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ON FAIR PARAMETRIC RATIONAL CURVES

\

—

JEXER FHHE ( Manabu Sakai )

1. Introduction.

For given data (x,.(k), yi(k)) (i=0,1; k=0, 1), we consider the problem of finding a
fair parametric rational curve with a parameterp (>-1):

x(1) =agt +au+ a1 + pt) +a3zu3/(1 + pu)
1 (0t l,u=1-1)

y(t) = bot + byu + byt 3/(1 + pt) + b3u3/(1 + pu)
or

x(t) =agt +au +axt /(1 + pu) + azu3/(1 + pt)
ay (0<tl,u=1-1)

y(t) = bot + byu + byt /(1 + pu) + b3u3/(1 + pt)
so that _
2) x®G), yO@)) =P, y®)  (i=0,1;k=0,1).
It is well-known that a drawback of a parametric cubic curve ( p = 0) is indicated by the
fact that unwanted inflection points or singularities may occur on its segment. In what
follows, the adjective "parametric" on the curve is usually suppressed since all the curves
in this paper are parametric ones and a fair curve means a one free of unwanted inflection
points and singularities. Techniques for eliminating the unwanted ones have been
developed ([1], [2], [5], [6]). One of them is to use the rational curve of the form (1) or a
different looking rational curve of the form (1)'. Note there is no difference between use
of the two rational ones since letting 1/p+ 1/g=-1p > -1+ &g ,-1<p<0
& ¢>0), thent3/(1 +pt) =1 + 9311 + qu) and u3/(1 + pu) = (1 + @u3/(1 + q1).
Hence, all the subsequent results for the curve of the form (1) are still valid for the one of
the form (1)' with p (> — 1) replaced by - p/(1 + p) ( = q ). The first object of Section
2 is to show that we can find a fair curve segment of the form (1) interpolating to (2) if
A(=G/D), u(=-C/D)2(1+p)/(3 +2p) where Ax =x, — x9, Ay = y1 — Yo,
G =xAy - yiAx (i=0,1)and D = xgy; — x;y,. Note that we can find a fair curve of
the form (1)'if A, u 21/(3 + p). That is, if (A4, u) is in the interior of the first quadrant
of the (A, 1) plane, a suitable choice of the parameter p gives a fair curve of the form (1)
interpolating to (2), strictly speaking, accordingto p (=min(A4, 4 ))21/3and0<p <
1/3 we can take p = 0 and (3p — 1)/(1 - 2p), respectively since a smaller value of |p|
would make the truncation error be smaller provided that the data arise from a function.



For the curve of the form (1), we choose p = max(0, 1/p — 3). The second object of
Section 2 is to show that the region for a fair curve also contains the whole third quadrant
in addition to the whole first quadrant ( theoretically for p sufficiently close to—1).
Accordingly, we can find a C? fair interpolatory rational curve to data S = {(x;, y;), 0 < i
< n } by a suitable choice of the parameter p if

x[ti, tic1Y[t), tis1s tis2d = Yltis tinaIx[(tjs 241, 842l >0 (j=i-1,0)
where x[¢;, ti+1] (x[ti, ti+1, ti+2] ) is the first ( second ) divided difference and ¢y = 0,
tin=ti+hi(= «[(x,-+1 - x)%+ (yis1-¥)? (0<i<n-1).In Section 3, we derive a
theorem concerning the distribution of inflection points and singularities for the cubic
curve segment ( p = 0 ) which has given another technique for finding a C ! (not C?) fair
cubic curve interpolating to S ([6]). In Section 3, some numerical examples are given.

