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1 External Force Problem

In this section we consider the one-dimensional motion of a general viscous isentropic
gas in a bounded region, with an external force. In Lagrangian mass coordinate, such a
model system is well formulated by the system of equations

(1.1) v — Ug = 0,

w o (2), =0 (), +o ([ o)

where v denotes the specific volume, u the velocity, u the viscosity coefficient, f the the
external force and a > 0, > 1 are the constants appearing in the equation of state. In
what follows, assuming that the viscosity coefficient is a positive constant, we consider these
equations in a fixed domain Q

(1.3) Q={(z,t)|0<z<1, ¢t>0}
together with the initial conditions

(1.4) v(z,0) = vo(z), u(z,0)=wup(z) on 0<z <1,
and with the boundary conditions

(1.5) u(0,t) =u(l,t)=0 on t>0.

For the above data, it is natural to impose

(1.6) vy € HY(0,1), wup € Hy(0,1),

(1.7) C;' < wy(z) £ Cy  for some constant Co > 1,



and
1
1.8 de = 1.
(1.8) /0 vo(z)da
Furthermore, for the external force f = f(&,1), £ = /z vdz, we suppose that
0

(1.9) f, fe and f, € L= ((0,1) x (0,00)).

We are interested in the existence of uniformly bounded global solution with respect
to time ¢t. Here and throughout this paper, the term ”uniformly bounded global in time
solution” means the time-global solution which is uniformly bounded and its density also
being uniformly positive with respect to t.

In the case f = 0, the existence and uniqueness of the uniformly bounded global in
time solution have been obtained by a number of authors including Kanel’[5], Itaya [3],
Kazhikhov [6], Kazhikhov & Shelukhin [9], Kazhikhov & Nikolaev [7, 8], etc, under various
conditions on the initial data, the equation of state p, and so on. Among them, Kazhikhov’s
result [6] shows that for arbitrary large initial data, our problem with f = 0 has a unique
uniformly bounded global in time solution. If the external force vanishes sufficiently fast
as time tends to infinity, we can extend their results to obtain uniform estimates or the
asymptotic behavior of the solution. However this assumption is too restrictive to cover
physically meaningfull cases, such as time periodic external forces or time independent ones.
In this points of view, Beirdo da Veiga [1] proved the following result. For suitably small f,
if some norm of the initial data is bounded by some constant which is determined by the
L*-norm of f, then uniformly bounded global in time solution uniquely exists. Since the
constant mentioned above tends to infinity as the L*®-norm of f tends to 0, there is no gap
between his result and Kazhikhov’s one. His result also shows that for any fixed initial data,
if the external force is sufficiently small, then the uniformly bounded global in time solution
uniquely exists. However it does not cover Matsumura & Nishida’s result [10] : when the gas
is assumed to be isothermal, namely the equation of state is given by p = a/v, then there
exists a unique uniformly bounded global in time solution for arbitrary large external force
and large initial data. From this point, our interest in the present work is to make up for the
difference between them. To do so, regarding <y as a parameter, we shall get the sufficient
condition on the external force f so as to have uniform estimates on the solution, and study
precisely how this condition depends on 7. Of course we expect that when - tends to 1, our
goal will be achieved.

In what follows, we denote the norm in L® L? and H' by | - |o,|| - || and || - |1,
respectively. The following is our main theorem.

Theorem 1.1 Assume (1.6) - (1.9), and 1 < v < 2. Then there ezists a constant C(v),

1
2
iﬁ L_*__i) and |fle < C(7), then

the initial and the boundary value problem (1.1), (1.2) with (1.5), (1.6) has a unique uni-
formly bounded global in time solution (v, u) satisfying

which tends to 0o as «y tends to 1, such that if F1(0) <

(1.10) Cl'<u(z,t)<C ¥V (z,t) € Q,



and

(1.11) sup | (v, u)(?) 1< C,

where E1(0) shall be defined in (1.19), and C 1is a positive constant depending only on
a, Ky Y5 Co, ” (UO?UO) ”11 and Ifloo

Remark 1.1 5

The above constant C(v) can be chosen to satisfy C(y) > C (log (v - 1)—1) as v — 1 for
any S satisfying 0 < § < 1.

Remark 1.2

Theorem 1.1 shows that for arbitrary large initial data and large external force, there exists

a unique uniformly bounded global in time solution, provided the adiabatic constant v is
suitably close to 1. -

Proof of Theorem 1.1.

