A REMARK ON A DISTORTION THEOREM IN SEVERAL COMPLEX VARIABLES

TADAYOSHI KANEMARU (熊本大・教育 金丸忠義)

Dept.of Mathematics, Faculty of Education, Kumamoto University

ABSTRACT. A distortion theorem on a homogeneous bounded domain in \mathbb{C}^n is obtained which is the generalization of Schwarz lemma.

1. Preliminaries

We denote a point z of \mathbb{C}^n by the column vector $z = (z_1, \ldots, z_n)'$. We denote a mapping f(z) from a domain D in \mathbb{C}^n to \mathbb{C}^n by the column vector $f(z) = (f_1(z), \ldots, f_n(z))'$. The mapping f(z) is said to be holomorphic in D if each component function is holomorphic in D. We denote the Jacobian matrix of the mapping f(z) by

$$\frac{\partial f}{\partial z}(z) \left(:= \frac{\partial}{\partial z} \times f(z) \right),$$

where

$$\frac{\partial}{\partial z} = \left(\frac{\partial}{\partial z_1}, \dots, \frac{\partial}{\partial z_n}\right).$$

Let D be a bounded domain in \mathbb{C}^n . $K_D(z,z)$ denotes the Bergman kernel function of D.

Let

$$T_D(z,z) = rac{\partial^2}{\partial z^* \partial z} \log K_D(z,z),$$

where

$$\frac{\partial}{\partial z^*} = \left(\frac{\partial}{\partial \overline{z_1}}, ..., \frac{\partial}{\partial \overline{z_n}}\right)'.$$

We define as follows: ([5])

$$K_{D,(p,q)}(z,z) = K_D^p(z,z)(\det T_D(z,z))^q,$$

$$T_{D,(p,q)}(z,z) = \frac{\partial^2}{\partial z^* \partial z} \log K_{D,(p,q)}(z,z), (p,q \ge 0).$$

When p=1 and q=0, $K_{D,(p,q)}(z,z)$ and $T_{D,(p,q)}(z,z)$ denote the ordinary Bergman kernel function $K_D(z,z)$ and the Bergman metric tensor $T_D(z,z)$ respectively.

We have the following relative biholomorphic invariant formula:

Let F be a biholomorphic mapping from D onto $F(D)(:=\Delta)$. Then

(1)
$$K_{D,(p,q)}(z,z) = \left(\overline{\det \frac{\partial F}{\partial z}(z)}\right)^{p+q} K_{\Delta,(p,q)}(F(z),F(z)) \left(\det \frac{\partial F}{\partial z}(z)\right)^{p+q},$$

$$(2) T_{D,(p,q)}(z,z) = \left(\frac{\partial F}{\partial z}(z)\right)^* T_{\Delta,(p,q)}(F(z),F(z)) \left(\frac{\partial F}{\partial z}(z)\right).$$

Throughout this paper, the symbols I, *and× stand for transposition,conjugated transposition and Kronecker product, respectively.

We say the bounded domain D is a (p,q)-minimal domain with center at $\tau \in D$ if $K_{D,(p,q)}(z,\tau) = K_{D,(p,q)}(\tau,\tau), \forall z \in D$ holds. For p=1 and q=0, this concept coincides with the minimal domain in the sense of Maschler.

After Hahn ([3]), we define as follows:

$$c(D) := \left\{ t \in D \left| K_D(t, t) = \frac{1}{vol(D)} \right\} \right\},$$

$$m(D) := \left\{ t \in D \left| K_{D, (p,q)}(t, t) \le \min_{z \in D} K_{D, (p,q)}(z, z) \right\} \right\}.$$

The following facts are known: ([3],[8],[10]).