2. On segments of parametric rational curves.

We shall show that the curve segment (1) is fair for A, g = (1 + p)/(3 +2p) in
the first quadrant of the (A, 1) plane.
Inflection points. First we obtain sufficient conditions for the curve segment (1) not to
contain an inflection point. Defining ¢ (¢) = t3/(1 + pt) —t/(1 + p), the segment (1)
interpolating to (2) is expressed by equations
(3)  x(t) =x1t + xou + c19(t) + di19p (W), y(t) = y1t + you + 20 (t) + dr ()
in which
) (3 +2p)/(1 + p)Hc1,d1) =( (1 +p)xg+ (2 +p)x; - (3 +2p)Ax,
-2 +p)xg— (1 +p)x; + (3 +2p)Ax)
and (¢, dy) is given by (4) with y replacing x. '
Inflection points of the curve (1) are determined by the equation:
(5) Xy -x"@Oy)=0 (0<t<l1).
We assume for the moment D ( = xqy; — X,y ) # 0. Then the equation (5) can be
equivalently rewritten as
(6) W(t) (= A6(t) + O) + (1 + p){9 ()¢ (W) + ¢ (D9 ()} )=0 (0<t<1)
where
N KO=Q+p)d W-1+p)p )~ (1+p)*{9 ()9 W)+ ¢ ()9 W)}
By a direct calculation, 6(t) >0 (0< ¢ < 1) since
@ =0, 6()=1+p?p VW9 ®)-2+p/1+pP?}
—(1L+p2p V{9 @+ /(1 +p)} <0
where ¢'(t) = 312+ 2pt (1 + pt)? = 1/(1 +p), ¢ (1) =2t(3 + 3pt + p2t /(1 +pt)*
and ¢ Oy =6/(1 + pt)4. Therefore, if A, 4 = (1 + p)/(3 + 2p), then no inflection point
occurs on the curve segment (1) since
9) w(t) 2 {(1 +pY(3 +2p)}[$ (){9 W) + (1 +p)} +¢ W){¢ (1) + (1 +p)}] > 0.
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Singularities. Next we shall obtain a sufficient condition for the curve segment (1) not
to contain a singularity. To this end, we have to get an equation of the image of the curve
(1) by eliminating the parameter ¢ from (1) ( or (3) ). From (3),

(10) c190(t) + di(u) = x — xpu — x1t, co(t) + da(u) =y — you — yit.

The caseA # 0 is considered since the other case A = 0 is easily treated where
A(=cidy-cdy )= {1 +P)YB+2p)}D - G+ C) (= {1 +p)(3 +2p)}(1 - A -
D). A combination of the two equations in (10) gives

an t3/(1 +pt) = (dox — diy)IA — oqu — Bit, u3/(1 + pu) = (c1y — cox)/A — ou — Bt
where

- By = {B+2p)G-(1+p)D} _{B+2pA-(1+p)}
1+p)AG-C-D)  (1+pA +u-1)

(12)

{B+2p)(-C-A+p)D} _{B+2p)u-(1+p)}

(1+p)XCo- C, - D) A+p(A +p-1)

Further we rewrite (11) as

(13) 12 = plo - B2 + qut + 11, u3 = p(B o o)u? + gou + 2

in which

@) ri = (dox — diy)lA- oy, ry=(c1y — c2x)/A - B,

—-(m-B)=

(14)
(ii) qu=pri+ 01— P, q2=pra- oy + B.
Defining
2 _C) -
(15) k=3-plog- ) +plog - fpy = EF# PN =D -1 +P)C+P)D
(1+p)(G-CG-D)
2 - .
(1+pPA+p-1)
the summation of the two equations in (13) gives
(16) kt? = {3 +q1—q2+2p(op— B}t + {1 =gz —r1 —r2+ p(on - B2)} = 0.
Rewriting a quadratic equation (16) as (t + a)? = B, easy calculation gives
® 20k =—3 - p(ry—r2) - (a1 = B1) = (1 + 2p) (- Ba)

a7

(i) Bk==1+ri+ (1 +pry—(1+p)op - B) + o2k.
Here we consider (a, B) as functions of (r}, r,) instead of (x, y), and then
(18) (0, Or,) = (= p/2,pI2), KBy, Br) = (1 - pa, 1 +p + pa)
Use a change of variable ¢ = t* - a and eliminate the parameter " (@)= B)
from the first equation in (13) to give the required equation y(x, y) = 0 of the image of
the curve (1):
19)  yx,y)={B+302+ 2op-1)(0y - By - pr1}*p

—[a3 +3aB + {p(a2 + ) - a}(oy - B) + (1 - poyri]>.

For simplicity, we can consider y as a function of (r;, r) instead of (x, y). Then, the
singularity of y is determined by the system of equations
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(20) W(r1, r2) = Wi (r1, 12) = Wpy(r1, 1r2) = 0.
Writing v as A 2/3 -C?, Wy (r1, r2) = Wp(r1, r2) = 0 are equivalent to

py ,l-pa - P®,2 -po
2{-p——A AglA + =2{1- -
{-p et —, plAB p {1-pa 2kCa P Cs}C
(21)
1+p+po 1+p+p 42 4 l1+p+pa
2P A+ ~TPFIPEp AR + TP T POY2 9 l+p+pa
{2k p p BIAB + P { C + . CpiC
On eliminating A ? from (21), we obtain
(22) {p(1 +p +po) + (p/k)(1 + p/2)Aa}AP
={-1-pa)1+p+po)+ k)1 +pl2)Cy}C.
Since
-p 1-pa
ey A
23) An || 2% k @
Ar, P lipipa || 4
2k k

by (23) and the similar relations for 8 and C we get
(1+p+pa)A,, — (1 -pd)A,,=—(2p +pI(2k)Ay
(24) (1+p+po)By, —(1-pa)B, =0