Let us begin with the following easy result. Integrating (1.1) over [0, 1]\ gives
(1.12) /Olv(:c',t)d:n —1, ¥V i>0.
Multiplying (1.2) By u and integrating it over [0, 1] yield

1“3; 1
(1.13) dt/ { u? +<I) }d:chu/O 7(1’9:-/6 ufdz,

a

y—1

where ® is defined by ®(v) = (vt = 1) +a(v—1) (>0).

1
:z: 1 4,2 2
Using the relation u = / uydz, we have the estimate |u|o < (/ 2”Ldm) , then the right
0 0o v
hand side of (1.13) is estimated as

(114) [ ufde < ulolfle < [ a4 1P
. OU HIES ol/feo = 7 b v z 2“ 00

from which one gets

(1.15) dt/ { u® + ®(v }dm+“/ ‘”d <—|f]2

Multiplying (1.2) by Y= and integrating it over [0, 1] give
v

‘ d 1 (pu (v 192 ly
1.16 S e (= d—/—“—d—/—ﬁd.
(1.16) dt/o{Q('u) U}dm+a’y/ R T vfm




1
1 4,2 2
As the last term in the right hand side of (1.16) is bounded by |f]| (/0 %xgd:r) , we have

0 g [ {5 () e [ e < [ Shae i ([ Z)’

Multiplying (1.17) by %, adding it with (1.15), one shows that

1
d 2 2 i L M /1 vz o\’
where EZ(t) and F2(t) are defined by
11 peo(vg\?  puv,
(1.19) E(t) = /O {§u2 +g (7) + ®(v)p d

4v

1 ,,2

2y = B [N ey, WY [P %
(1.20) Ez(t)_4/0 2ds + 2 /szd:c

“Z;z is bounded by ZU + — 16

2

Since the absolute value of the term

U 2
( m) , E2(t) can be

estimated as

(1.21) 2/ { ( )}dm+/ v)dz <
< EX1) 2/ {—u (%’”) }dm-}-/()l(l)(v)dm

1
. 1 4,2 2
Now we would like to estimate F2(t) from below and |f]e (/ %dm) from above. To do
0
so, we shall use some methods found in [10]. Let X and Y be defined by

1 vg 1 nga
(1.22) X:/O de’ Y:/o m+2dx
Using Holder’s inequality, one has
: 1y .
(1.23) / ’d <X5v5.
o v

Then it follows from (1.20) - (1.23) that

1
1 4,2 7 _
(29 Il ([ 2ae) < 1AXFYH

0 v
< —6—Y+27_1e“#f|f|§?31_1X~z’%
- 27 2y _
< X B+ 1(16)27— | TR
< - e

apy? 27



2 1
for any € > 0. If we determine ¢ that satisfies B = _ —; i.e., € = ay?, then (1.18) is
‘ 4 auy* 2
reduced to
d 1 2(4 2 P e
(1.25) LB + 30 < oo\ + GIAT BT

16 .J_L .
_p2y=1 T N\ THeT
where C, = 1 5y (Hz) (a’y ) -1

Next, it easily follows from (1.12) that there exists a point zo(t) € [0, 1] such that v(zo(t),t) =

1. Therefore we have
1
T 1y 2 2
/?idx 5(/ ;dm> ,
2y U 0o v

from which one obtains the following relation between X and Y

(1.26) |logv| <

(1.27) X <|vLY <Yexp (’yXJZ;‘rLY;_v)

In order to proceed this relation, we use the following lemma, without proof.

Lemma 1.1 Let g(z) be a function in C ([0,00)) satisfying g(0) = 0, and is monotone
increasing on some interval [0, Ag]. Let A be an arbitrary number satisfying 0 < A < A,.
Then the following inequality is vallid for all B > 0

/ z)dz +/ Y(z)dz for 0 < B < g(4Ao),
(128) AB<}

/ g(z)dz + AgB — / g(z)dz for B > g(Ao).

