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1 Introduction

The purpose of this paper is to show that we can obtain a strongly nor-
malizing and confluent abstract $\mathrm{r}\mathrm{e}\mathrm{d}_{11\mathrm{c}\mathrm{t}}\mathrm{i}_{0}\mathrm{n}$ system from a variant of Lawvere
style deductive system [Lambek 94] for a propositional calculus with con-
junctions. The deductive system is reminiscent of a sequent calculus, and
consists of Lawvere style deductions, namely each of which has exactly one
input and one output, and inference rules that includes, initial deduction,
composition rule, and also left and right rules for conjunctions. It enjoys
the composition rule elimination theorem, which is thought of as a kind of
cut elimination theorem. In order to analyze the computationaI aspects, in
particular the operational semantics, we introduce a $\Sigma$-term algebra whose
sorts are the deductions and operation symbols correspond to the inference
rules. Then each $\Sigma$-term corresponds to the unique derivation of a deduc-
tion, and vice versa. First we show that we can eliminate operation symbols
corresponding to composition rule. This result, the weak normalization the-
orem, amounts to the composition rule elimination theorem of the deductive
system. Next, from the proof of the theorem, we extract a binary relation on
the $\Sigma$-terms so that the $\Sigma$ -terms and the relation form an abstract reduction
system, which is not a term rewriting system by some reason. Finally we
show that it is strongly normalizing and confluent. As an application the
word problem for the equivalence relation generated by it is thus decidable
as expected.
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The underlying motivation of this study is to investigate the connection
between reduction systems and deductive systems. For a given deductive
system $D$ , we would like to find an abstract reduction system $(T,R)$ , with
$T$ being a set of terms in which each term interprets a proof of $D$ , and $R$

being a binary relation on $T$ . As a computational model, $R$ is desired to
be strongly normalizing and confluent. An application of such ($T,$ $R\rangle$ is to
show that the word problem for the equivalence relation generated by $R$

is decidable by means of confluence method. The reduction system $\langle T, R\rangle$

might also be used as a basis of constructive $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\dot{\min}\mathrm{g}$ .
As a special case, we can think of the following correspondence between

$\Sigma$-term algebras and sequent calculi, which is called $sequent_{S- a}s- So\Gamma ts$ in-
terpretation. Let $S$ be a given sequent calculus that enjoys cut-elimination.
Let $\Sigma$ be a signature whose sorts are the sequents and operations correspond
to the inference rules. Then $\tau_{\Sigma}$ , the set of $\Sigma$ -terms, is a sound and com-
plete interpretation of derivations of $S$ . Since $S$ enjoys cut-elimination, $\tau_{\Sigma}$

is weakly normalizing. Let $R$ be a binary relation on $\tau_{\Sigma}$ extracted from the
weak normalization. Then the reduction system $\langle\tau_{\Sigma}, R\rangle$ may have further
properties like strong normalization and confluence.

2 A conjunction calculus

In this section we introduce a variant of Lawvere style deductive system for
a propositional calculus with conjunctions. Then we introduce a $\Sigma$-term
algebra whose sorts are the deductions and operation symbols correspond
to inference rules. For each deduction, there is a bijection between $\Sigma$-terms
of the deduction and derivation of the deduction.

Definition 1 Let $7^{\mathit{2}}S$ be some set of propositional symbols. The set of
propositional conjunction formulae, notation $\mathcal{F}$ , is defined inductively
as follows

$\mathcal{F}$ $::=$ $7^{\mathit{2}}S|(F\wedge \mathcal{F})$ .

Definition 2 $T\sim he$ set of Lawvere style deductions over $\mathcal{F}$ is defined by

$D$ $::=$ $\mathcal{F}-arrow F$ .

Definition 3 A deduction $A-arrow B\in D$ is derivable, $notati_{\mathit{0}}n\vdash A-arrow B$ ,

if $tl\iota ere$ is $a$ derivation of the deduction, in other words if it can be produced
using the following rules.
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$\bullet$ The identity axiom and the composition rule

$A-arrow C$ $Carrow B$

$Aarrow A$ ID –COMP
$A-arrow B$

$\nu Ve$ call $C$ the composition formula.
$\bullet$ The rules for conjunctions

$A-arrow C$ $Barrow C$ $Carrow A$ $Carrow B$

A-L A-L’ $-\wedge- \mathrm{R}$
$A\wedge Barrow C$ $A$ A $Barrow C$ $Carrow A$ A $B$

Definition 4 (Signature of Proof Terms) The signature $\Sigma$ over $D$ con-
sists of $D$ and a $D^{*}\cross D$ -indexed family

$(\Sigma_{w,s}|w\in D^{*},$ $s\in D\rangle$

of $setS_{J}$ where for any $A,$ $B,$ $C\in \mathcal{F}$ ,

$1_{A}$ $\in$ $\Sigma_{\lambda,Aarrow A}$ ($’\backslash$ is the empty word) (identity),
$\sigma_{A,B}^{C}$ $\in$ $\Sigma_{Aarrow ccarrow}B,$ $Aarrow B$ ( $\mathrm{c}\mathrm{o}_{\vee}\mathrm{m}$

.
position),

$\pi_{A,B,C}$ $\in$ $\Sigma_{Aarrow C},$ $A\wedge Barrow C$ (projection),
$\pi_{A,B,C}’$ $\in$ $\Sigma_{B-arrow c,A\wedge}Barrow C$ (projection),

$\Pi_{C,A_{\mathrm{t}}}w,S$
$=\in$ $\emptyset otherwise\Sigma_{Carrow Ac}arrow B.’ Crightarrow A\wedge B$

(product),

Definition 5 (Proof Terms over 7) $)$ The set of proof terms over $D$ ,
notation $\mathcal{T}$ , is defined as the set of ground $\Sigma$ -terms that is $T=T_{\Sigma}$ .