(1+p+po)G,— (1 —pa)C,,=—(2p + pHI(2k)Cy
Making a linear combination of y,,(r1, r2) and y,,(r1, r2), i.e., (1 +p + pa)y, (ry, r2) -
(1 - pa)y,,(r1, r2), from v, (r1, r2) = W, (r1, r2) =0 we get another equation in addition
to (22):

(25) AAB = CyC.
From (22) and (25),
(26) C{- (1 -pa)(1 +p+pa)+ (plk)(1 + p/2)Co}AcAB

= CoClp(1 + p + pa) + (plk)(1 + pI2)Ag}AP.
Two cases C # 0 and C = 0, will be considered separately (@) C#0: Then, A, %0
since A 2[3 C?. From (26) we have
27 (1+p+pa)1 +pa){pCy— (pax — DAg} =0.
In this case, we show that the curve segment (1) (or (19) ) does not have a singularity. If
there were any singularity ( loop or cusp ), then we note that two values of the pai‘ameter
t defined by the quadratic equation (¢ + oc)2 = 3 must belong to (0, 1), i.e.,
(28) O<t(=t'-a=tVB-a)<l or —-1<a<0,0<B <a?, B <(1 +0)?
where > 0 and 8 = 0 correspond to a loop and cusp, respectively.
Since 1 +p+pa, 1 +pa>0forp>-1,(27) gives pCy = (pa—1)A, from which
AoCofpBA - (par— 1)C} = 0 with the aid of (25). Hence we have
(29) pPA-(pa-1)C=0
where if A, or C, =0, then we obtain pfA — (pa —1)C = 0 from (22) and (27).
Combining (29) with A 2,8 = C2, we have
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(30) B = (a-1/p)
which can not satisfy the required inequalities in (28),ie., 8 <a2(-12<a<0)or
B <(1+m?(-1<a <-1/2). Thatis, if C# 0, the curve segment (1) (or (19) ) does
not have a singularity. (b) C = 0: From (24) we get § =0or A = 0. Since 8 =0 gives A
= (, we have only to consider the case when A = C = 0. Then

@ B +3a2+(2pa-1)(a1 - By =pr
(31)

(ii) 203 -20f +p(a2-P)oy - ) =ry.
In addition, eliminating r, from (17),
(32)  k{pa?+20(1 +p)-pPB} +3+2p+ (1 +p)ay - B1) + (1 +p)*(on - B)

=-@2p +pIr;.
Eliminate r; from 31(i)-(ii) and 31(1)-(32) to give two equations, respectively

0  o-pi= 3a2-2pa3 + B(1 + 2pa)
(1 - pay* - fp?

(33)

3(1 + ) +2p(1 + @) + B{1 - 2p(1 + 1)}

(1+p+pa)® - fp> '
Note that for p # 0, it is be difficult to find the solution (e, B) of (33) ( the singular point
C2Y) of (19) by 14(i)-(17) ). Therefore we show that the existence of the solution (¢, )
satisfying the required inequalities (28) brings A, u < (1 + p)/(3 + 2p), as implies that the
curve segment (19) is free of a singularity for A, u = (1 + p)/(3 + 2p). Since the both
right hand sides of (33) are monotone increasingin B (0< 8 <2, —1/2< <0 and
0SB <«(1+a)t-1<a<-1/2),

(G4  O<o-Pi<22_ 0<—(ap-Bp)<

@ -(m-p)=

402+ 60+ (3 +2p)(1 +p)

1-2pa’ l+p+2pa
(-12<a<0)
or
402 +20+ 1/(1 +p) 4(1 + a)?

(35 O<a-fi< , 0<—(0n-Bo) <

1-p-2pa 1+2p+2pa
(-1l<a<-1/2).
In addition, use (34)-(35) to obtain
3+2p

(36) (o1 - B1) - (- B2) <

(1 +p)?
which is easily checked since the above inequality (36) is equivalent to
37 {2 +2p +pa+B+3p+pH)} <0 (-12<a<0)
or
(38) T+){2Q+2p+p)a+(1+p+p2)}<0 (-1l<a<-12).