0

. 7 =
Putting A = X5, A = (j+—1) ’ ,B = Y% and g(z) = ! _fz_ — into (1.28), one
v—1 y-—1 71 +1 '
shows from (1.27) that
( Y%
Y exp 7/ g~ (€&)d¢ for 0 <Y < a(y),
X 0

3

X+1~ 1 =1
.__1 2 1 2y
Y ’Y__ exp | vy _’Y_'_i’— Y
{ 2y y-—1

2y
provided that X < :Yy_——*_%’ where a(vy) is defined by a(y) = (—) (

) for Y > a(y),
5+ 1>7+1

v—1

Let us consider the function

4 ( v
y exp 'y/
0
1 L 1 =1
— 2 2y
[ L2) exp (v [ L2=) 7 o for y > a(y).
\ 2 vy—1

ﬁg*@mﬂ for 0<y < a(y),
(1.30) G(y) =«




Since the function G(y) is a monotone increasing one with respect to y, there exists the
inverse function y = G~!(z), which has a following property

(1.31) H(z) = G—;(‘“)
exp ( ’)’/ l(m)r df)  for0 <z < G(afy)
= 9 1 =1
(%) : exp (_,Y (%t—i) G'l(z)%) for z > G (af7))
<1

and H(z) is a decreasing function of z.

S . 1
We are now in a position to estimate EZ(t) from below. Assuming X < Zii’ we have
fy —

from (1.20) and (1.29)

X 4
(1.32) G ( ) <Y < —E3,
X+1 apy
or equivalently
X X 4
1.33 H < E3.
(1.33) (x/X+1)\/X+1“auw2

Using the monotonicity of the functions H(z) and and the relation X < C,E?

T
Vz+1
(Cy = 16/p?) shown in (1.21), one obtains from (1.33)

C, B2 4
(1.34) H( 21 ) X < —E2,

VGBI +1) \JC B2 417 amy
namely
2 X
(1.35) o [ L =< ! E2.
JCE2 +1) C2ET ~ apy

Next we shall estimate ®(v). For the sake of the point z(t), it follows that

(1.36) vi - (vt -1) = vi - m: % (v = 1) dz

z Y 1o
= —a/ —idxga/ I—mlda:
zo VY o v

Thus

(1.37) /0 O(v)dr < a/o |U—7Id:c <a (/0 vﬁzd:z:) (/0 v? ‘fdx) .




As we are interested in v which is near 1, we may assume 1 < v < 2, so it is easily verified

1
that the integration / v*Vdz is less or equal to 1. Using (1.20), one gets
0

1 1 g2 T =
(1.38) /0 ®(v)dz < a (/0 m+2dm) <2, /EE,

Therefore it follows from (1.38) and the property of H(z) that

2 1
(1.39) g L / ®(v)ds < 2,/ B,
VCEi+1) 70 Y

namely

2 1 .
(1.40) 61 [ L [ oz <2,/ b
JCaE2 + 1) C2E7 Jo By

Similar consideration as above yields

C, 2 n 4
(1.41) G—l( 21 ) ! / wds < —E2.
0 p

JC B2 +1) C2BY
2

3 . 3
Multiplying (1.35) by %, (1.41) by 1 and adding the results together with (1.40) imply

| C, B? 12 4 32
(1.42) | === <5 <i + —) B2 + 35,/ =E,
JeE +1) T \ay  p w2\

where we have used (1.21). As the last term in the right hand side of (1.42) is bounded by

256
€+ ——S—EE’; easy calculation shows that
ey

(1.43) ¢ (g [LB_) _ ) <cym2
. - =~ 3 3
1+e JCoE? +1 :
12 256 1 CLE?
for any € > 0 and C5 = max (—— ( s + é) a). Putting € = §G’"1 (——2—?-1———-—) into

p\ay  p)’ wy JCE? +1

(1.43), and substituting it into (1.25), we derive

o (o)
1

d 2 1 2y 2(y—-1
(149 ZB)+ RN < Ligp v onfgT e
dt 1 4:03 2+G_1 ( CzE? ) 2[.& 0 1
\/CzEf-}-l

If £4(0) and |f|o are sufficiently small so as to satisfy

1
1 v+1\?
1.45 E(0) < | = —



and
2
1 PEUNNFVINOEAS = S| G (__zir_l__)
1.46 —|f2 + 010_27—1 £l v < \/27(7—-1) ,
(1.46) |f3 + C1C; rr
2p -1 4032+G—1( 41 )
V2r(v-1)
1
1 1\? 1
then (1.44) shows that Ey(t) < (E il) for all £ > 0, therefore X < ¥+ T One of the
2 Y~ o

sufficient condition on f that satisfies (1.46) is

-1 ( y+1 >2 :
u vV 2v(y=1)
4C3 2 + G_1 ( 7+1 ) ’

V2r(-1)
2y-1

2 =y
-1 ( y+1 )

(1.47) | floo < min {

C%’l 1 V2r(y-1) (’)’ - 1) o
? 8C1Cs 9 4 g1 (L) v+1 '

\

- We have already got the following result.

