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Discriminant Analysis for Regression Models
with Long-memory Linear Disturbances

BAFBET. & E5& (G. Zhang)

We shall consider the problems of classifying an observation from regression model with
stationary long-memory linear disturbances into one of two populations described by the
mean functions of the model. We mainly use the log-likelihood ratio(LR) as discriminant
statistic which is optimal in the sense of minimizing the misclassification probabilities.
Then we propose a new discriminant statistic related to the Best Linear Unbiased Estima-
tor(BLUE) and the Least Squares Estimator(LSE). Finally, we discuss the asymptotics of
quatratic discriminant statistics in the non-Gaussian case.

Keywords: Discriminant analysis, Regression model, Long-memory linear disturbances,
Misclassification probability, BLUE, LSE.

1 INTRODUCTION

There are a variety of problems related to regression analysis in time series. One is that of
discriminanting between two regressions. For simplicity, let us consider the two hypotheses

k . .
Hi: Y= %t)89 +e, j=1,2 (1.1)
=1

where X;(t),--,X(t) are nonstochastic regressors, Bl = (ﬂy),---,ﬁ,(f))' are vectors of re-
gression parameters, and {¢;} is assumed to be a zero mean Gaussian stationary process with
spectral density f(\). Assume that the covariance matrix X of the disturbances {e;} is nonsin-
gular. Then the two p.d.f.s corresponding to H; and Hj are

1 ) .
(V)= —————exp{-=(Y - XY=\ (v - XgU)}, j=1,2 1.2
p;i(Y) PRET p{ 2( BY) ( B}, (1.2)
where
Y X, (1)
Y = ) X'r: , ) X:(Xl)"'>Xk)'
Y. X (n)

In this paper, we consider the problem of classifying Y from H; or H; into one of two
populations Hy and H;. We assign Y to H; if Y falls into region R;; otherwise we assign it
to Hp, where Ry and Ry are exclusive and exhaustive regions in R™. Let the probability of
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misclassifying Y from H; into H; be P(j|i) = ij pi(Y)dY. We choose R; and R, to minimize
P(2|1) + P(1]|2). Then it is known that the regions based on LR

By ={Y:(-1y'LR >0}, j=1,2 (1.3)

give the optimal classification, where
LR = (8® — ﬂ(l))/X'g—l (y _ %X(g@) + ﬂ(U)) . (1.4)

In most of time series, the dependence between distant observations is quite weak, and we
usually use ARMA and other stationary short-memory processes to discribe their characteristics,
and a series of works for the discriminant analysis of such time series have been done. In the
problems of discriminanting two Gaussian processes by linear fultering, Shumway and Unger
(1974) gave certain spectral approximations of Kullback-Leibler information and J-divergence.
Zhang and Taniguchi (1994) used an approximation of LR as a classification statistic for the
non-Gaussian vector time series classification problems. Zhang (1994) discussed the higher-order
asymptotic theories of discriminant analysis for stationary ARMA processes. Shumway (1982)
gave an extensive review of various discriminant problems in time series.

However, time series classification problems are not restricted to the physical sciences, but
occur under many and varied circumstances in the other fields. For instance, in many empir-
ical time series, especially those of economics and geophysics, the dependence between distant
observations is so strong that ARMA models are unable to express the spectral densities of
low frequencies adequately. For such long-memory(or strongly dependent) processes, Adenstedt
(1974) found that for a large class of spectral densities, the variance of the BLUE for the mean is
seen to depend asymptotically only on the spectral density near the origin. Giraitis and Surgailis
(1990) gave a central limit theorem for quadratic forms in strongly dependent linear variables
and applied it to prove the asymptotic normality of Whittle’s estimator of parameters of strongly
dependent linear sequences. Yajima (1988, 1991) considered estimation of a regression model
with long-memory stationary errors by LSE and BLUE, and gave their asymptotic properties.

In Section 2, we use LR as a discriminant statistic for classifying two regression models
(1.1) with short-memory stationary distubances. We show that LR is a consistent classification
statistic under Grenander’s conditions on X;.

In Section 3, we use LR as a classification statistic for regression models (1.1) with stationary
Gaussian long-memory disturbances and discuss its asymptotic properties of misclassification
probabilities. We study a classification statistic which is based on a linear combination of LSE
and BLUE.