If $K_D(z,z)$ becomes infinite everywhere on ∂D , then $m(D) \neq \emptyset$ and $m(D) \supset c(D)$. For example, if D is a homogeneous bounded domain, then $K_D(z,z)$ becomes infinite everywhere on ∂D , and so $m(D) \neq \emptyset$ and $m(D) \supset c(D)$. The set c(D) consists of at most one point of D, and is non-empty if and only if c(D) = m(D) for p = 1 and q = 0. D is a minimal domain with center at t in the sense of Maschler if and only if $\{t\} = c(D) \neq \emptyset$.

2. DISTORTIONS ON A HOMOGENEOUS BOUNDED DOMAIN

At first we give the following Proposition obtained by Carathéodory and Cartan.

Proposition ([7]). Let D be a bounded domain in \mathbb{C}^n , and let $f: D \longrightarrow D$ be holomorphic. Let $p \in D$, and suppose that f(p) = p. Then

$$\left| \det \frac{\partial f}{\partial z}(p) \right| \le 1.$$

If $\left| \det \frac{\partial f}{\partial z}(p) \right| = 1$, then f is an automorphism of D

Using the above Proposition and the biholomorphic invariant formulas (1) and (2), we have the following:

Theorem 1. Let D be a homogeneous bounded domain in \mathbb{C}^n . Let F be a biholomorphic map from D onto $F(D) := \Delta$. Let f be a holomorphic map from D into Δ . Then

$$\left| \det \frac{\partial f}{\partial z}(z) \right|^{2(p+q)} \le \frac{K_{D,(p,q)}(z,z)}{K_{\Delta,(p,q)}(f(z),f(z))},$$

$$\left| \det \frac{\partial f}{\partial z}(z) \right|^2 \le \frac{\det T_{D,(p,q)}(z,z)}{\det T_{\Delta,(p,q)}(f(z),f(z))}, z \in D, p, q \ge 0.$$

Proof. Put $f(t) = \alpha$, $F(t) = \beta$, $t \in D$. Let $\phi(w)$ be an automorphism of the homogeneous bounded domain Δ such that $\phi(\alpha) = \beta$.

Let $g:=F^{-1}\circ\phi\circ f$. Then g is a holomorphic map from D into itself with g(t)=t. From the Proposition, we have

$$\left| \det \frac{\partial g}{\partial z}(t) \right| = \left| \det \left(\frac{\partial}{\partial z} (F^{-1} \circ \phi \circ f)(t) \right) \right| \le 1.$$

Noting that

$$\frac{\partial F^{-1}}{\partial w} = \left(\frac{\partial F}{\partial z}(z)\right)^{-1},$$

where w = F(z), by chain rule, we have

$$\left| \det \frac{\partial f}{\partial z}(t) \right| \le \frac{\left| \det \frac{\partial F}{\partial z}(t) \right|}{\left| \det \frac{\partial \phi}{\partial w}(\alpha) \right|}.$$

The biholomorphic relative invariants of $K_{D,(p,q)}(z,z)$ and $T_{D,(p,q)}(z,z)$ give us the following:

$$K_{D,(p,q)}(t,t) = K_{\Delta,(p,q)}(\beta,\beta) \left| \det \frac{\partial F}{\partial z}(t) \right|^{2(p+q)},$$

$$K_{\Delta,(p,q)}(\alpha,\alpha) = K_{\Delta,(p,q)}(\beta,\beta) \left| \det \frac{\partial \phi}{\partial w}(\alpha) \right|^{2(p+q)},$$

$$\det T_{D,(p,q)}(t,t) = \det T_{\Delta,(p,q)}(\beta,\beta) \left| \det \frac{\partial F}{\partial z}(t) \right|^{2},$$

$$\det T_{\Delta,(p,q)}(\alpha,\alpha) = \det T_{\Delta,(p,q)}(\beta,\beta) \left| \det \frac{\partial \phi}{\partial w}(\alpha) \right|^{2}.$$

Therefore the proof is completed, since we may take t to be an arbitrary point in D.