Proposition 1.1 Let the asuumptions in Theorem 1.1 be satisfied. If the initial conditions
and the external force satisfy (1.45) and (1.46), then the following estimates are vallid

(1.48) Cl'<u(z,t)<C vV (z,t) € Q,
and
(1.49) sup (I (6) | + () ) <

where C 1s a positive constant depending only on a, u, 7y, Co, || (vo, uo) |1, and |f|oo-

Let C(+) be defined by the right hand side of (1.47). Then the proof of Theorem 1.1 shall be
completed if we estimate || u,(t) ||. Multiplying (1.2) by —u,, and integrating it over [0, 1]
yield

1 14,2 1 1 1
(1.50) uldz + M/ Yoo g = —a'y/ Vslaz gy ,u/ Yalslas gy / Uyy fd.
0o v 0 0 0

24t Jo yrtl v2

Using Proposition 1.1, we can esimate each term in the right hand side of (1.50) as

L UpUsy 1, C
(1.51) a'y/o ey dm' < 6/0 u,,dz + =
1 g Al o 1 1 C 1
(1.52) lu/ z vzu dz| < e/ u? dz + —/ v2uldz,
o v 0 e Jo




1 1 C
(1.53) / Upafda| < e/ w2 dz + =,
0 0 €

for any ¢ > 0. Since u satisfies the boundary conditions (1.5), there exists a point z;(¢) €

= 9
(0, 1) such that u,(z;(t),t) = 0. Using this point, we have the relation 2 = % (ui) dz

x
=2 / UgzUzzdz, which gives

)

1 1 1
(1.54) lugl?, < 62/ w2 dz + —2-/ uldz,
0 €2 Jo

for any € > 0. Substituting (1.54) into the last term in the right hand side of (1.52) imply

v

1 v,y 1 1
(1.55) ‘u/ fa® 2u dml <cC (e/ ulde + = uidm) .
0 0 e Jo

By choosing ¢ sufficiently small, we obtain from (1.50), (1.51), (1.53) and (1.55)

d 1, 1 o, )
(1.56) dt[) u_,cd:z:+/0 ul,dz < C <1+/0 usdz ) .
It easily follows from (1.18) and (1.56) that
. d 2 Yoo 2 Lo
(1.57) s (E1 (?) +/0 uzdzc) + (El (t) +/0 uxda:) <C,

from which we conclude
~ 1
(1.58) E2(t) + / ulde < C.
0

This completes the proof of Theorem 1.1.
It is to be noted that for the proof of Remark 1.1, we can refer to [11].

2 Piston Problem

In this section we consider the piston problem for a one-dimensional isentropic model
system of compressible viscous gas, represented by (1.1) and (1.2) with f = 0. We also
assume that the viscosity coefficient is a positive constant, and consider these equations in a
fixed domain Q defined by (1.3). The piston problem consists of finding a solution to (1.1),
(1.2) subject to the initial and boundary conditions

(2.1) - v(z,0) = vo(z), u(z,0)=1up(z) on 0<z<1,

(2.2) u(0,t) =0, u(l,t)=wu(t) on t>0,
where u;(t) denotes a given velocity of the piston. For the above data, it is natural to assume

(2.3) (vo, ug) € H'(0,1) x H'(0, 1),



10

(2.4) /  vo(z)da = 1,

(2.5) ’ C'(;'i < w(z) < Cy for some constant Co > 1,
d
(26) us, u?l = % € LOO(O)O.O))

and the compatibility condition

Let X(t) be the path of the piston in Eulerian coordinate, which is expressed by

(2.8) X() = /01 oz, t)dz = /01 w(@)d + [ u(s)ds
= 1+Ltu1(s)ds.

For this, we further assume | |

(2.9) X;'< X(t) < Xo for some constant Xo > 1,

whose physical meaning is that the piston remains bounded and away from the fixed bound-
ary z = 0.

For this piston problem, Itaya [4] proved the existence of global in time solution: For
any fixed T > 0, there exists a unique solution (v, u) € B**%(Qr) x H***(Q7) to (1.1), (1.2)
with (2.1), (2.2), where Q7 = { (z,t) |0 <z <1, 0<t< T} and 0 < § < 1. The bound of
the solution that he has constructed, however, depends on T'. In the case of isothermal gas
v = 1, Matsumura. & Nishida [10] established the unique existence of uniformly bounded
global in time solution to the problem for arbitrary initial data and the velocity of the piston
satisfying (2.3) - (2.9).