In Section 4, we propose a discriminant statistic of quadratic form for a simple regression
model with stationary “non-Gaussian” long-memory disturbances. Then we elucidate some
results which are different from those for short-memory disturbances.
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2 SHORT-MEMORY CLASSIFICATION

In this section, we summarize the discriminant theory of regression model (1.1) when {e:}
is a zero mean short-memory stationary process with positive and continuous spectral density
F), A€ [—m,7].

Following Grenander (1954) we assume that the nonstochastic regressors {X,(t)} possess the
following properties:

(G.1) x#(n) =20 1Xr(t)|2 — 00, as n— o0, forr=1,---,k,
(G.Z) Hmn_,oo%l—l = 17forr: L...)k,

) "X (iR X (E
(G.3) limp—eo E{;:(n);s(n))}l/z( A R,s(h), (say)

exists for each 7,s = 1,--+,k, and all integers A > 0. Defining X,(t) = 0,¢ < 0, (for each
r=1,---,k), the above definition of R,s(h) can now be extended to all integer values of
h, and we can write

R(h) = {R.s(h)}, h=0,+1,%2,---,

i.e. R(h)is a ¢ X ¢ matrix with entry R,;(h) in the rth row and sth column.

(G.4) The matrix R(0) is nonsingular.

It is not difficult to show that R'(h) = R(—h) (for each h), and that R(0) is positive
definite(cf Grenander and Rosenblatt (1957)). It then follows that, there exists a Hermitian
matrix function, M(\) = {M,,(\)} such that R,;(h) admits a spectral representation of the
form,

Ryo(h) = / P AM, o(N)

where matrix form M (A) has positive semi-definite matrix increments. Let
: 1/2 1/2
D, = diag{a/ (), %/ (m)}

i.e. the D, is the diagonal matrix with entry Xi/Z(n) in the rth row and column.

[Theorem 2.1] Suppose that the spectral density f(A) is a positive and continuous function
on [-m,n]. For classifying Y into one of two hypotheses Hy and Hj, we use the classification
rule (1.3) based on LR. Then under Assumptions (G.1)-(G.4), the misclassification probabilities
satisfy

Jlim Pg(2]1) = lim Pa(12) =0, for B0 # 30, (2.1)

We put the proof of theorems and propositions in Section 5 if they are not straightforward.
Next, to evaluate the goodness of classification statistic LR, we consider the case when B
is contiguous to B(l): :
Hy: 5(1) =B
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where H = (Hy,---,Hy) is a constant vector. Then

[Theorem 2.2] Suppose that f(A) is a positive and continuous function on [~r,7] and that
(G.1)-(G.4) hold. Then under contiguous assumption (2.2), the misclassification probabilities
of LR are evaluated as

Tim Ar(2l1) = lim Pa(1f2) = @ (_% H’.QH). (2.3)
where

1 /M .
2= 5—7;/_7rf (NAM(N).

Let us consider the case of polynomial regression.

[Example 2.1] Suppose that X,(¢) = t""1,r = 1,--- k and {e;} is a stationary process with
zero mean and spectral density f(A) that is a positive and continuous function on [—7,7]. Then

M(A) has only a jump at A = 0 of Mo = {KZ%—%%L%} (e.g. Anderson(1971)). Thus

r,8=1,,k
under contiguous assumption (2.2), the misclassification probabilities of LR are evaluated as

nll\rglo PLR(QII) = nll»ngo PLR(1|2) =& (——;—V H'QOH) . (2.4)
_Jler-nes-
0 = { 27 FO0)(r £ 5= 1) }ml n

3 LONG-MEMORY CLASSIFICATION

where

In this section, we consider the discriminant problem of regression model (1.1) when {¢,} is
a Gaussian long-memory linear process of the form

o0 o ¢]
€t = Zajw,j_j, wy ~ N(0,1), Za? < 00. (3.1)
—~

§=0

We introduce an important Lemma that plays key role in the following discussion. Then we
show the discriminant properties of LR and a new classification statistic based on LSE and
BLUE. Let

n (H)e—ith n et
(Zt:lXJ(t) ) (Zt—l Xi(t)e" ), (A) = ' gi(w)dw, (32)