Combining (12) with the first inequalities of (34)-(35) and (36), the necessary conditions
for the curve segment (19) to contain a singularity are given by
{B+2pA-(1+p)YA+u -1)>0, {B+2p)u-(1+p)Y(A+p -1)>0
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(39
{(B+2p)A+w-21+p)}A+u-1)<B+2p) (ie,A+pu<l)
from which follow
(40) A,u <(1+p)3+2p).
Therefore, if A, 4 = (1 + p)/(3 + 2p), then the curve segment (19) has no singularity. In
summary, a theorem concerning the inflection points and singularity is obtained:

Theorem 1. The curve segment of the form (1) interpolating to (2) is fair for A, p 2
(1 + p)/(3 + 2p) in the first quadrant of the (A, ) plane.

Remark. For the case D = 0 in which the tangent vectors at the two end points are
parallel provided that (x,:)2 + (y,:)2 #0(i=0,1). The curve segment (1) does not
contain an inflection point if Go( - ;) >0, i.e.,

(A1) (xpdy — YoAx)(x,4y - y1Ax) <0

since for D = 0, w(t) = GyO(t) + (— C)6(u). In addition, the curve segment (1) is free of
a singularity since a; — B — (- B2) = (3 +2p)/(1 + p)? from (12), i.e., the necessary
inequalities (36) for the existence of the singularities does not hold where note that all the
argument in case I is still valid for D = 0 with (12) and (15) having Gy, C; for A, u.
Therefore, the curve segment (1) is fair for Go(— C;) > 0.
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Fig. 1. Distribution of inflection points and singularities (p =-0.5)
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Fig. 1 gives the numerically determined distribution of inflection points and singularities
for p =-0.5 where N; (i=0, 1, 2) or L ( shown by dots ) represent the regions for the
curve segment (1) to contain i inflection points and no singularity or a loop and no
inflection point. The upper boundary C of L represents the region for the curve segment
(1) to have a cusp and passes through (A, ) with A =y = (1 + p)/(6 + 6p + p2), since
then (o, B ) = (- 1/2, 0) is the solution of (33). As p decreases to — 1, the region for a
fair curve rapidly increases to the whole first and third quadrants; refer to Figs 1-2 and 4.
By means of Theorems 1, generally speaking, we see that if the curve segment (p=0)
contains a loop, according as p decreases to — 1, it contains a loop and no inflectionpoint
= a cusp and no inflection point = two inflection points and no singularity = one
inflection point and no singularity => no inflection point and no singularity, by turns,
provided that (Gy/D, — C/D) is in the first quadrant. In numerical determination of the
distribution, we repeat the process that first give (A4, 1), and then count the number of the
roots of (6) belonging to (- 1, 0) and check if the solution (e, ) of (33) satisfies (28).
At the end of this section, we remark that if the interval of the parameter ¢ is [, [5]
instead of [0, 1] in the end conditions (2), i.e.,
@' (xBa), yB@) =P, y), (xOB), yO(P)) = x, ¥ (k=0,1),
then we use the parametric rational curve of the form (1) with t3/(1 + pt) and u3/(1 + pu)
replaced‘ by s3/(1 + ps) and r3/(1 + pr) with s = (t — @)/(B- @) and r = 1 — 5. In this
case, letting C; = y[a, Blx; - x[@, Bly; (i=0,1)and D = xyy; — X1y, we can find a
fair curve if Gy/D, — C/D 2 (1 + p)/(3 + 2p). With help of this remark, we can easily
check that the curve (x(¢), y(£)) = {(x;(t), yi(1)), 0<i <n -1 :x;(t) and y;(¢) of the above
modified form with (¢;, ¢;+1) replacing (¢, pB) } interpolating to the data S = { (x;, y;),
0 <i < n} is fair on the same assumption given in [6] where he gave a numerical example
to demonstrate the automatic removal of spurious singularities ( loops or cusps) without
theoretical analysis which would be required since inflection points and singularities
occur under different conditions. The curve (x(¢), y(¢)) is given by

x(t) 1 = xi(t) = Xi18 + xir + hi{c1(D)P(s) + d1 (D9 (N}
3) (tiSt<ti1)

y(@) = yt) = yir1Ss + yir + hi{c2(D)9(s) + da(D)9(r) }

where
@ G+2p)(1 +p)Xci(i), di(i) =( (L +p)x;+ 2 + p)xiy; — B +2p)lt, tia1]

| =2 +p)x;= (1 +p)xiy + G +2p)lty, tin])
and (c(i), da(i)) is given by (4)' with y replacing x.
'Here z; ( = x}, y; ) are determined by the consistency relation for z € C2[to, t,]:

