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ationsnip between f(z)= z + ,:Z;anzn

Abstract . We investigate the rel
g

and L’L f(z)= z + rgn”‘-anz“’, A real,

when £{z) is analytic and univa-

lent in the unit disk, and when f(z) is in the classes J(k)and Eg(k)

‘of analytic univalent functions defined in terms of certain operators

of fracticral calculus .
1 . Introduction
Let S, s* and K cenote the classes consisting of analyiic function

of the form . _

f(z):z-&-gan zn,zeU={z: |z|<1‘; (1)
that are, respectively, univelent, starlike, and convex in U. For an
gnalytic functicn f(z) given by (1), Komatu (2] defined the linear in-
tegral transformation IMf by

M(z) = z + rii;‘n"\z’.n z" (A real, z€U), (2)
The function 1 f(z) is clearly analytic in U . Questions arise as to

when IMf will be in the same class as f .

smallest A for which I*fes

For example, what is the

whenever f is. ? In [2] , Komatu proved

<

=

that if f€S, then Ife€S® at least for A = A,, where A,€{3,4) is the

unique root of equation § (A-2)=2 (¢ denotes the Riemann zeta func<

tion), and conjectured that

(I) If f€S, then I’ f€ S

(II) If f€X (or, more generally, f€S *), then IMf€X at

least for 7\ 1

at least for 121 :
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Lewis (3] essentiaily showed that the coﬁjecture (II) is true (cf.[5])._
In the case A=1, the conjecture (I) reduces to the Biernarcki conjec
-ture which is false (1,P.257]. We ncte that the conjecture (I) is

also false in the case A =2 . In facti ,for the funciion f(z)=z(1-i4wa

. | ,
€5, we have z(L%£(2)) =1'f(z) = - 1 ((4-2)"% = 1). Hemce z(12£(2)

=02t z=1- ¢%0U, this shows that 12£(z) & s.

Owz :[4] and Silverman (5] investigated the relationship between

£(z) and ﬂkf(z), A real, when f(z) is in the subsets of S,S™and K.

Let Jy(k) denote the class of functicas
£(z) = z -ni_':;an z ( an>0, z€0) (3)

which are analytic and univelent in U and satisfy the concdiiicn

. .
Re{ F(Z'—d) dez I(Z) } >k (ZEU) (4)
£(z)

for 0<d <1 and 0 <K<1, where D;f(z) denctes the fractional
derivative of (z) of order o ( cf.(6] ) . Furthermore, let Eq(k)
denote the class of analytic univalent functiorns f(z) defined by(3)

such that [(2-ol)z80%5(2) € I (k) .

Srivastava and Cwa [6] investigated Komatu's conjectures for two
general classes Jg(k) and Ey (k). In (6], the following results ,

supporting conjectures (I)(Il), were established.

Theoren A . If £(z) €43 (k), then (1) T*#(2) € Ip(k) forA>2; (ii)
1} £(z) € E, (k) for A > 3; (iii) I £(z) € 3¥(0) forA> 2.

Theorem B . If £(z) €Ey(k), then (i) T*f(z) € E (k) forA>2; (ii)
IMf(2) € J#(k) for A>1n(4 ~cl)/1n2 ; (iii) L*£(z) € 3X0) for A=

1+ {1n(4 - -4k + 2dk) - 1n(2 - 2k +dk)} /1n2; (iv)I*£(z) € E4(0)
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forA=2.
In the present paper, we shall improve the results of Theorem A

and Theorem B further .
2 . Main Results

In our investigation of Komatu's conjectures for the classes J* (k)
and E4(k), we need the following lemmas (cf.(6]) .
Lemmz 1. The function f{z) defined by (3) is in the class s¥(k) if

and orly if

o ([(n+1) (2 =) _ <1 -k . (5)
T\Z:Z( [(n+1 = o) ) ™ s

Lemma 2. The function (z) defined by (3) is in the class Eg(k)if
and only 1if

>

n=2 F(n+1 -d}

[(n+1) [(2-d) (Hnﬂ) [=d) ) a c1-k. (8
I (ae1 —d) D

or Az 0.

(2}

Theorem 1. (i) If £(z)€ J*(k), then L™ f(z} € J¥*(k)
(i1) If £(z) € Ey(k), then L £(2) € Eq(k) for A > O.
These results are .all sharp. .
Proof. (i) Let f(z) =z - 3 apz? e J#(k). By using Lemma 1, we

n=2

show thet (5) implies

= ([(a+1) [T(2-d) k) e R (7)
=2 [F{n+1-c) ot

for A=0, where 0 < L1, 0k <.
For any real A >0, it follows from (5) that

?(T’(n—ﬂ) r(e-d) k) 2n

n=2 )”(n-H—d) _ A

n
S/ [7(n+1) Pl2-d) )
< - k
\;( I (n+1=0) -
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£ 1-k. | (2

A

Hence IMf(z)e J*(k) for x>0.

