
oA = 0.01251 04768 — 7 x 0.00987 39172 .
OR | rz,
Ao =1x%5.76349 04450 for Ry = 373.67749 50581, Ma = 8.1 and n=2
L2 = 0.01252 95986 — ¢ x 0.00984 38143 .
OR |z_r
=Ro
It suggests the neutral curves A = iw; forn=1 and A = w, for n =2 intersect

at Ra =~ 374 and Ma = 8.0. Detailed arguments will be given elsewhere.
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