Below the notation $f$ : $A-arrow B$ stands for $f\in \mathcal{T}_{Aarrow B}$ .
The following proposition obviously holds.

$\mathrm{P}\mathrm{r}o$position 6 (Subformula Property of Operation Symbols)

1. $1_{A}:A-arrow A$ ,

2. if $\sigma_{A,B}^{C}(f,g):Aarrow B$ then $f$ : $A-arrow C$ and $g:C-arrow B$ ,

3. if $\pi_{A,B,C}(f):$ $A$ A $B-arrow C$ then $f$ : $Aarrow C$ ,

4. if $\pi_{A,B,C}’(f):$ $A$ A $B-arrow C$ then $f$ : $Barrow C$ ,
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5. if $\Pi_{C,A,B}(f,g)$ : $Carrow A$ A $B$ then $f$ : $Carrow A$ and $g:Carrow B$ .
This property permits us to omit subscripts of operation symbols of a term
except composition formula of composition symbols provided that the sort
of the term is known.
It is clear that the next proposition holds, which says that the derivations
of deductions can be interpreted soundly and completely by the $\Sigma$-term
algebra. We call this interpretation the $\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{s}- \mathrm{a}S- \mathrm{s}\mathrm{o}\mathrm{r}\mathrm{t}_{\mathrm{S}}$ interpretation,
which is a kind of $\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}arrow \mathrm{a}\mathrm{s}$-sorts interpretation.

Proposition 7 ( $\mathrm{D}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}^{-}\mathrm{a}\mathrm{S}-\mathrm{s}_{0}\mathrm{r}\mathrm{t}\mathrm{S}$ Interpretation) For each deduc-
tion $A-arrow B$ there exists a bijection between the derivations of $Aarrow B$ and
$T_{Aarrow B}$ .

3 A reduction system

In the process of proving the weak normalization theorem in the $\Sigma$-term
algebra, which amounts to the composition rule elimination theorem in the
deductive system, we extract a reduction relation, which turns out to be
strongly normalizing and confluent.

Definition 8 The set of nornlal forms of sort $Aarrow B$ , notation $N_{A-arrow B}$ ,
is the set of ground $\Sigma$ -terms of sort $Aarrow B$ which contains no occurrences
of composition symbols.

Definition 9 The degree of $a$ formula $A$ , notation $\partial(A)$ , is defined as
follows

$\bullet$ $\partial(P)=1$ , where $P\in PS$ ;

$\bullet$
$\partial$(A A $B$ ) $= \max(\partial(A), \partial(B))+1$ , where $A,$ $B\in F$ .

The degree of a composition symbol $\sigma^{C}$ , notation $\partial(\sigma^{C})$ , is defined to
be the degree of the composition formula $C$ that is $\partial(\sigma^{C})=\partial(C)$ .
The degree of a $\mathrm{p}\mathrm{r}o$of term $f$ , notation $\partial(f)$ , is the $\sup\dot{o}f$ the degrees of
its composition symbols, so $\partial(f)=0$ iff $f$ is a normal form.
The height of a proof term $f_{f}$ notation $h(f)$ , is that of its associated tree.

Definition 10 (Redex) Let $A,$ $B,$ $C\in \mathcal{F}$ . Let $f$ : $Aarrow C$ and $g:Carrow B$

such that $\partial(f),$ $\partial(g)<\partial(C)$ . Then a proof term being of the form
$\sigma^{C}(f,g)$

is called $a$ redex.
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Note that the degree of a redex $\sigma^{C}(f,g)$ is the degree of the composition
formula $C$ . Then next lemma and proposition can be shown in a usual
constructive manner as in [Girard 89] for example.

Lemma 11 (Principal lemma) Let $C$ be a formula of degree $d$ . Suppose
that

$\sigma^{C}(f,g)$ : $Aarrow B$

is a redex. Then we can make a proof term
$h$ : $A-arrow B$

such that $\partial(h)<d$ .
See appendix A for the proof of the principal lemma. Precise trace of the
proof of this lemma suggests a one-step reduction relation as follows. The
resulting relation is somewhat cumbersome, since we do not ignore the de-
grees of terms. But the degree information ensures that the degree of a term
decreases as reduction proceeds. The relation and the terms form an ARS
(abstract reduction system) but not a TRS.

Definition 12 (Principal $\mathrm{R}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}arrow_{p}$) We define a $relationarrow_{p}$ by

$arrow_{p}=arrow 1\cuparrow 2^{\cup}arrow 3\cuparrow 4\cuparrow\epsilon\cuparrow_{7}\cuparrow 8^{\cuparrow}9^{\cup}arrow 10$,

$wherearrow_{i}’ s$, which are extracted from the proof of the principal lemma, are
defined as follows. Below the notation $\sigma^{C}(f, g)arrow ih$ denotes $thatarrow_{i}$ is the
$D$ -indexed family of relations

$\{(\sigma^{C}(f,g), h)\in \mathcal{T}_{Aarrow B}\cross \mathcal{T}_{Aarrow B}|\partial(f), \partial(g)<\partial(C)\}$ .

$\sigma^{A}(1, f)arrow 1f$,
$\sigma^{B}(f, 1)arrow 2f$,
$\sigma^{C}(\sigma^{D}(f,g),$ $h)arrow_{3}\sigma^{D}(f, \sigma C(g, h))$ ,
$\sigma^{C}(f, \sigma^{D}(g, h))arrow 4\sigma^{D}(\sigma^{c}(f,g),$ $h)$ ,
$\sigma^{C}(\mathcal{T}1(f),g)arrow 6\pi(\sigma^{c_{(f,g)}})$ ,

$\sigma^{c_{(\pi’(f}c}),$$g)arrow\tau\pi’(\sigma(f,g))$ ,
$\sigma^{c_{(f,())}c}\Pi g1,g2arrow 8\mathrm{n}(\sigma(f,g1),$ $\sigma^{c}(f,g_{2}))$ ,
$\sigma^{C_{1}\wedge}(c2\Pi(f1, f2),$ $\pi(g))arrow_{9}\sigma(c_{1}f_{1},g)$ ,
$\sigma^{C_{1^{\wedge}}C}2(\Pi(f1,f2),\pi’(g))arrow 10\sigma^{C_{2}}(f_{2}, g)$ .
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Definition 13 (One-step $\mathrm{R}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}arrow$ ) The $relationarrow is$ the compat-
ible relation generated $byarrow_{p},$ $i.e$ .

