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Abstract
Function symbols of term rewriting systems (TRSs) can be classified into three categories, namely,

constructors, selectors, and defined operators in terms of functional programming. The selectors are
for convenience of programming and efficient execution of programs, so the constructors and the
defined operators are sufficient to construct data structures and to manipulate them.

We give a transformation method to eliminate selectors from a TRS. We also introduce a new
model of TRSs from the viewpoint of functional programming, and show that an original TRS and
the transformed TRS have the almost same model except trivial differences.

The transformation method preserves strong termination property. Although the methods do not
preserve weak terminating and confluency, we turn out sufficient conditions to keep those properties.

1 Introduction
We can divide function symbols into some categories when we consider TRSs as functional programs.
Huet et al make a completion algorithm more efficient by dividing functions into two categories such
that constructor and $\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}[\mathrm{H}\mathrm{H}82]$ .

We proceed to observe the role of functions in TRSs, non-constructor can be divide into further two
categories, one is a set of selectors that access elements in a data structure constructed by constructors,
the other is a set of defined operators that are the rest of functions.

non defined-operators
–

constructors selectors defined-operators

non constructor

Only constructors of a TRS derives any data structure on the TRS. Selectors corresponds to the
constructors, which make programming convenient and make its execution efficient. Therefore there
exists a TRS that has no selectors and has the same meaning intuitionally.

For example, assume a TRS whose constructors and rules are cons, nil and car $(ConS(X, y))\triangleright x$ ,
$cdr(conS(x,y))\triangleright y$ , respectively. Either $\mathit{2}nd(x)\triangleright car(Cdr(x))$ or $\mathit{2}nd(conS(x, conS(y, \mathcal{Z})))\triangleright y$ works as
a function that picks up the second element of a list.

It is interesting to transform a set of rules including selectors into that of rules that have no selectors.
There are major two interests; one is how we can do that for any case of rules, the other is how to judge
two TRSs have the same specification if the first interest is satisfied.

We will describe the concept of categorizing function symbols more precisely in the section 2. Next we
will show a method to eliminate selectors from TRSs. In the section4 we will introduce a new model to
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denote specifications of TRSs as functional programs. In the section 5, we will show some characteristic
of the method. It turns out that the method does not preserve weak termination and confluency, so we
will give some sufficient conditions of TRS to preserve the properties.

This paper is briefly translated from the technical paper [Kik95]. The $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{I}$ is inspired from
[BK86] [GM87].

We use the same terminology of [DJ90] in this paper.

2 Constructors and Selectors

We regard a selector as a function that picks up an element from a data structure constructed by
constructors. A constructor defines a set of selectors corresponding to the arity of the constructor
therefore there is neither ambiguity nor voluntariness to define selectors. A set of rules is defined at the
same time that specifies the relationship between the constructor and the selectors. There is no other
rule that has a selector on the left hand side in the TRS.

Definition 2.1 Let $C$ is a set of constructors. A set of ground constructor terms $T(C)$ is a set of ground
terms on $C$ .

Notation 2.2 $c_{n}$ is a constructor with arity $n(\geq 0)$ . Constants are constructors whose arity are $0$ .

Definition 2.3 Corresponding to a constructor $c_{n},$ $n$-selectors $s_{n}^{1},$
$\ldots$ , $s_{n}^{n}$ and $n$-rules $r_{n}^{1},$

$\ldots,$
$r_{n}^{n}$ are

defined as follows.
$r_{n}^{i}$ : $S_{n}^{i}(Cn(X_{1,)}\ldots X_{i}, \ldots, xn))\triangleright X_{i}$

This is the only rule in a $TRS$, which a selector $s_{n}^{i}$ appears on the left hand side.

Notation 2.4 We distinguish constructors by using a label $l$ to express $\mathrm{t}^{C}n’ l^{S_{n}^{i}},$ $\iota r_{n}i$ when there are
$diffe\dot{r}ent$ constructors that have the same arity.

Notation 2.5 $s_{n}$ denotes one of $s_{n}^{i}(1\leq i\leq n)$ .