9n(A) = 2mx,(n)xs(n) -

Besides (G.1)-(G.4), we add the following assumptions:
(GB5) X.(t)=t"t forr=1,-,p, 1<p<Ek,
(G.6) {e;} has the spectral density f(\) = ”fJe,éllﬁ,o < d < %, where f*()) is a positive and
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continuous function on [—m,7].
(G.7)  For every § > 0 there exists ¢ such that [, ., f(A)dM;(A) < 6, for every n and
J=p+1l,--,k

(G.8) m—x%i—:n};z(t) =o(n"*),r=p+1,---,k, for some p > 1 — 2d.

From Assurmption (G.5), we have

n 2(r—1 n2r—1
Xr(n)zzt ~ )N2r_1’ r=1,---,p, (3‘3)
t=

so that Assumptions (G.1) and (G.2) are certainly satisfied. Define

1/2

D, dla,g(xln( ),... n("), XA (), ,X;/z(n)), (3.4)

The following Lemma follows from Yajima (1991).
[Lemma 3.1] Under Assumptions (G.1)-(G.8),

1 W, O
T}LrgoD XZ XD (O W, ) (3.5)
and
B, O
27 -2 _ 1
JLI%OD D, XZXD D <0 B2> | (3.6)

where Wy, By are p X p matrix with (7, j)th entry

i — D= TG — d){(2i — 1)(2 ~ 1)}*
U7 20 f(0)T(5 — 2d)I( — 2d)(i + j — 1 — 2d)

i~ EES et [ [ -]

and Wy, B are (k — p) X (k — p) matrix with (¢, j)th entry

1 ™ g .
“ o /_W FTH M ip j4p(A), by =2r /_7r FO)AM 4y j4p(N)

respectively.

Now, to classify Y (with long-memory disturbances) into one of two hypotheses H; and Ho,
besides using criterion LR, we propose a new classification criterion. Let

Ba = C“BL + (1 - a)BB7 (0 <a< 1) (37)

where R R
B, =(X'X)'X'Y, Bg=XZT'X)y'X'y'y (3.8)
are the LSE and BLUE of 3, respectively. We use the discriminant rule: assign Y to Hy if

(Bo = BOY(B, - BY) < (B, — BAY (B, - B?)
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to H,, otherwise. That is, assign Y to Hy if

I, = (8% - BMY [2B, - (B® + )] <0, (3.9)
to H,, otherwise.

[Theorem 3.1] Under Assumptions (G.1)-(G.8),

(i) lilnn_mo PLR(2]1) = limn_,oo PLR(1|2) =0
(i) lim o Pp(2]1) = Timy, oo P (1]2) = 0 } for B, # B, (3.10)

Now, let the regression parameters associated with Hy and Hs be

Hy:BW = B;

. 3.11
H,:8® =p+D.'H. (3:-11)

where H = (Hy,---, Hi) is a constant vector, then

[Theorem 3.2] Under Assumptions (G.1)-(G.8) and under contiguous condition (3.11),

1
. : 1 W, o 2
lim Prr(2/1) = lim Pir(1]2) = @ (—5{11/( o 1 W, > H} ) (3.12)
1
———) >l 211) = lim Pr(1)2) > & (-
<I>< 2\/H> > lim Pr,(2[1) = lim Pr,(1)2) > ‘I’<

where k; and ko are chosen so that ki HH' > F, > ko HH'. Here
— 2 B; O 2 Wl_l O
Fa_aA(O B, A+(1-a%) o W2_1 ,

A= lim D,(X'X)"'D, D2.