$f$ $arrow$ $g$ if $farrow_{p}g$ ,
$\sigma^{C}(f_{1}, f_{2})$ $arrow$ $\sigma^{C}(g_{1}, f_{2})$ if $f_{1}arrow g_{1}$ ,
$\sigma^{C}(f_{1}, f_{2})$ $arrow$ $\sigma^{C}(f_{1},g_{2})$ if $f_{2}arrow g_{2}$ ,

$\pi(f)$ $arrow$ $\pi(g)$ if $farrow g$ ,
$\pi’(f)$ $arrow$ $\pi’(g)$ if $farrow g$ ,

$\Pi(f1, f_{2})$ $arrow$ $\Pi(g_{1},f_{2})$ if $f_{1}arrow g_{1}$ ,
$\Pi(f_{1}, f_{2})$ $arrow$ $\Pi(f_{1},g_{2})$ if $f_{2}arrow g_{2}$ .

$\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\backslash \mathrm{n}14$ The $ARSC$ is defined by $C=\langle \mathcal{T}, arrow\rangle$ .

By using the principal lemma we have the following proposition. See ap-
pendix $\mathrm{B}$ for the proof of this proposition.

Proposition 15 Let $f$ : $A-arrow B$ such that $\partial(f)>0$ . Then we can con-
struct a proof term $g:Aarrow B$ such that $\partial(f)>\partial(g)$ and $farrow^{*}g$ .

By iterating the above proposition we have the next result.

Theorem 16 (Weak Normalization) For every proof term $f$ : $A-arrow B$ ,
there is a normal form $\mathrm{n}\mathrm{f}(f)\in N_{Aarrow B}$ such that $farrow^{*}\mathrm{n}\mathrm{f}(f)$ .

We have the following results. See appendix $\mathrm{C}$ for the proof of this theorem.

$\mathrm{T}1_{1}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}17$ (Strong Normalization) Every term is strongly normaliz-
ing.

To show $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}arrow \mathrm{i}\mathrm{s}$ locally confluent we need to introduce the next congruence
relation. This relation cannot be extracted from the principal lemma since
it does not involve any composition symbols.

Definition 18 (Congruence relation $=\mathrm{n}$ ) We define the relation $=\Pi$ on
proof terms as the $D$ -indexed family of the congruence relations generated
by the union of the relations

$\{(l, r)\in TA_{1}\wedge A_{2^{arrow}}B_{1^{\wedge}}B_{2}\cross \mathcal{T}_{A_{1^{\wedge}}A_{2^{-}}B_{1}\wedge B_{2}}|$

$l=\Pi(\pi(f), \pi(g)),$ $r=\pi(\Pi(f,g))$

for some $f$ : $A_{1}-arrow B_{1},$ $g:A_{1}-arrow B_{2}$ }
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and
$\{(l,r)\in\tau A_{1^{\wedge}}A_{2}arrow B_{1}\wedge B_{2}\cross \mathcal{T}_{A_{1}\wedge A_{2-B}}1\mathrm{A}B_{2}|$

$l=\Pi(\pi(\prime f),\pi^{J}(g)),$ $r=\pi’(\Pi(f,g))$

for some $f$ : $A_{2}-arrow B_{1,g}$ : $A_{2}arrow B_{2}$ }.
By checking all the critical situations we get the following result. See ap-
pendix $\mathrm{D}$ for the proof of this proposition.

Proposition 19 (Local Confluence) The $relationarrow is$ locally confiuent
modulo the congruence $=\Pi$ .
As a corollary we have the following theorem by the Newman’s lemma.

Theorem 20 The $ARSC$ is strongly normalizing and confluent modulo the
congruence $=\Pi$ .
As an application the word problem for the equivalence relation generated
by the ARS $C$ is thus decidable as expected.

4 Related Work

5 Conclusion

We have $\mathrm{a}\tilde{\mathrm{t}}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{e}\mathrm{d}$ a method to investigate operational semantics of deduc-
tive systems although the target deductive system was quite simple. Firstly,
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we introduced a $\Sigma$-term algebra corresponding to a variant of conjunction
calculus by means of $\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}\mathrm{a}}- \mathrm{s}- \mathrm{s}\mathrm{o}\mathrm{r}\mathrm{t}_{\mathrm{S}}$interpretation. This interpretation is
clearly sound and complete. Secondly, after having showed the weak nor-
malization theorem, we extracted a reduction relation from the principal
lemma. Finally the reduction system was shown to be strongly normalizing
and confluent modulo a congruence relation.

What we have shown in this paper indicates that the $\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}-}\mathrm{a}\mathrm{s}$-sorts
interpretation is an effective way to investigate the operational semantics
of sequent calculi. There do not seem any significant obstacles to obtain

$\underline{\nabla}$ -term algebra interpretations of other sequent calculi, including substruc-
tural logics [Ono 90], or even Gentzen’s $\mathrm{L}\mathrm{J}$ . To extract strongly normalizing
and confluent reduction relations, we may, however, need to invent some
technique to handle structural rules. This issue will be a future work.
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A Proof of Principal lemma

Let C be a formula of degree d. Suppose that $\sigma^{C}(f,g)$ : A $arrow B$ is a redex.
We construct a proof term h by induction on $h(f)+h(g)$ .
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1. Suppose that $C=A$ and that $f=1:A-arrow A$ and $g:Aarrow B$ . Then
$h$ is $g$ .