Definition 2.6 Defined functions are functions that are neither constructors nor selectors.

Notation 2.7 We use a notation $\langle R, \langle C, S, D\rangle, V\rangle$ to express explicitly a $TRS\langle R, F, V\rangle$ such that it has
the constructors $C$ , the selectors $S$ and the defined operators $D$ .

The notation $\langle R, F, -\rangle$ or $\langle R, \langle C, S, D\rangle, -\rangle$ means that we do not care the variable set in the $TRS$.

We discuss a role of functions in a sense of functional programming and define a category of function
symbols in this section according as the such role.

Huet et al showed that we could distinguish between constructors and selectors when a TRS was
considered as a computation $\mathrm{m}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{s}\mathrm{m}[\mathrm{H}\mathrm{H}82]$. All constructor terms should be irreducible in the
Huets’ classification. They call those constructors free.

A condition that the constructors of a TRS are free makes the data structure derived from the TRS
a strict well founded structure. The condition lets programming so inconvenient; for example, $0$ and
succ$(pred(\mathrm{O}))$ are different values when we prepare the constructors $0$ , succ, pred to express integer num-
bers in a TRS. $0$ and $-(0)$ are different values even if $0$ , succ,–are the constructors.

We loose the condition so that we can define any constructors when we classify function symbols.
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3 Eliminating selectors by rule transformations
We give a method to eliminate selectors from a given TRS by transforming rules of the TRS. We will
discuss effects of the method in section5.

First phase is to use the following three transformation rules to remove each selector on the right hand
side of a rule. The number of transforming operations is at most the number of selectors on the right
hand side of the all rules in a TRS because each application of the transformations removes one or more
selectors. Next phase is to remove all rules that contain selectors on the left hand side.

Trans I Let $\langle R\cup\{p\}, \langle C, S, D\rangle, V\rangle$ be a $TRS$ that the rule $p$ contains selectors on the right hand side.
We can express $p$ as follows without loss of generality where $\gamma$ is an arbitrary term.

$p:\gamma\triangleright\delta[_{\vee}s_{n}^{m}(1\mathcal{T}),,.\cdots,S(nmk\mathcal{T}S_{\mathfrak{n}}|i(\tau)), \sim\tau, \ldots, \tau ]$

appearances of $\tau$

Target selectors are $s_{n}^{m:}\in S$ that have $\tau$ as those arguments. We assume the number of the targets is
$k(1\leq\dot{i}\leq k, 1\leq m_{i}\leq n)$ . The rest of the context $\delta$ is all appearances of $\tau$ with which $s_{n}$ does not
$assoc\dot{i}ate$ .

Remove the rule $p$ and append two rules $q_{1},$ $q_{2}$ to remove the targets.

$q_{1}$ : $\gamma\triangleright h(\tau,y1, \ldots,y\vee\downarrow)$

1–variables
$q_{2}$ : $h(_{C}n(X1,$

$...’ X\sim^{),y1,\ldots,y\iota)}x.\cdot n\triangleright\delta[_{\frac{x_{m_{1}},..x_{m_{k}}}{x_{\mathfrak{n}}}\frac{c_{n}(_{X_{1}},\ldots,Xn),\ldots C_{n}(x_{1,..\cdot\cdot n}X)}{appea\gamma anceSof_{C_{n}}’(_{X_{1\cdot n}},.,X)}}.\cdot\dot{.},,,]$

$x_{m}$ : and $c_{n}(x_{1}, \ldots, x_{n})$ in $q_{1},$ $q_{2}$ replace $s_{n}^{m_{i}}(\tau)$ and $\tau$ without $s_{n}$ association in $p$ respectively. The
transformed $TRS$ is $\langle Q, F’, VJ\rangle$ where $P=R\cup\{p\},$ $Q=R\cup\{q_{1}, q_{2}\},$ $F=\langle C, S, D\rangle,$ $D’=D\cup\{g\}$ ,
$F’=\langle C, s, D’\rangle,$ $V’=V\cup\{x_{1}, \ldots, x_{n}\}$ .