1
-27,5) : (3.13)

where

[Example 3.1] In Theorem 3.2, if X, (¢) = 1,7 = 1, Then

lim, oo PLR(2]1) = im0 PLR(1]2) = limp— oo Pr,(2]1) = limy— oo Pr,(1)2)
___ HFe-d) (3.14)
24/(1-2d)2n f*(0)T(1~-2d) / ’

and

lim Pp(2)1) = lim Py(1]2) =& (-%) : (3.15)
where 20 /0)I(1 - 2d)
=40 + 2dT(d)I(1 — d)
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4 NON-GAUSSIAN CLASSIFICATION

In this section, we consider the following stochastic model
Hi: Yi=m 4¢, j=1,2, (4.1)

where m(9),j = 1,2 is the constant mean of {Y;} under H;, and the linear disturbances {e:}
satisfy

oo (o]
€t = Zajwt_j, Ea? < 00, (4.2)
=0 j=0

where {w;} is a sequence of i.i.d. random variables with zero mean and var{w;} = 1.
Suppose that {¢;} has the spectral density

f) = 1=, 0<d<1/2 (4.3)
Since we do not assume the Gaussianity of {w;}, the following condition is imposed.
(G.9) For every r = 1,2,---, the rth order cumulant ¥ of {w;} exists.
Next we introduce a Toeplitz matrix A = {a,_;} with
ar = / ¢™(2)dz, (4.4)
and assume that
(G.10)  @(z) <clz|™®, y< i
(G.11) y+d< i
The following lemma is due to Giraitis and Surgailis (1990),

[Lemma 4.1] Let € = (e1,---,€n) be the n consective stretch of {¢;} in regression models
(4.1) satisfy (4.2). Then under Assumptions (G.9)-(G.11),

€¢'Ae — Ej{e'Ae} ¢ 2 .
NG £ N (0,02), j=1,2 (4.5)

where )
o} = 1672 / (a(z)f(2))? de + kY <27r / a(z) f(a:)dx)
and ¢ is the fourth cumulant of {w;}.

Now, to classify Y = (Y1,---,Y,) into one of two hypotheses Hy and Hs, instead of using
LR, we adopt the following rule: assign Y to Hy if

[Y'AY - E\(Y'AY)]? < [Y'AY — Ey(Y'AY))?

to Hq, otherwise. Setting m; = (m(j), . m(j))’ and V; = m}Am;, without loss of generality,
we assume that V; > Vg, then the classification rule can be written as: assign Y to H; if

D = 2¢'Ae + d4m/Ae + 2V — (V1 + V3) — 2t2(AZ) > 0
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to H,, otherwise.

[Theorem 4.1] Suppose that the stationary linear disturbances {¢,} in regression models (4.1)
satisfy (4.2). Then under Assumptions (G.9)-(G.11),
(i) Ila;| =0(p"),0 < p <1, (ie., @(z) = g(z) is a short-memory spectral density), then

D-E;D ¢ . -
. (0,16(m)2G ), j=1,2 (4.6)
where
G = 27 £*(0)g2(0)T(1 — 2d)
fs = A+ 2dT(d)T(1 - d)’
(i) Ify < —%, then
DBl £ N (0,402), j=1,2 (4.7)
n2

[Remark 4.1] Theorem 4.1 holds only for the long-memory (d # 0) processes. From this
theorem, we can see that the distribution of D depends heavily on the selection of y. When
¥ = 0, that is @(z) is a positive and continuous function on [~m, 7], D becomes a robust statistic
with respect to non-Gaussianity of {;}.

The following theorem and proposition follow from Theorem 4.1.

[Theorem 4.2] Suppose that the stationary linear disturbances {¢;} in regression models (4.1)
satisfy (4.2). Then under Assumptions (G.9)-(G.11),

(i) Ifa(z) = g(z), where g(z) is a positive and continuous function on [, ], then
I -1 4
Vi - - :
) o (S ben, (48)
4|mM]\/Gyq 4m@®)| /Gy,

Pp(2]1) + Pp(1]2) =1+ @ <—

(i) Ify < —%, then

Pp(21) = Pp(1]2) = @ (~E(—Z;_—V—Ql) +o(1). (4.9)

Next, let us consider the classification effects of D under contiguous condition

{ Hi: m = mo;

Hy: m® =mg+ Hn 3+, (4.10)

[Proposition 4.1] Suppose that the stationary linear disturbances {e;} in regression models
(4.1) satisfy (4.2). Then under Assumptions (G.9)-(G.11) and contiguous condition (4.10), if
a(z) = g(z), then

Jim, PoCID) = i Po(12) = fim Py = Jim P =@ (~50k) . e

Y
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5 APPENDIX: PROOFS OF THEOREMS

[Proof of Theorem 2.1] Since the mean and variance of LR are

E;LR = %{(ﬁ@ -pWYx' 2 x (B - W) = (=1Yu, j=1,2,

Var;LR = (3(2) _ ﬁ(l))'X'Z"lX(ﬁ(z) - ﬁ(l)) - v2,
where E; and Var; stand for the expectation and variance under H;. Hence
LR ~ N((-1Yp,v?), j=1,2,

we have

Bun(2l1) = ir(12) = @ (~£) = 8 (=2 {(8® - g0y x' 57 x (8 - O }F).