2. Suppose that $C=B$ and that $f$ : $Aarrow B$ and $g=1:Barrow B$ . Then
$h$ is $f$ .

3. Suppose that
$f=\sigma^{D}(f_{1},f_{2}):Aarrow C$

where $f_{1}$ : $Aarrow D$ and $f_{2}$ : $Darrow C$ for some $D\in \mathcal{F}$ such that $\partial(D)<$

$d$ . Then by the induction hypothesis for $f_{2}$ and $g$ , we have a proof term
$h_{1}$ : $D-arrow B$ such that $\partial(h_{1})<d$ . And so we obtain a proof term $h$

as follows
$h=\sigma^{D}(f_{1})h_{1}):A-arrow B$ .

4. $\mathrm{S}\dot{\iota}_{\mathrm{P}\mathrm{p}_{0}\mathrm{s}\mathrm{e}}1$ that
$g=\sigma^{D}(g_{1},g2)$ : $C-arrow B$

where $g_{1}$ : $Carrow D$ and $g_{2}$ : $Darrow B$ for some $D\in \mathcal{F}$ such that $\partial(D)<$

$d$ . Then by the induction hypothesis for $f$ and $g_{1}$ , we have a proof
term $h_{1}$ : $A-arrow D$ such that $\partial(h_{1})<d$ . $\mathrm{A}\mathrm{I}\tilde{\mathrm{t}}\mathrm{d}$ so we obtain a proof
term $h$ as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{S}$

$h=\sigma^{D}(h_{1,g):}2Aarrow B$ .

6 $\beta^{1}$. Suppose that $A=A_{1}$ A $A_{2}$ and that

$f=\pi(f_{1})$ : $A_{1}$ A $A_{2}-arrow C$ ,

where $f_{1}$ : $A_{1}-arrow C$ . Then by the induction hypothesis for $f_{1}$ and $g$ ,
we have a proof term $h_{1}$ : $A_{1}arrow B$ such that $\partial(h_{1})<d$ . And so we
obtain a proof term $h$ as follows

$h=\pi(h_{1})$ : $A_{1}\wedge A_{2}-arrow B$ .

/7 $l$. Suppose that $A=A_{1}$ A $A_{2}$ and that

$f=\pi’(f_{1})$ : $A_{1}$ A $A_{2}-arrow C$ ,

where $f_{1}$ : $A_{2}-arrow C$ . Then by the induction hypothesis for $f_{1}$ and $g$ ,
we have a proof term $h_{1}$ : $A_{2}-arrow B$ such that $\partial(h_{1})<d$ . And so we
obtain a proof term $h$ as follows

$h=\pi’(h_{1})$ : $A_{1}$ A $A_{2}-arrow B$ .
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$\mathrm{f}t$. Suppose that $B=B_{1}$ A $B_{2}$ and that

$g=\Pi(g_{1},g2):Carrow B_{1}$ A $B_{2}$ ,

where $g_{1}$ : $Carrow B_{1}$ and $g_{2}$ : $Carrow B_{2}$ . Then by the induction hy-
potheses for $f$ and $g_{1}$ and for $f$ and $g_{2}$ , we have aproof terms $h_{1}$ : $Aarrow B_{1}$

and $h_{2}$ : $Aarrow B_{2}$ such that $\partial(h_{1}),$ $\partial(h_{2})<d$ . And so we obtain a
proof term $h$ as follows

$h=\Pi(h_{1},h_{2})$ : $A-arrow B_{1}\wedge B_{2}$ .

$\mathfrak{q}\text{ノ}S$. Suppose that $C=C_{1}$ A $C_{2}$ and tha.t
$f=\mathrm{n}(f_{1},f_{2}):Aarrow C_{1}$ A $C_{2}$ and $g=\pi(g_{1}):c_{1}$ A $C_{2}arrow B$ ,

where $f_{1}$ : $A-arrow C_{1},$ $f_{2}$ : $A-arrow C_{2}$ , and $g_{1}$ : $C_{1}-arrow B$ . Since $\partial(C_{1})<$

$\partial(C)$ we obtain a proof term $h$ as follows

$h=\sigma^{C}(f_{1},g_{1}):Aarrow B$ .

$l^{\mathit{0}}q$ . Suppose that $C=C_{1}$ A $C_{2}$ and that

$f=\Pi(f_{1}, f_{2})$ : $Aarrow C_{1}$ A $C_{2}$ ,

where $f_{1}$ : $A-arrow C_{1}$ and $f_{22}$: $A-arrow C$ , and also that

$g=\pi’(g_{1})$ : $c_{1}$ A $C_{2}-arrow B$ ,

where $g_{1}$ : $C_{2}-arrow B$ . Since $\partial(C_{2})<\partial(C)$ we obtain a proof term $h$ as
follows

$h=\sigma^{C_{2}}(f_{2},g_{1}):A-arrow B$ .

$\square$

$\mathrm{B}$ Proof of Proposition 15

Let $f$ : $A-arrow B$ such that $\partial(f)>0$ . By induction on $h(f)$ we show that
there is a proof term $g:\mathit{4}1-arrow B$ such that $\partial(f)>\partial(g)$ and $farrow^{*}g$ .

1. Suppose that $A=B$ and $f=1$ : $A-arrow A$ . Then $\partial(f)=0$ , and so the
claim holds vacuously.
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2. Suppose that
$f=\sigma^{c_{(f1}},f2):Aarrow B$ ,

for some $f_{1}$ : $A-arrow C$ and $f_{2}$ : $Carrow B$ .
There are several cases.