$h$ is a new defined operator called an auxiliary function symbol. $x_{1},$ $\ldots$ , $x_{n}$ does not exist in $P,$ $y1,$ $\ldots,$
$y\iota$

are the all appearances of variable in $\delta$ .

Trans II Let $\langle R\cup\{p\}, \langle C, S, D\rangle, V\rangle$ be a $TRS$ that the rule $p$ is the following form.
$p:\gamma$ [

$appe\sim x,$
$\ldots,$

$x$

of
] $\triangleright\delta$ [

$.,\cdot,$

,
$appe\sim x,$

$\ldots,$
$x$

of
]

appearances of $x$ appearances of $x$

Target selectors are $s_{n}^{m^{:}}$ that have the same variable denoted by $x$ . We assume the number of the targets
is $k(1\leq i\leq k, 1\leq m_{i}\leq n)$ .

The rest of the context $\delta$ is all appearances of $x$ with which $s_{n}$ does not associate.
Remove the rule $p$ and append a rule $q$ to remove the targets.

$q:\gamma[C_{n}(X1, \ldots,Xn), \ldots, C_{n}(_{XX)}1, \ldots,n]\triangleright\delta[xm1’\ldots, xmk’ C_{n}(x_{1}, \ldots, xn), \ldots, C_{n}(X_{1}, \ldots, x_{n})]$

$x_{m}.\cdot$ and $c_{n}(x_{1}, \ldots , x_{n})$ in $q$ replace $s_{n}^{m_{i}}(x)$ and $x$ without $s_{n}$ association in $p$ respectively. The trans-
formed $TRS$ is $\langle Q, F, V\rangle$ where $P=R\cup\{p\},$ $Q=R\cup\{q\},$ $F=\langle C, S, D\rangle$ .

Trans III Let $\langle R\cup\{p\}, \langle C, S, D\rangle, V\rangle$ be a $TRS$ that the rule $p$ is the following form.
$p:\gamma\triangleright\delta[s^{i}(n(c_{n}\mathcal{T}_{1}, \ldots, \tau_{i}, \ldots, \tau n))]$

A target selector is $s_{n}^{i}$ . $\gamma,$ $\tau_{1},$
$\ldots,$

$\tau_{n}$ are arbitrary terms.
Remove the rule $p$ and append a rule $q$ to remove the target.

$q:\gamma\triangleright\delta[\tau_{i}]$

The transformed $TRS$ is $\langle Q, F, V\rangle$ where $P=R\cup\{p\},$ $Q=R\cup\{q\},$ $F=\langle C, S, D\rangle$ .
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Trans IV Let $\langle$ $R\cup\{p\},$ $\langle C, S, D\rangle,$ -) be a $TRS$ that the rule $p$ is the following form. Remove $p$ . The
transformed $TRS$ is $\langle R, F, -\rangle$ where $F=\langle C, S, D\rangle$

$p:\gamma[s_{n}(\tau)]\triangleright\delta$

3.1 Examples of transformation to eliminating selectors

We show some examples of selector elimination. Although we defined the notation of function symbols
in the section2, conventional function names are used here to give much intuitionistic understanding.

Example 3.1 List manipulation
2nd picks up a second element of a list, duplast returns a list whose car and cdr are a last element of a
given list and the whole given list respectively. rev returns a reverse order list of a given list, and the
definition of rev is omitted to describe the TRS simply.

The functions should be defined as $nil=c_{0}$ , $cons=c_{2}$ , $car=s_{2}^{1},$ $cdr=s_{2}^{2}$ in accordance with the
notation in the section2.

$[P=C=\{n\dot{i}l, ConS\},sD=\mathit{2}nev,d=upla\{CarSt’\}Cdr\},$ $]$

The following is example reductions on the TRS.