To show sharpness, set

(1-k) (n+1-d) n
[F(a+1) T(2-d) - k F(n+1=-4) ’

and observe that £ (z) € Ji(k), but M5 (2) € J¥(k) for A <0 .

fp(2) = z -

(ii) The proof of (ii) is much akin to that of (i) 'detailed
already : indeed, instead of Lemma 1 and fn(z), it uses Lemma 2 and
2
v (1 = k) {F(a+1-a) } <
gn(z, =z z8 € Ey(k).
[la+t) [(2 =) {T(a+1) [(2-o) -k (n+1-a)}

The proof of Theorem 1 is completed.

Corollary 1 . (i) If £(z)€J;(k) , then fo(z)EJ:(O) for A0,
and L¥1(z) € 33 (0) for A<A={1n(2-2k) - In(2-2k+kd}} /in2 . (ii) 1If
£(z) €E4(k), then If(z)€ Eq(0) for A 20, and L f(z) @ E,(0) for A<A,
={1n(2-2k) - 1n(2-2k+kd) } /1n2 .

éroof. Since I (k) J3(0), Ey(k)“EL(0), we have from Theorem!
that if f(z)e_Jj(x) then ILMf(z) € IJ(0)forAz0; if f(z) €Ey(k) then
fo(z)EEd(Q) for A =0. For the functions f2(z) and gz(z), we have
L_"\fz(z) ¢ 73 (0) and ngz(z) & E4(0) for A <A,. The proof of Corol-

lary 1 is completed .

Theorem.2. If f{z) € J;(k), then LMf(2) € Eu(k) for A>d, and
L £(z) & Eq(k) for A <1 - 1a(2 - &) /1n2 .

-Proof . By virtue of Lemm2 1 and Lerma 2 , we show that (5) imp.

- =lies

<t-k (9

n

s et P2-a) [Fla1) [lo=s) k) at
n=2 TI(a+1-d) ( [*(n+1-d) "
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for A>d. It suffices to prove that E(n) = J*{n+1) ]"-(2-01)/(;-?'}"(_:1-1-1—&))

<] for Axdand n»2 . Let h{n) = H(n+1)/H(n). Then ]ﬁ-l.g h(n) =

h'(n)>0 for l>ol and n>2 .Thus H(n) is a: decreasing function ofvn
(n22) for Azd. Since H(2) = 1/( (2-d) 22 1) &1 whenA>1-1n(2-d)/1n2,
and max{oz.,, 1'--1:1(2-01)/1132} =d, wé have _‘H(n)$1 forAzdand n32 .

For the function fz(z) = z = (1-k)(2=a) /(2- k(2—d)j 22 GJ:(k) s
we have L™f,(z) € Ey(k) fora<! - 1n(2-o)/1n2. This completes the
proof . _

Theorem 3 . If £(z) €E4(k), then L £(z) €Jx(k) fora»-24/(3~d),
and F f(z)& T3 (k) for A < 1n(2—d)/1n2 - 1.

Proof . Since f(z) = z - ia € Ey(k), by using Lemmz 2,we

have

M

[(n+t) T(2 =) < IF(n+1) T7(2-d}

5 Mlo+i-o) I*(n+i-d)

for 0<€d<1, 0<K<l. Let H(n) =7 (n+1) (2-d) n*/ F(n+1-d), a(n)=

k>an<1 -k (10)

d(n+1)/H(n). Then rJL._J‘;m.h(n) =1, h'(n)L 0 for n>2 and A > ~2d/(3—d).
[+ 2]
Thus..H(n) is an increasing functicn of n (n>2) for A> -2d/(3 -d).

But #(2) = 2™(2 - d) > 1 for A>{1n(2-d) - 1n2} /1n2, and

max{ _2d 1n(2—d)—ln2}= =23 gcdet), (11)
3-d , 1n2 3-d

we get H(n) >1 for Az -2d/(3 —d) a2nd n>2, i.e.,

Tn+1) 77(2 —d) ~24d

r > 1>\ Q> n>»2). (12)
T(n+1= &) n 3 ~d’? . _

It follows from (10) and (12) that

?(T’(n-ﬂ) ro-d) k)in.<1 Cx
n=g [(n+1 =d) n*
forA»-2d/(3 —d). Hence L f(z)€ J}(k) .

For the function
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(1 - ) (2-a)°
22 - k(2 = d))

g,(z) =z- z‘?_é E (k),

we have ngz(z) & 3 (k) for A< (ln(z-d) - 1n2 )/1n2. This completes
the proof . '

Corollary 2 . If f(z)&€Ey4(k) , then L’ff(z)EJ;(o) for x>-20/(3-d)
and L":(z)éJ;(o) for % <{1n(2(1-k)- d (1-k)) - 1n(2(1-k)+ ko)}/1n2 .
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