(a) Suppose that $\partial(f_{1}),$ $\partial(f2)\leq\partial(C)=d$ . Then by the induction hy-
pothesis for $f_{1}$ and $f_{2}$ , there exist $f_{1}’$ : $A-arrow C$ and $f_{2}’$ : $Carrow B$

such that $\partial(f_{1}’),$ $\partial(f_{2}’)<\partial(C),$ $f_{1}arrow^{*}f_{1}’$ and $f_{2}arrow^{*}f_{2}’$ . Then
$\psi^{-c}(f_{\acute{\mathrm{J}},\mathrm{r}_{\mathit{1}}}\partial\prime\prime,\ovalbox{\tt\small REJECT}’-$-. is a redex, and so we obtain a proof

term $g$ by the above lemma.
(b) Suppose that $\partial(f_{1}),$ $\partial(f2)>\partial(C)$ . Then by the induction hy-

potheses for $f_{1}$ and $f_{2}$ we have proof terms $g_{1}$ : $Aarrow C$ and
$g_{2}$ : $C-arrow B$ such that $\partial(g_{1}),$ $\partial(g_{2})<d,$ $f_{1}arrow^{*}g_{1}$ and $f_{2}arrow^{*}g_{2}$ .
And so we obtain a proof term $g$ as follows

$g=\sigma^{C}(g_{1_{)}g_{2})B}$: $A-arrow$ .

3. Suppose that $A=A_{1}$ A $A_{2}$ and that

$f=\pi(f_{1}):A_{1}$ A $A_{2}-arrow B$ ,

where $f_{1}$ : $A_{1}arrow B$ such that $\partial(f_{1})=d$ . Then by the induction hy-
pothesis for $f_{1}$ , we have a proof term $g_{1}$ : $A_{1}-arrow B$ such that $\partial(g_{1})<d$

and $f_{1}arrow^{*}g_{1}$ . And so we obtain a proof term $g$ as follows

$g=\pi(g_{1}):A_{1}$ A $A_{2}arrow B$ .

4. Suppose that $A=A_{1}$ A $A_{2}$ and that $f=\pi’(f_{1})$ : $A_{1}\wedge A_{2}-arrow B$ , where
$f_{1}$ : $A_{2}arrow B$ such that $\partial(f_{1})=d$ . Same as the above case.

5. Suppose that $B=B_{1}$ A $B_{2}$ and that $f=\Pi(f_{1},f2):A-arrow B1$ A $B_{2}$ ,
where $f_{1}$ : $A-arrow B_{1}$ and $f_{2}$ : $Aarrow B_{2}$ such that $\partial(f_{1})=d$ or $\partial(f_{2})=$

$d$ . Same as the above case.
$\square$

$\mathrm{C}$ Proof of Strong Normalization

It is clear that if $f,$ $f_{1}$ and $f_{2}$ are strongly normalizing, then $\pi(f),$ $\pi’(f)$ and
$\Pi(f1,f_{2})$ are. Below we implicitly use this fact.

Proposition 21 Let $f$ : $Aarrow C$ and $g:C-arrow B$ . If $f$ and $g$ are strongly
normalizing, then $\sigma^{C}(f,g)$ is strongly normalizing.
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Proof Let $f$ : $A-arrow C$ and $g:C-arrow B$ . Suppose that $f$ and $g$ are strongly
normalizing. To show that $\sigma^{C}(f,g)$ is strongly normalizing it is sufficient to
show that whenever $\sigma^{C}(f,g)arrow h,$ $h$ is strongly normalizing. Induction on
$\nu(f)+\nu(g)$ , where $\nu(f)$ is a upper bound of length of every normalization
sequence beginning with $f$ .

1. $\partial(f),$ $\partial(g)<\partial(C)$ . Then $\sigma^{C}(f,g)$ is a redex. Suppose that $h$ is the
result of the reduction. By induction on the degree of the composition
formula $C$ we show that $h:Aarrow B$ is strongly $\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{J}\mathrm{i}_{\mathrm{Z}\mathrm{i}\mathrm{n}}\mathrm{g}$ . Note
that $\partial(f),$ $\partial(g)<\partial(C)$ since $\sigma^{C}(f,g)$ is a redex.

(a) Suppose that $C\in \mathcal{P}S$ . By induction on the sum of the lengths
of $f$ and $g$ , we show that $h$ is strongly normalizing. Note that $f$

cannot be of the form $\Pi(f1, f_{2})$ for some $f_{1}$ and $f_{2}$ , and also both
of $f$ and $g$ are normal forms since $\partial(f)=\partial(g)=0$ . And so there
are next five cases.

$\mathrm{i}$ . $C=A$ and $f=1$ . Then $\sigma^{C}(f,g)=\sigma^{A}(1,g)$ , and so $h=g$ .
By assumption $g$ is strongly normalizing.

$\mathrm{i}\mathrm{i}$ . $C=B$ ancl $g=1$ . Same as $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{e}$ above case.
$\mathrm{i}\mathrm{i}\mathrm{i}$ . $A=A_{1}$ A $A_{2}$ for some $A_{1}$ and $A_{2}$ , and $f=\pi(f_{1})$ . Then

$\sigma^{C}(f,g)=\sigma c(\pi(f_{1}),g)$ ,

and so
$h=\pi(\sigma^{c_{(f1,g)}})$ .

Since $f$ is strongly normalizing, $f_{1}$ is, and so by the induction
hypothesis for $f_{1}$ and $g,$ $\sigma^{C}(f_{1},g)$ is strongly normalizing.
Therefore $h$ is.

$\mathrm{i}\mathrm{v}$ . $A=A_{1}$ A $A_{2}$ for some $A_{1}$ and $A_{2}$ , and $f=\pi’(f_{1})$ . This case
is same as the above case.

$\mathrm{v}$ . $B=B_{1}$ A $B_{2}$ for some $B_{1}$ and $B_{2}$ , and $g=\Pi(g_{1},g_{2})$ . Then

$\sigma^{C}(f,g)=\sigma^{c}(f,\Pi(g1,g2))$ ,

and so
$h=\mathrm{I}\mathrm{I}(\sigma^{c}(f, g1),\sigma^{C}(f,g_{2}))$ .