$\mathit{2}nd$( $conS$( $n\dot{i}l,$ $cons$( $conS$( $n\dot{i}l$ , nil), $nil))$ ) $arrow!cons$( $n\dot{i}l$ , nil)

duplast(cons(nil, $cons$( $cons$(nil, nil), $n\dot{i}l))$ ) $arrow!conS(conS$( $n\dot{i}l$ , nil), $conS(nil,$ $cons$( $cons(nil$ , nil), nil)

$\mathit{2}nd(n\dot{i}l)arrow!car(cdr(nil))$

duplast$(n\dot{i}l)arrow!conS$ ( $Car(n\dot{i}l)$ , nil)

Note that there are normal ground terms that have selectors.
We get the following TRS from the previous TRS by the transformation method.

$[C=\{Q=n\dot{i}l, conS, S=\emptyset, D=\mathit{2}nd, rev, duplaSt, h\}]$

Any normal ground term on the transformed TRS has no selectors, while the original TRS not.

$\mathit{2}nd(nil)arrow \mathit{2}nd(n\dot{i}l!)$

duplast$(nil)arrow h$ ($nil!$ , nil)

Example 3.2 Natural number:
-is a subtract function on natural numbers. The functions should be defined as $0=c_{0}$ , $succ=c_{1}$ ,
$pred=s_{1}^{1}$ in accordance with the section 2.

$[P=C=0,$
$suCc,$ $s=\{pred\},$

$D=\{-\}]$
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The following are examples on the $TRS$. There is a normal constructor term including a selector in the
latter case.

$-(succ(SucC(\mathrm{O})), sucC(0))arrow!sucC(\mathrm{O})$

$-(succ(\mathrm{o}), succ(SucC(0)))arrow pr!(ed\mathrm{O})$

We get the following $TRS$ by application of the transformation method.

$[Q=c=\{0,$
$Succ=\emptyset,$

$D=\{-\}]$

Now we have the following reduction sequence: $-(suCC(\mathrm{O}), suCc(suCc(0)))arrow|-(0, sucC(\mathrm{o}))$

4 Constructive Model
We propose new concepts about TRSs constructive domain and constructive model.

An initial model of a TRS is differ from our intuitionistic model when functions are categorized into
three groups. For example in the introduction, we do not indicate that two rule sets describe the same
specification because their initial models are different. Moreover the initial model has irreducible terms
using selectors such as car $(n\dot{i}l)$ . Because those terms correspond to execution exceptions e.g. unexpected
segmentation violation, it is not suitable to use an initial model of a TRS when we use TRSs as functional
programs.

The meaning that computation results are proper corresponds to normal forms are constructed by
only constructors. The model of TRSs should exclude any term whose normal term has selectors and
any term whose arbitrary subterm derives normal term with selectors.

Therefore we introduce a new concept about domain and model on TRSs. A constructive domain is
a set of ground terms whose every subterm has a reduction sequence toward a ground constructor term
on the domain. A constructive model is a set of congruent closures on the constructive domain of the
TRS.

Definition 4.1 Let $\langle R, \langle C, S, D\rangle, -\rangle$ is a $TRS$ where $F=C\cup S\cup D$ , a constructive domain of the $TRS$

$T_{C}^{R}(F)$ is defined as follows.

$\tau\in T_{C}R(F)^{\mathrm{d}\mathrm{f}}=^{\mathrm{e}}\{$

$\mathcal{T}\in T(C)$

$\tauarrow\sigma R$
where

Deflnition 4.2 A constructive model $\tau_{C}^{R}(F)/\sim R$ is quotient of $T_{C}^{R}(F)by\sim R^{\cdot}$

Notation 4.3 We $use\approx R$ instead $of\sim R$ to distinguish the case on $T_{C}^{R}(F)$ from the case on $T(F)$ , and use
$just\approx when$ $R$ is obvious.

Definition 4.4 We say $M\subseteq M’$ where $M,$ $M’$ are constructive models if the following holds.

$M\models\tau=\sigma\Rightarrow M’\models\tau=\sigma$

Lemma 4.5 For every term in a constructive domain, there exists a reduction sequence from it toward
a ground constructor term.