Remark. Since $K_{D,(p,q)}(z,z)$ and $T_{D,(p,q)}(z,z)$ are the ordinary Bergman kernel function and the Bergman metric tensor for p=1 and q=0, we have

$$\left|\det\frac{\partial f}{\partial z}(z)\right|^2 \leq \frac{K_D(z,z)}{K_\Delta(f(z),f(z))} = \frac{\det T_D(z,z)}{\det T_\Delta(f(z),f(z))}$$

In particular, since the Bergman kernel function of the unit ball

$$B_n = \left\{ z \in \mathbb{C}^n \, \middle| |z|^2 = \sum_{j=1}^n |z_j|^2 < 1 \right\}$$

is

$$K_{B_n}(z,z) = \frac{n!}{\pi^n} \frac{1}{(1-|z|^2)^{n+1}},$$

we have

$$\left|\det\frac{\partial f}{\partial z}(z)\right|^2 \le \left(\frac{1-|f(z)|^2}{1-|z|^2}\right)^{n+1}.$$

In the case of n=1 (i.e. for the unit disc), we have

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2},$$

which is the well-known Schwarz Lemma.

Corollary ([2],[6]). Let f be a holomorphic map of a homogeneous bounded domain D into itself. Then we have

$$\left| \det \frac{\partial f}{\partial z}(z) \right|^{2(p+q)} \le \frac{K_{D,(p,q)}(z,z)}{K_{D,(p,q)}(f(z),(f(z))}.$$

In particular, $\tau_0 \in m(D)$, which is non-empty, we have

$$\left| \det \frac{\partial f}{\partial z}(\tau_0) \right| \le 1.$$

Remark. In Theorem 1, since Δ is a homogeneous bounded domain, there exists $\tau_0 \in m(\Delta)$. Then we have

$$\left| \det \frac{\partial f}{\partial z}(z) \right|^{2(p+q)} \le \frac{K_{D,(p,q)}(z,z)}{K_{\Delta,(p,q)}(\tau_0,\tau_0)}, z \in D.$$

In particular for p=1 and q=0, if τ_0 belongs to $c(\Delta)$, we have

$$\left|\det \frac{\partial f}{\partial z}(z)\right|^2 \le K_D(z,z)vol(\Delta), z \in D.$$

Theorem 2. Let D be a bounded domain with $t_0 \in m(D)$. Let F be a biholomorphic map from D onto $F(D) =: \Delta$ with $\tau_0 = F(t) \in m(\Delta)$ for $t \neq t_0$. Then we have

$$\left| \det \frac{\partial F}{\partial z}(t) \right|^{2(p+q)} \ge \frac{K_{D,(p,q)}(t_0, t_0)}{K_{\Delta,(p,q)}(\tau_0, \tau_0)}$$

$$\ge \left| \det \frac{\partial F}{\partial z}(t_0) \right|^{2(p+q)}.$$

In particular, if D is a homogeneous bounded domain and if f is a holomorphic map from D into $F(D) =: \Delta$, then we have

(3)
$$\left| \det \frac{\partial F}{\partial z}(t) \right| \ge \max \left\{ \left| \det \frac{\partial f}{\partial z}(t) \right|, \left| \det \frac{\partial f}{\partial z}(t_0) \right| \right\}.$$

Proof. Noting that $t_0 \in m(D)$ and $\tau_o \in m(\Delta)$, we have, for $\tau = F(t_0)$,

$$\left| \det \frac{\partial F}{\partial z}(t) \right|^{2(p+q)} = \frac{K_{D,(p,q)}(t,t)}{K_{\Delta,(p,q)}(\tau_0,\tau_0)}$$

$$\geq \frac{K_{D,(p,q)}(t_0,t_0)}{K_{\Delta,(p,q)}(\tau_0,\tau_0)}$$

$$\geq \frac{K_{D,(p,q)}(t_0,t_0)}{K_{\Delta,(p,q)}(\tau,\tau)}$$

$$= \left| \det \frac{\partial F}{\partial z}(t_0) \right|^{2(p+q)}.$$

If D is a homogeneous domain with $m(D) \neq \phi$, then $F(D) =: \Delta$ is also homogeneous with $m(\Delta) \neq \phi$. Therefore we have, for $\tau_0 = F(t)$,