The aim of this section is to establish the similar results to [10] for ¥ > 1, and to elucidate
the relation between v =1 and v > 1. ‘ _ ,

In what follows, we denote the norms in L*, L% and H! by | - |, || - || and || - ||,
respectively. The following is our main theorem.

Theorem 2.1 Assume (2.3) - (2.9) and 1 < v < 2. Then there exists a constant C(y),

1
. R 1\?
which has the same property as in section 1, such that if E1(0) < % X(;l 7—_{—_——1—

[t1]oo, |Uileo < C(7), then the piston problem (1.1), (1.2) with (2.1), (2.2) has a unique
uniformly bounded global in time solution (v, u) satisfying

and

(2.10) C1<u(z,t) < C for any (z,t) € Q,
and

(2.11) | sup || (v, u)(t) [h< €,
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where E;(0) will be defined in (2.87), and C (> 1) is a constant depending only on a, u,~, Co,
Il (vo, u0) ll1, |ualeo and [ eo-

Proof of Theorem 2.1.

It is sufficient to prove (2.10) and (2.11). Because from these inequalities, the unique
existence of uniformly bounded global in time solution can be established, according to the
same arguments as in [10].

In what follows, the letters Cy, C,, - - - denote the positive constants which depend only
on the data.

Let the function U (m t)

_ w() /
. U t)d
(2.12) (z,1) = X0 v(z,1)
Changing the unknown functions w = (u—U)X, m = % in (1.1), (1.2), (2.1) and (2.2) leads
to :

Wy

(2.13) me— =% =0,

(2.14) Cow+ X ((Tngf_—F) -:u(;:;()x—u'lX/Ommdm,
(2.15) m(z, 0) = mo(z), w(z,0) = wo(z) (0<z<1),
(2.16) w(0,t) =w(l,t)=0  (t>0),

(2.17) - /01 mo(z)dz = 1.

Here myg(z) = vo(z), wo(z) = uo(z) — ul(O)/ vo(x)d:c,’(mo,wo) € H' x Hj.
o
First we note that integration of (2.13) over [0, 1] gives

1
(2.18) / m(z,t)dz =1 forallt>0.
0

Multiplying (2.14) by w and integrating the result over [0, 1] imply

(2.19) Zdt/ wzdz—/ X— mX) wmd:c+u/ ——d:c ———ulX/ wdm/ mdm
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By using (2.13), the second term in the left hand side of (2.19) becomes

(2.20)

medz

_/ (mX)vw“d’” _/ X mX)

= Zi't‘/o X29( mX)da:+/0 X?

mudz — aX* Yy, —

(mX)7
2 /0 " Xuy®(mX)ds

d [ty 3-1 2= (1, 1~
= El—t_/o X‘f[)(mX)d:c—a’y_lulX 7/0 (m 7—1)dm,

where ®(v) = Ll (v’”’“ - X‘”“) +a(v— X) (> 0). Thus, (2.19) can be written in the
, Y-
form

(2.21) dt/ { —w? + X20 (mX)}

3
= —-ulX/ wda:/ mdz' + a
0 0 v —

1U1X2—“’ /01 (ml_" — l) dz.

Let us evaluate each term in the right hand side of (2.21) as follows. Using the estimate

(2.22) oo < [ [ X2 da %Ulde >g X/1 AN
. 0 z) = z| ,
~ \Jo mX 0 o mX

which comes from w = /x wdz, we have for the first term in the right hand side of (2.21)
0

1 x
u'lX/ wd:z/ mdz'
0 0

1
1 ,w2 2
2.23 < || X3 z_d
( ) - |u1| ’ ( o mX :c)

1 2
<ﬁ/ "2y
- 2Jo mX

Since (2.18) implies that there exists a point zo(2) € [0, 1] satisfying m(z,(t),t) = 1, we have

! 3
2 X3,

(2.24) Im*=7 - 1| =

a (ml‘” - 1)$ dz

< -0 [ Pl <o ([ 25 ) ([ mras)’
< (v—l)(/olm’f_%zdz)%,

provided that 1 < y < 2. Hence the last term in the right hand side of (2.21) is estimated as

(2.25)

- 1
a3 ’yule‘”/ (ml_” - 1) dz
vy—1 0

< a3 — 9)|ur]ee X377 < 1+2dw) .