General speaking $T(C)\subseteq T_{C}^{R}(F)\subseteq T(F)$ holds. Note that a constructive domain of a TRS is a subset
of the restricted domain whose terms just have equivalent ground constructor terms. For example, the
latter domain has a term car $(conS(nil, Car(nil)))$ but the constructive domain does not.

272



5 Effects by transformation
We investigate properties of the transformation method in this section. First we prove that the method
preserve models. Second we prove the method holds strong terminating property of TRSs. Finally we
show that the method will break weak termination and confluency.

5.1 Models
Definition 5.1 Where there exist $R$ and $p$ such that $P=R\cup\{p\}$ and $Q\supseteq R$ , we say $\langle Q, F, -\rangle$ simulates
$\langle P, F, -\rangle\dot{i}f$ the following holds.

$\forall\{\tau_{1}, \ldots, \tau_{n}, \sigma\}\subseteq\tau_{c}P(F),\forall\tau(\equiv f(\mathcal{T}_{1\cdot\cdot n},.,\mathcal{T}), f\in F)(\{\tau_{1}, \ldots, \tau_{n}, \sigma\}\subseteq\tau_{c^{(F)}}^{Qp}\wedge \mathcal{T}arrow\sigma)P\Rightarrow\tau\approx\sigma Q$

Lemma 5.2 if $\langle P, F, -\rangle$ is simulated by $\langle Q, F, -\rangle$ then $\tau_{C}^{P}(F)/\approx P\subseteq\tau_{c}^{Q}(F)/_{Q}\approx$ .

Proof We show that a term in $T_{C}^{P}(F)$ is also in $T_{C}^{Q}(F)$ and the congruency on $T_{C}^{P}(F)$ holds on $T_{C}^{Q}(F)$

by induction on the structure of the term in $T_{C}^{P}(F)$ .
base case: $\tau\in T_{C}^{P}(F)\Rightarrow\tau\in T_{C}^{Q}(F)$ holds obviously.
induction step: We assume the property for $\{\tau_{1,)}\ldots\tau_{n}, \sigma\}\subseteq T_{C}^{P}(F)$ . Let $\tau$ be $f(\tau_{1}, \ldots, \tau_{n})$ .

1. Case $\taurightarrow\sigma,$$rPr\neq p$ : As $r$ is common for $P$ and $Q,$ $\tauarrow\sigma Qr$ that is
$\tau\approx Q\sigma$

.

2. Case $\tauarrow\sigma:Pp\{\tau_{1}, \ldots, \tau_{n}, \sigma\}\subseteq T_{C}^{Q}(F)$ holds from the hypothesis of the induction. Here we have

$\tau\approx Q\sigma$
because $\langle Q, F, -\rangle$ simulates $\langle P, F-\rangle$ .

Therefore the property holds for the all terms of $T_{C}^{Q}(F)$ . 1

Theorem 5.3 The constructive models of a $TRS$ and a transfomed one by the method are the same.

Proof (Brief) $\langle P, F’, -\rangle$ and { $Q,$ $F’,$ $-\rangle$ simulate each other on the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{I}$ so $T_{C}^{P’}(F’)$ and
$T_{C}^{Q}(p’)$ are isomorphic by lemma5.2. $\langle P, F, -\rangle$ and $\langle Q, F, -\rangle$ simulate each other on the transformationII
and on the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{I}\mathrm{I}\mathrm{I}$ so $T_{C}^{P}(F)$ and $T_{C}^{Q}(F)$ are isomorphic by lemma5.2. 1

5.2 Strong termination
Theorem 5.4 A transformed $TRS$ is strongly terminating if the original $TRS$ is so.

Proof (Outline) If we assume a transformed TRS is not strongly terminating then we can make a
infinite reduction sequence in the original TRS. This is a contraposition of the theorem. 1

5.3 Weak termination
Theorem 5.5 A transformed $TRS$ may not be weakly terminating even if the original $TRS$ is so.
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Proof (Brief) The following is a contradiction. $\langle Q, \langle C, S, D\rangle, -\rangle$ is transformed from $\langle P, \langle C, S, D\rangle, -\rangle$

where $C=\{c_{1,0}c\},$ $s=\{s_{1}^{1}\},$ $D=\{a, b, d\}$ .