$$\left| \det \frac{\partial F}{\partial z}(t) \right|^{2(p+q)} = \frac{K_{D,(p,q)}(t,t)}{K_{\Delta,(p,q)}(\tau_0,\tau_0)}$$

$$\geq \frac{K_{D,(p,q)}(t,t)}{K_{\Delta,(p,q)}(f(z),f(z))}$$

$$= \frac{K_{D,(p,q)}(t,t)}{K_{D,(p,q)}(z,z)} \cdot \frac{K_{D,(p,q)}(z,z)}{K_{\Delta,(p,q)}(f(z),f(z))}$$

$$\geq \frac{K_{D,(p,q)}(t,t)}{K_{D,(p,q)}(z,z)} \left| \det \frac{\partial f}{\partial z}(z) \right|^{2(p+q)} .$$

Since $K_{D,(p,q)}(z,z) \ge K_{D,(p,q)}(t_0,t_0)$, we have (3).

From Theorem 2 the following Corollary easily follows.

Corollary. Let D be a bounded minimal domain with center at $t_0 \in c(D)$ in the sense of Maschler. Let F be a biholomorphic map from D onto $F(D) =: \Delta$ with $\tau_0 = F(t)$. Let $F(D) =: \Delta$ be a bounded minimal domain with center at $\tau_0 \in c(\Delta)$. Then we have

$$\left|\det \frac{\partial F}{\partial z}(t)\right|^2 \ge \frac{vol(F(D))}{vol(D)} \ge \left|\det \frac{\partial F}{\partial z}(t_0)\right|^2$$

where the equality signs hold if and only if $t = t_0$. In particular, if F is a volume preserving biholomorphic map, then we have

$$\left| \det \frac{\partial F}{\partial z}(t) \right| \ge 1 \ge \left| \det \frac{\partial F}{\partial z}(t_0) \right|.$$

REFERENCES

- [1] S. Bergman, The kernel function and conformal mapping 2nd ed., Amer.Math. Soc., Providence, R.I., 1970.
- [2] K. T. Hahn and J. Mitchell, Generalization of Schwarz-Pick lemma to invariant volume in a Kähler manifold, Trans. Amer. Math. Soc. 128 (1967), 221-231.
- [3] K. T. Hahn, Some properties of relative invariants on bounded domains, Duke Math.J. 34 (1967), 325-332.
- [4] _____, Subordination principle and distortion theorems on holomorphic mappings in the $space \mathbb{C}^n$, Trans.Amer.Math.Soc. **162** (1971), 327–336.
- [5] T. Kanemaru, Invariants related to the Bergman kernel of a bounded domain in Cⁿ, Proc. Amer.Math.Soc. 92 (1984), 198-200.
- [6] ______, A distortion theorem in several complex variables, Mem. Fac. Educ.Kumamoto Univ.Nat. Sci. 41 (1992), 1-3.
- [7] S.Krantz, Function theory of several complex variables, Wiley, New York, 1982.

- [8] M.Maschler, Minimal domains and their Bergman kernel function, Pacific J.Math. 6 (1956), 501-516.
- [9] _____, Classes of minimal and representative domains and their kernel function, Pacific J.Math. 9 (1959), 763-782.
- [10] S. Matsuura, Bergman kernel functions and the three types of canonical domains, Pacific J.Math. 33 (1970), 363-384.
- [11] ______, The generalized Martin's minimum problem and its applications in several complex variables, Trans.Amer.Math.Soc. 208 (1975), 273-307.
 - 2-40-1 Kurokami Kumamoto-shi Kumamoto,860,Japan