o m



Therefore we conclude from (2.21), (2.23) and (2.25) that

d ({1 , 2 } ﬂ/l w;
(2.26) = {2w + x%0(mX) bda+ & [ Zoda

< S |uPX+a(3 xe ([ Ty %
= é;lulloo +a( _7)‘u1|w / mY+2 z

1 /2 v3 — [t M 1 2y d=vl,, |2
< g+ ex | 7+2dm+4—a( — XA,

holds for any € > 0.
Multiplying (2.14) by _m_;( and integrating the result over [0, 1] yield

' WMy .t m?
(227) dt/ {EW'— +u1mlogm} d.’B-I—a"yX 7L m7+2dm

wa: ! 1m3-' z ! ! !
= F/o E(—dx+u1/0 -—m—d:c/o mdz +u1/0 mlog mdz,

where we have used (2.18) and the equation

1 1
(2.28) El—/ O g = —u1/ m¢ log mdz
0

X2Jo m

13

followed from (2.13). The second and the last terms in the right hand side of (2.27) are

estimated as

(2.29)

1
1 m2 2
<l ([ o)

1 z
u'l/mdm/ —%dm"
0 xg M
1
e [ e <t ([ D)
uleo [ mde Suilee | f 5dz )

Whence we derive from (2.27) (2.29) and (2.30)

u1/ —dz /x mdz’

1
u;/ mlog mdz| =
0

(2.30)

2

(2.31) s / {5752— -+ ulmlogm} dz + ayX "’/0 mwzdx

Ylffol mX (/ xdm>l

Multiplying (2 31) by —XO— 2 and adding the result to (2. 26) with e = %a’yZX 2 =
aw BV

, We have
d ~ -
(2.32) —E1(t) + Ex(t)

2a (3 — - _ Img
< g+ 2O e g ([ 22
TR 0

LM g
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where
~ 111 mi oy wm
‘ ) = 12 2 —z_______X—z <
(2.33) By (t) /0 {zw + X2®(mX) + 8X s et
+%X5'2u1mlog m} dz,
- gt wl AV o (1 M2
2.34 Ey(t —2dz + — X, ot
(2:34) 2(t) = 4 Jo mX + 8 o m¥t?
Taking into account the inequalities
2
Mg WMy 5 - —Zw —me 1 2
2.35 .4 X;? X —X -
(2:35) ‘4°mX’“16 m+ 0O XTS 1670 e T ¥
(2.36) /l‘ﬁ < EX:y ™s o :
) 0 4 —_ 4 0 1ljoo o mz
2 1 42 1
Hoyr—2 [Ty -2, |2
S §§X0L de+§Xo |u1|oo)

we introduce the functions E?(t) and E2(t) as

- 1 _

(2.37) E}(t) = Ey(t) + %0 ?lug|2,,
. 1

(2‘.38) E2(t) = Eo(t) + —2—X0"2|u1|§0.

Then it is easily seen that from (2.35) and (2.36)
D 2 —2Mm
. - <
(2.39) /0 {4w +X <I>(mX)+32X0 = }d EX1) <
< /1 §w2+X2(I>(mX)+7LX A dz + Xg |y |?
= Jo |4 3270 m2 0 Moo

follows and from the differential inequality (2.32)

d
dt

20(3—7)% L6y 1 _
< phulxg+ (2O x4
1
oo 1mg z

In what follows, repeating the same argument in [11] leads to Theorem 2.1; we omit the
detail (see [14]).

(2.40) —E3(t) + EX(t)
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3 Existence of Periodic Solutions

In this section we only introduce a result on the existence of periodic solutions for
one-dimensional motion of a general viscous isentropic gas in a fixed domain, with periodic
external forces. :

Theorem 3.1 Let the external force f be periodic in time with period w >0, i.e.
(3.1) Frttw) = f(,1), VE>0,

Furthermore, suppose f and its first derivatives being bounded. Assume 1 < v < 2. Then
there erits a constant C(y) > 0, which has the same property as in section 1, such that if
| f llo< C(7), then the system (1.1), (1.2), (1.5) with the normalized condition

(3.2) | | /01 vdz = 1.

has at least one w- periodic solution, belonging to the class

(3.3) v eC (O,w; Hl) , v €C° (0-,w;L2) N L? (O,w; Hl) ,

(3.4) u € C° (0, w; Hé) NnL? (O,w; H2> , u €L? (0, w; Lz) ,

satisfying

(55) max [ ()8 [+ 0000 1 + 1 oe) 1) < €,

where || - ||x (k= 1,2) denotes the norm in H*, and C is a positive constant depending only

On‘aaiu‘) Y, w and ” f ”oo

For the proof of this theorem, and for further detail, we can refer to [13].
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