$P:$ $Q:$
$\langle$ $P,$ $\langle C, S, D), -\rangle$ is weakly terminating but $\langle Q, \langle C, S, D\rangle, -\rangle$ is not. 1

5.4 Confluency

Theorem 5.6 A transformed $TRS$ may not be confluent even $\dot{i}f$ the original $TRS$ is so.

Proof (Brief) The following is a contradiction. $\langle Q, \langle C, S, D\rangle, -\rangle$ is transformed from $\langle P, \langle C, S, D\rangle, -\rangle$

where $C=\{c_{0}, c_{1}\},$ $S=\{s_{1}^{1}\},$ $D=\{a, b\}$ .

$P:\{a(X,C_{1}a(X,c0_{b})(y))b$ $\triangleright\triangleright\triangleright\triangleright$ $a(_{C_{0}},C1(Ca(_{S(_{C}),C_{0})}a(s_{1}x111(x0),y)0))\}$ $Q_{1}$ : $\{a(X,C1(yh(C_{1}a(_{X}, \mathrm{o}_{b})(X))))b$ $\triangleright\triangleright\triangleright\triangleright\triangleright$ $xa(X,\mathrm{o})a(s_{1(x}^{1}a(C0,c1(h(_{C_{0}})),yC_{0})))\}$

$\langle P, (C, S, D\rangle,$ $-\rangle$ is confluent because it is left linear, right linear and strongly closed, but
$\langle Q_{1}, \langle C, S, D\rangle, -\rangle[$

is not confluent.

6 Sufficient conditions for stable TRSs
We showed examples that the transformation method loosed weak termination and confluency in the
section5. In this section, we provide some sufficient conditions for TRSs whose weak termination and
confluency are not broken by the method.

6.1 Constructive TRSs
We have discussed about arbitrary TRSs. A constructive domain and a constructive model of any TRS
can be defined if we can separate functions into three groups. This means that we introduced only the
models that have a functional programming sense.

Now we deal with restricted TRSs, named constructive TRSs, that enjoy a manner of functional
programming.

Definition 6.1 we say a $TRS\langle R, \langle C, S, D\rangle, -\rangle$ is constructive $\dot{i}f$ for any
$\tauarrow\sigma R$

both $\tau\in T_{C}^{R}(F)\Rightarrow\sigma\in$

$T_{C}^{R}(F)$ and $\tau\in T(C)\Rightarrow\sigma\in T(C)$ hold.

Definition 6.2 A constructive kernel of $\langle R, \langle C, S, D\rangle, -\rangle$ is a sub-TRS whose rewriting set are $\tauarrow\sigma$

where $\tau,$ $\sigma\in T(C)$ .

Lemma 6.3 A constructive $TRS$ is weakly terminating if and only if the constructive kernel of the $TRS$

is weakly terminating
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Proof (Exercise) 1

Theorem 6.4 The transformation method preserves weakly $terminat_{\dot{i}ng}$ in a $construct\dot{i}ve$ domain of a
$construct\dot{i}veTRS$.

Proof (Brief) The transformation method does not affect a constructive kernel of the constructive
$\mathrm{T}\mathrm{R}\mathrm{s}_{\mathrm{i}}$

so preserves weakly terminating.

6.2 Regular TRSs
Regular TRSs are confluent[Hue80], but the transformation method can break regularity of a TRS.
We provide a syntactical condition called strong regularity, which is a little bit more constrained than
regularity. The transformation method preserves strong regularity of TRSs.

Definition 6.5 A $TRS\dot{i}S$ strongly regular $\dot{i}f$ the $TRS_{\dot{i}}s$ regular and $\dot{i}t$ does not have a rule such that
$c_{n}(\tau_{1\cdot\cdot n},., \tau)\triangleright\sigma$ where $c_{n}\dot{i}S$ a constructor and $\tau_{1},$

$\ldots,$
$\tau_{n},$ $\sigma$ are arbitrary terms.