Since $g$ is strongly normalizing, $g_{1}$ and $g_{2}$ are, and so, by the
induction hypotheses for $f$ and $g_{1}$ and for $f$ and $g_{2},$

$\sigma^{C}(f, g_{1})$

and $\sigma^{C}(f,g_{2})$ are strongly normalizing. Therefore $h$ is.
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(b) $C=C_{1}\wedge C_{2}$ for some $C_{1}$ and $C_{2}$ . Note that $\partial(f),\partial(g)<\partial(C)$ .
By induction on the sum of the lengths of $f$ and $g$ ) we show that
$h$ is strongly normalizing. We consider the next four cases since
other cases are same as the base step.

$\mathrm{i}$ . $f=\sigma^{D}(f_{1},f_{2})$ for some $D,$ $f_{1}$ and $f_{2}$ . Then

$\sigma(cf,g)=\sigma(c\sigma D(f1, f2),g)$ ,

and so
$h=\sigma^{D}(f1,$ $\sigma^{c_{(f_{2},g))}}$ .

Since $f$ is strongly normalizing, $f_{2}$ is, and so, by the induction
hypothesis for $f_{2}$ and $g,$ $\sigma^{C}(f_{2},g)$ is strongly normalizing.
Note that $f_{1}$ is strongly normalizing since $f$ is, and $\partial(D)<$

$\partial(C)$ since $\partial(f)<\partial(C)$ . Therefore, by the induction hy-
pothesis for $D,$ $h$ is.

$\mathrm{i}\mathrm{i}$ . $g=\sigma^{D}(g_{1}, g_{2})$ for some $D,$ $g_{1}$ and $g_{2}$ . Same as the above
case.

$\mathrm{i}\mathrm{i}\mathrm{i}$ . $f=\Pi(f_{1}.’ f_{2})$ for some $f_{1}$ and $f_{2}$ , and $g=\pi(g_{1})$ for some $g_{1}$ .
Then

$\sigma(Cf,g)=\sigma C_{1}\wedge c2(\Pi(f1,f_{2}),\pi(g1))$ ,

and so
$h=\sigma^{C_{1}}(f1,g_{1})$ .

Note that $\partial(C_{1})<\partial(C)$ , and that $f_{1}$ and $g_{1}$ are strongly
normalizing since $f$ and $g$ are. And so, by the induction
hypothesis for $C_{1},$ $h$ is strongly normalizing.

$\mathrm{i}\mathrm{v}$ . $f=\Pi(f_{1},f_{2})$ , for some $f_{1}$ and $f_{2}$ , and $g=\pi’(g_{1})$ for some
$g_{1}$ . Same as the above case.

2. $farrow f’$ . Then $\sigma^{C}(f,g)arrow\sigma^{C}(f’,g)$ . Note that $f’$ is strongly normal-
izing since $f$ is. And so, by the induction hypothesis for $f’$ and $g$ ,
$\sigma^{C},(f’, g)$ is strongly normalizing.

3. $garrow g’$ . This case is same as the above.

$\square$
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Proof of Theorem 17 Let $f$ : $Aarrow B$ be an arbitrary term. By the
induction on $f$ , we show that $f$ is strongly normalizing.

1. $A=B$ and $f=1$ . Then clearly $f$ is strongly normalizing.

2. $f=\sigma^{C}(f_{1}, f_{2})$ for some $C$ and $f_{1}$ and $f_{2}$ . Then by the induction
hypotheses for $f_{1}$ and $f_{2}$ , they are strongly normalizing. Hence $f$ is
by the above proposition.

3. $f=\pi(f_{1})$ for some $f_{1}$ . Then, by the induction hypothesis for $f_{1}$ , it is
strongly normalizing, and so $f$ is.

4. $f=\pi’(f_{1})$ for some $f_{1}$ . Same as above case.

5. $f=\Pi(f_{1}, f_{2})$ for some $f_{1}$ and $f_{2}$ . Then, by the induction hypotheses
for $f_{1}$ and $f_{2}$ , they are strongly normalizing, and so $f$ is.

$\square$

$\mathrm{D}$ Proof of Local Confluence

For $f$ : $A-arrow C$ and $g:Carrow B$ , we introduce a notation $f\triangleright^{C}g$ which
stands for $\sigma^{C}(f,g)$ . Below we implicitly use Theorem 17.

Lemma 22 Let $f$ : $A-arrow B,$ $g:Barrow C$ and $h:C-arrow D$ , where $\partial(B)=$

$\partial(C)$ , be normal forms. And let $m$ and $n$ be normal forms of $f\triangleright^{B}g$ and
$g\triangleright^{C}h$ respectively. Then there exists a term $k:Aarrow D$ such that $m\triangleright^{C}harrow^{*}$

$k$ and $f\triangleright^{B}narrow^{*}k$ .

We can prove this leInma by induction on the sum of lengths $f,$ $g$ and $h$ .

Proof of Proposition 19 Let $f,$ $h,$ $k\in \mathcal{T}_{Aarrow B}$ . Assume that $farrow h$ and
$farrow k$ . Then we need to show that there exists $g\in \mathcal{T}_{Aarrow B}$ such that $harrow^{*}g$

and $karrow^{*}g$ . We check $.\mathrm{a}11$ t.hc critical situations.

1. Suppose that $B=A$ and $f=1\triangleright^{A}1$ . Since $\partial(1)=0<\partial(A)$ , we have
$farrow_{1}h$ and $farrow_{2}k$ , where $h=k=1$ . We set $g=1$ .