From Grenander and Roseblatt (1957), we have

lim D;'X'X'XD;! = L FANdM() = 02,

n—00 - 27 —_

that is
Pr(21) = Pr(1]2) ~ @ (_% {(5(2) — BYYD,2D,(B? — ,3(1))}5> .

By Assumption (G.1),

lim Pir(2l1) = lim Pr(12) =0, for 8@ # g1,

[Proof of Theorem 2.2] From the proof of Theorem 1, we have

Pr(2i1) = Pr(1)2) ~ @ (_% {(ﬂ@) - BWYD,2D,(B® — ﬂ(l))}%) 7

hence, putting contiguous condition (2.2) into the above, we get (2.3) immediately.

[Proof of Theorem 3.1] (i) From Lemma 3.1, we have

= fintim et (_% {(ﬂ@) ~AYD. ( X)Vl €v2 ) D, (8% - ﬂ(ﬂ)}ﬁ) ,

since
) m

nd ~ (2r — 1)1/2
for r = 1,---,p, and considering Assumption (G.1) for r = p+1,---,k, we have the result.

1
r—g=—d

— 00, a8 M — 00,
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(ii) We first calculate the mean and variance of I, under hypotheses H;,

Eil = (-1)(8®) - gWY(B® - gW), j=1,2
and
Var;I, = 4(8® - BWY[A(X'X) 1 X' X (X' X)™?
+H(1 - o) (X' 271 X)) - p1)
~4(8® - VYD, F.D, (8 - gW)

(2) _ gy g2 - g1
Pr(2]1) = Pr(12) ~ & | - (B - Y(B®Y - ) |,
680D -
since all the elements of 5;1 tend to 0 under (G.1) and (G.5) as n — oo, we get the result.

[Proof of Theorem 3.2] Under contiguous condition (2.2), the fact for LR is clear, we only
prove (3.13). From the proof of Theorem 3.1, we know that under (2.2),

=2
P[a(2|1):P10(1]2)~<I>( L HD, H )

2(H'D.’F.D. H)/
Since ki HH' > F, > ko,HH', we have

W{H'D, HY > HD, F.D, H > k{H'D, H}.
Hence

1 1
Pl——=) > lim P; (2]1)= lim Pr.(112) > @[ ——=].
(~57) 2 Jim, Pra(2in) = Jim Pr(112)2 @ (~ =)

[Proof of Theorem 4.1] (i) Under Assumptions (G.9) and (G.10), we have
Ej[€'Ae — tr(AX)] = 0,

Varj[n‘%‘de'Ae] =n"2g2 4 0(n_2d), (from Lamma 4.1).

Thus . )
n"2"YD - E;D) = n_'2'_d4m;-Ae + 0p(1)
= 4Am@Wn~ 379U Ae + op(1),
where U = (1,---,1). Define & = Y 52 arét+k. Then we can show that

1

n
n" U Ae ~U'g = 737y S Jarg|Elet] » 0 as n — oo
t=1|l|>n

where € = (é1,--+,&,). Note that {&;} has the spectral density f(A)g?(\) with g(\) =
1

—2—17? 52 a,e7. Thus applying Yajima(1991) to n~2~¢U'E, we obtain

n"E7(D - B;D) -5 N (0,16(mD)? Gy, ), G =1,2.
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(ii) In this case, since
n~E;|U' Ae* = n”'U'AZ AU = O(n™*?) = o(1), (From 2y +d < 0).

Then . .
n"2(D - E;D)=2n"2[e’ Ae — tr(AX)] + 0p(1)

£, N (0,40?), (from Lemma 4.1).
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