Theorem 6.6 A transformed $TRS\dot{i}S$ strongly regular $\dot{i}f$ the $or\dot{i}g\dot{i}nalTRS\dot{i}S$ strongly regular.

Proof We show in the case of transformation I. In the case of transformation II is similar, and they
are obvious in the other cases.
Let $\langle P=R\cup\{p\}, F, -\rangle$ is an original TRS and $\langle Q=R\cup\{q_{1}, q_{2}\}, F\cup\{h\}, -\rangle$ is an transformed one
where $p,$ $q_{1},$ $q_{2}$ are the following.

$p:\gamma\triangleright\delta[s_{n}^{m}(_{\mathcal{T}),\ldots,(\tau),]}1Snm_{k}\tau,$
$\ldots$

$q_{1}$ : $\gamma\triangleright h(\tau,y_{1}, \ldots, y\iota)$

$q_{2}$ : $h(_{C_{n}}(X_{1,\ldots,n}X),$ $y_{1,\ldots,y)[C_{n}(x)}\iota\triangleright\delta X_{m’\cdots,m_{k}}1X,x_{1},$$\ldots,n’\ldots]$

linearity: The lhs of $q_{1}$ is linear because the lhs of $p$ is linear and the lhs of $q_{2}$ is linear by its syntax.
overlapping: The all lhs of $R$ does not overlap $\gamma$ that is the lhs of $p$ because the original TRS is
strongly regular. So they do not overlap the lhs of $q_{1}$ . The lhs of $q_{2}$ does not overlap because the
function symbol $h$ does not appear in any rule of $P$ and any lhs of $P\cup\{q_{1}\}$ is not a term whose main
function is $c_{n}$ .
Therefore $Q$ is strongly regular. 1

7 Conclusion
We had observed a role of functions in the TRS and introduced a classification of them. The trans-
formation method provided in this paper eliminates selectors of a TRS. The method does not effect to
constructive model while transformation, and preserves strong termination. Unfortunately the method
can break weak termination and confluency. We provided two sufficient conditions of TRSs; the first
preserves weak termination in the constructive domains and the other preserves confluency. The tablel
shows the properties of change in the transforming TRSs.

We must solve the following in the next step.. Define conservative extended models of constructive models. The discussion about preserving
models will be clear on conservative extended models when using the transformation I.

$0$ Theorem 6.4 will be a meaningful if the transformation preserves constructive property for an
arbitrary constructive TRS.
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$\bullet$ The transformation method preserves confluency in a constructive domain of a constructive TRS.. Relax the definition of selectors. A function $\mathit{2}nl\ln$ the example 3.1 is a defined operator here but
it may be interpreted as a selector.

TRS no constraint constructive strongly regular
property Model ST WT CR WT CR WT CR
TransI
TransII
TransIII
TransIV

The whole method

$\triangle \mathrm{O}$

$[egg0] \mathrm{O}$

$[egg0] \mathrm{O}$

$\triangle \mathrm{O}$

$\triangle \mathrm{O}$

$\cross \cross$

$\cross \cross$

$\mathrm{O}$ $-$

$\cross$ $\cross$

$\mathrm{O}$

$\mathrm{O} ---$

$\mathrm{O}$

$\mathrm{O}$

$–$
$\mathrm{O}$

$— 0$
$\mathrm{O}$

$\mathrm{O}$

$–$

$\mathrm{O}$

$\mathrm{O}$

$\mathrm{S}\mathrm{T}$ : strong termination $\mathrm{W}\mathrm{T}$ : weak termination $\mathrm{C}\mathrm{R}$ : confluency

$[egg0]$ the same model
$\triangle$ the same extended model (not the same model)

$\mathrm{O}$ preserves
$\cross$ does not preserve

unknown

Table 1: Properties of transformed TRSs
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