2. Suppose that
$f=1\triangleright^{A}(f_{1^{\triangleright}’}.Df_{2})$
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for some $f_{1}$ : $Aarrow D$ and $f_{2}$ : $Darrow B$ such that $\partial(f_{1}\triangleright^{D}f_{2})<\partial(A)$ .
Then $farrow_{1}h$ and $farrow_{4}k$ , where

$h=f_{1}\triangleright^{D}f_{2}$ and $k=(1\triangleright^{A}f_{1})\triangleright^{D}f_{2}$ .

But since $\partial(f_{1})<\partial(A)$ we have $1\triangleright^{A}f_{1}arrow 1f_{1}$ , and so $karrow h$ . We set
$g=h$.

3. Suppose that $B=B_{1}$ A $B_{2}$ and

$f=1\triangleright^{A}\Pi(f_{1}, f_{2})$

for some $f_{1}$ : $A-arrow B_{1}$ and $f_{2}$ : $A-arrow B2$ such that $\partial(\mathrm{I}\mathrm{I}(f_{1}, f_{2}))<$

$\partial(A)$ . Then $farrow_{1}h$ and $farrow_{8}k$ where

$h=\mathrm{n}(f_{1}, f_{2})$ and $k=\Pi(1\triangleright^{A}f_{1},1\triangleright^{A}f_{2})$ .

But since $\partial(f_{1}))\partial(f2)<\partial(A)$ we have $1\triangleright^{A}f_{i}arrow 1f_{i}$ for $i=1,2$ , and
so $karrow+_{h}$ . We set $g=h$ .

4. $\mathrm{S}$ uppose that
$f=(f_{1^{\triangleright^{D}}}f2)\triangleright 1B$ .

for some $f_{1}$ : $A-arrow D$ and $f_{2}$ : $D-arrow B$ such that $\partial(f_{1}\triangleright^{D}f_{2})<\partial(B)$ .
Then $f$. $arrow_{2}h$ and $farrow_{3}k$ where

$h=f_{1}\triangleright^{D}f_{2}$ and $k=f_{1}\triangleright^{D}(f_{2}\triangleright^{B}1)$ .

But since $\partial(f_{2})<\partial(B)$ we have $f_{2}\triangleright^{B}1arrow 2f_{2}$ , and so $karrow h$ . We set
$g=h$ .

5. Suppose that $A=A_{1}$ A $A_{2}$ and

$f=\pi(f_{1}\rangle\triangleright^{B}1$

for some $f_{1}$ : $A_{1}arrow B$ such that $\partial(\pi(f_{1}))<\partial(B)$ . Then $farrow 2h$ and
$farrow_{6}k$ where

$h=\pi(f_{1})$ and $k=\pi(f_{1}\triangleright^{B}1)$ .

But since $\partial(f_{1})<\partial(B)$ , we have $f_{1}\triangleright^{B}1arrow_{2}f_{1}$ and so $karrow h$ . We set
$g=h$ .
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6. Suppose that $A=A_{1}$ A $A_{2}$ and $f=\pi’(f_{1})\triangleright^{B}1$ for some $f_{1}$ : $A_{2}arrow B$

such that $\partial(\pi’(f1))<\partial(B)$ . Same as the above case.

7. $\mathrm{S}$ uppose that
$f=(f_{1}\triangleright^{D}f_{2})\triangleright c_{(}f_{3^{\triangleright}}Ef_{4})$ ,

for some $f_{1}$ : $Aarrow D,$ $f_{2}$ : $Darrow C,$ $f_{3}$ : $C-arrow E$ , and $f_{4}$ : $Earrow B$

such that $\partial(f_{1}\triangleright^{D}f_{2}),$ $\partial(f3\triangleright^{E}f_{4})<\partial(B)$ . Then $f\sim_{3}h$ and $f\sim_{4}k$

where

$h=f1^{\triangleright^{D}(f2}\triangleright^{c_{(}E}f_{3}\triangleright f4))$ ,
$k=((f1\triangleright^{Dc}f2)\triangleright f_{3})\triangleright fE4$ .

But since $\partial(f_{1}.),$ $\partial(D),$ $\partial(E)<\partial(C)$ we have

$h$ $arrow$ $f_{1}\triangleright^{D}((f2^{\triangleright}fc)3\triangleright f_{4})E$ $arrow^{*}$ $n_{1}\triangleright^{D}(n_{2}\triangleright^{E}n3)=h’$ ,
and

$k$ $arrow$ $(f_{1}\triangleright^{D}(f_{2^{\triangleright^{C}}}f3))\triangleright^{E}f4$ $arrow^{*}$ $(n_{1^{\triangleright^{D}n_{2})=}}\triangleright n_{3}k’E$ ,

where $n_{1},$ $n_{2}$ and $n_{3}$ are normal forms of $f_{1},$ $f_{2}\triangleright^{C}f_{3}$ and $f_{4}$ respec-
tively. There are three cases.. $\partial(D)<\partial(E)$ . Then we have $k’arrow h’$ , thereby we set $g=k’$ .. $\partial(E)<\partial(D)$ . Then we have $h’arrow k’$ , thereby we set $g=h’$ .

$\bullet$ $\partial(D)=\partial(E)$ . Let $p$ and $q$ be normal forms of $n_{2}\triangleright^{E}n_{3}$ and
$n_{1}\triangleright^{D}n_{2}$ respectively. Then, by the above lemma, there exists $r$

such that $n_{1}\triangleright^{D}parrow^{*}r$ and $q\triangleright^{E}n_{3}arrow^{*}r$ . And so $harrow^{*}r$ and
$karrow^{*}r$ . Thereby we set $g=r$.