Zi Q4P 1. 1wy Ziml (B +2p) 2ty tia] | 2ltic 1] :
42 i+l 4 (- + Z:+ = { + (ISlSn—l)
*2) hi  (L+p)h hi—l) Thioy A+p) T hi_1 }

and the boundary conditions zy = z, = 0 which are equivalent to
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(43) (2+ p)zg + (1+ p)zy = 3+ 2p)zlto, t1], @+ P)zn + (14 )2y = B3+ 2p)z[tn 1, tl.
It was proved in [1] or from (42)-(43) that on letting p — — 1
z; = (himizltj, tied] + hizltiot, DR+ hizy) (1<i<n-1)
(44) |
zo = zlto, t1l, zn = 2ltn-1, ]
Use (44) to obtainon [#;, t;1] (1Si<n-2)

Go (= ylti, tislx; — xlti, tinaly;)
= hi{x[ti, tiv1lyltio1, i, tin] = Y23 tinidxltiogs 8, 21}
(45)
= Ci (== )ti, tisalxipy + XMt tia1]Yir)
= hi{x[ti, tiv1lyltis tiv1s tiv2d = Yti tivalxltis tiv1, tival -

Therefore, if x[t;, tir1]ylt), tj41, tjs2l = YIti, tirl]x[(2), tjs1, Ljsn] > 0(j=i-1,i)or<O0
(j=i-1,i),then (A, u) (=(G/D, - /D)) is in the first or third quadrants for p
sufficiently close to — 1, i.e., the curve segment (x;(¢), y;(¢)) is fair for p sufficiently
closeto—1on[t;, tiy1]1 (1<i<n—-2).0n [t, t1], from (43)-(44) 2 +p)GH =
(1+p)~Cy) and — C — ho{x[to, t1lylto, t1, t2] — ylto, t1lx[to, t1, t21}. Therefore, if
x[to, t1lyltos t1, t2] = y[to, t1]x[to, t1, 2] # O, then the curve segment (xo(?), yo(?)) is
also fair for p sufficiently close to — 1. Similarly the curve segment (x,,_1(#), y,-1(?) ) is
fair if x[t,_1, taly[tn-2, tn-1> tn] = Y[tn1, tnlx[tn_2, tn-1, tn] # O for p sufficiently close
to—1.

Suppose that the tangent directions are fixed at the two end points of a segment, and
only the magnitudes of the tangents are allowed to be varied in scalar multiples n and x
(n , x>0), respectively. Then Gy > NGy, C; = xCi, D = kD, ie., A = Ak,
u— u/n . Therefore, if GyD, — Ci/D > 0, then Theorem 1 enables us to find a fair curve
segment (1) by a suitable choice of ) and x, strictly speaking, if A/x, u/n 21/3, i.e.,
0 <k <3A(=3G/D), 0<n <£3u (=-3Cy/D) where for another proof, see [6, p.
54].

3. Numerical examples.

In this section, we consider two numerical examples. First we consider the different
shapes of the curve segments with different values of the parameter p; see Fig. 2 where
the data are given by (x{9, y§®) = (0, 1), (5, 6), (x{, y¥) = (1, 1), 8, - 4), i.e., (A, )
= (2/17, 1/17) and the values of the parameter p are 0,— 0.5 and - 0.83 (="an
approximate value when a cusp occurs" ) and — 14/15 (=" the proposed one in this
paper" ). Point (2/17, 1/17) is denoted by solid circles in Fig 1, as implies that the curve



104

segment with p = — 0.5 contains a loop. Numerical determination of the distribution
assured that (2/17, 1/17) denoted by a solid circle is nearly on the boundary C of L with p
=-0.83 in Fig. 3, i.e., then the curve segment contains a cusp. Next S = {(0, 0), (2, 4),
4, 0), (6, 2), (8, 10), (10, 2), (10.5, 2)}( Clements [1]) . The signs of Gy(— C;) <0 on
[ti, tis1] (i =3, 4 ) change from + to — as p decreases to — 1, and so one inflection point
which does not occur with p = 0 appears on each [#;, t;,1] (i =3, 4 ) when letting p — —
1 in order to eliminate a loop on [#3, ts], i.e., in this case no loop would be more
desirable than two inflection points. Generally speaking, a loop on two or more
consecutive curve segments could be eliminated by letting p — — 1 since then each curve
segment reduces to a straight line one by (4) or (4)'. Note that all the discussion in
Sections 2-3 is concerned with a singularity ( loop and cusp ) on a single segment. In Fig
4, we give a graph of the rational curves (p =0, -0.3,-0.5) on [#4, t5] of interest. The
algorithm proposed by Clements [1] is sufficient in practical computation of the curve
segment of the form (1) or (1)’ interpolating to (2).
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