8. $\mathrm{S}\mathrm{u}\mathrm{p}$.pose that $B=B_{1}$ A $B_{2}$ and

$f=(f_{1^{\triangleright}}Df2)\triangleright^{C_{\Pi}}(f3, f_{4})$ ,

for some $f_{1}$ : $A-arrow D,$ $f2:D-arrow c,$ $f3:c-arrow B_{1}$ , and $f_{4}$ : $C-arrow B_{2}$

such that $\partial(f_{1}\triangleright^{D}f_{2}),$ $\partial(\Pi(f_{3}, f_{4}))<\partial(B)$ . Then $farrow_{3}\mathit{1}\iota$ and $farrow_{8}k$

where

$h$ $=$ $f_{1}\triangleright^{D}(f_{2}\triangleright\Pi C(f_{3,f4}))$ ,
$k$ $=$ $\Pi((f_{1^{\triangleright^{D}}}f_{2})\triangleright^{C}f3, (f_{1}\triangleright^{D}f2)\triangleright^{c}f4)$
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But since $\partial(f_{i}),$ $\partial(D)<\partial(C)$ we have

$h$ $arrow$ $f_{1} \triangleright^{D}\prod(f_{2}\triangleright^{G}f_{3}, f_{2^{\triangleright}}Cf_{4})arrow^{*}f_{1}\triangleright^{D}\prod(n_{1}, n_{2})$

$arrow$ $\prod(f_{1}\triangleright^{D}n_{1}, f_{1^{\triangleright^{D}n}2})$,
$k$ $arrow$ $\prod(f_{1}\triangleright^{B_{1}}(f_{2}\triangleright^{C}f_{3}), f_{1}\triangleright^{B_{2}}(f_{2}\triangleright^{C}f_{4}))arrow^{*}\prod(f_{1}\triangleright^{D}n_{1}, f_{1}\triangleright^{D}n_{2})$ ,

where $n_{1}$ and $n_{2}$ are normal forms of $f_{2}\triangleright^{C}f_{3}$ and $f_{2}\triangleright^{C}f_{4}$ respectively.
Thereby we set $g=\Pi(f_{1}\triangleright^{D}n_{1},f_{1}\triangleright^{D}n_{2})$.

9. Suppose that $A=A_{1}$ A $A_{2}$ and

$f=\pi(f_{1})\triangleright(cf2\triangleright^{D}f_{3})$

for some $f_{1}$ : $A_{1}arrow C,$ $f_{2}$ : $Carrow D$ and $f_{3}$ : $Darrow B$ such that
$\partial(\pi(f_{1})),$ $\partial(f_{2}\triangleright^{D}f_{3})<\partial(B)$ . Then $farrow_{4}h$ and $farrow_{6}k$ , where

$h$ $=$ $(\pi(f_{1})\triangleright f_{2}c)\triangleright^{D}f3$,
$k$ $=$ $\pi(f_{1^{\triangleright^{C}}}(f_{2^{\triangleright}}Df_{3}))$ .

But since $\partial(f_{1}),$ $\partial(D)<\partial(B)$ we have

$h$ $arrow$ $\pi(f_{1^{\triangleright^{C}}}f2)\triangleright fD3arrow\pi((f_{1}\triangleright^{cD}f2)\triangleright f_{3})$ ,
$k$ $arrow$ $\pi((f_{1}\triangleright^{cD}f2)\triangleright f_{3})$ .

Thereby we set $g=\pi((f_{1}\triangleright^{C}f_{2})\triangleright^{D}f_{3})$ .
10. Suppose that $A=A_{1}$ A $A_{2}$ and $f=\pi’(f_{1})\triangleright^{C}(f_{2}\triangleright^{D}f_{3})$ for some

$f_{1}$ : $A_{2^{-}}arrow C,$ $f_{2}$ : $c–D$ and $f_{3}$ : $Darrow B$ such that
$\partial(\pi(f_{1})),$ $\partial(f_{2}\triangleright^{D}f_{3})<\partial(B)$ . Same as the above case.

11. Suppose that $A=A_{1}$ A $A_{2)}B=B_{1}$ A $B_{2}$ and

$f=\pi(f_{1})\triangleright^{C}(\Pi(f_{2},f_{3}))$

for some $f_{1}$ : $A_{1}arrow c,$ $f_{2}$ : $Carrow B_{1}$ and $f_{3}$ : $Carrow B_{2}$ such that
$\partial(\pi(\prime f_{1})),$ $\partial(\Pi(f2,f_{3}))<\partial(B)$ .
Then $farrow_{6}h$ and $farrow_{8}k$ , where

$h$ $=$ $\pi(f_{1^{\triangleright^{C}\Pi}}(f2, f_{3}))$ ,
$k$ $=$ $\Pi(\pi(f_{1})\triangleright^{c}f2, \pi(f1)\triangleright^{C}f3)$ .
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But since $\partial(f_{1}),$ $\partial(f2),\partial(f3)<\partial(B)$ we have

$h$ $arrow$ $\pi(\Pi(f_{1^{\triangleright^{c}}}f2,f_{1^{\triangleright}}Cf_{3}))=h’$,
$k$ $arrow$ $\Pi(\pi(f_{1^{\triangleright}f_{2}}c),\pi(f_{1^{\triangleright}}Cf3))=k’$ .

Thereby we set $g=h’=\Pi k’$ .

12. Suppose that $A=A_{1}$ A $A_{2},$ $B=B_{1}$ A $B_{2}$ and

$f=\pi’(f1)\triangleright\Pi c(f_{2},f_{3})$

for some $f_{1}$ : $A_{2}arrow C,$ $f_{2}$ : $c-arrow B_{1}$ and $f_{3}$ : $Carrow B_{2}$ such that
$\partial(\pi’(f1)),$ $\partial(\Pi(f_{2},f_{3}))<\partial(B)$ . Then $farrow\tau^{h}$ and $farrow_{8}k$ , where

$h$ $=$ $\pi’(f1^{\triangleright}c_{\Pi}(f2, f_{3}))$,
$k$ $=$ $\Pi(\pi’(f1)\triangleright fC2, \pi’(f1)\triangleright^{c_{f3}})$ .

This case is same as the above case.

$\square$
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