Some Results on the CR property of non-E-overlapping and depth-preserving TRS's (Theory of Rewriting Systems and Its Applications)

Author(s)
Oyamaguchi, Michio; Gomi, Hiroshi

Citation
数理解析研究所講究録 1995, 918: 150-159

Issue Date
1995-08

URL
http://hdl.handle.net/2433/59669

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Some Results on the CR property of non-E-overlapping and depth-preserving TRS's

Michio Oyamaguchi
Faculty of Engineering
Mie University
(email: mo@info.mie-u.ac.jp)

Hiroshi Gomi
Faculty of Engineering
Mie University and
Oki TecnadoSems Laboratory, Inc.
(email: gomi@info.mie-u.ac.jp)

Abstract

A term rewriting system (TRS) is said to be depth-preserving if for any rewrite rule and any variable appering in the both sides, the maximal depth of the variable occurrences in left-hand-side is greater than or equal to that of the variable occurrences in the right-hand-side, and to be strongly depth-preserving if it is depth-preserving and for any rewrite rule and any variable appering in the left-hand-side, all the depths of the variable occurrences in the left-hand-side are the same. This paper shows that there exists non-E-overlapping and depth-preserving TRS's which do not satisfy the Church-Rosser property, but all the non-E-overlapping and strongly depth-preserving TRS's satisfy the Church-Rosser property.

1 Introduction

A term-rewriting system (TRS) is a set of directed equations (called rewrite rules). A TRS is Church-Rosser (CR) if any two interconvertible terms reduce to some common term by applications of the rewrite rules. Church-Rosser is an important property in various applications of TRS's and has received much attention so far [1-5,8-15]. Although the CR property is undecidable for general TRS's, many sufficient conditions for ensuring this property have been obtained [1,3,5,8-15]. For example, for noetherian (i.e. terminating) TRS's, the CR property is decidable and reduces to joinability of the critical pairs [5], and for nonterminating and linear TRS's, some sufficient conditions (e.g., nonoverlapping) have been given [3, 11].

On the other hand, for nonlinear and nonterminating TRS's, only a few results on the CR property have been obtained. Our previous paper [9,10,13] may be pioneer ones which have first given nontrivial conditions for the CR property. In [10], it was shown that if TRS's are non-E-overlapping (stronger than nonoverlapping) and right-ground, then they are CR. Here, a TRS is right-ground if no variables occur in the right-hand-side of a rewrite rule. This result is compared with an example given by G.Huet [3], i.e., a nonoverlapping, right-ground and non-CR TRS with the three rules: \(f(x, x) \rightarrow a, f(x, g(x)) \rightarrow b, c \rightarrow g(c) \). Here, \(f, g, a, b, c \) are function symbols and \(x \) is a variable. The above result was extended in [9,13,14,15] and it was shown that if TRS's are non-E-overlapping and simple-right-linear, then they are CR. Here, a TRS is simple-right-linear if for any rewrite rule, the right-hand-side is linear (i.e., any variable occurs at most once in the term) and no variables occurring more than once in the left-hand-side occur in the right-hand-side. Moreover, it was shown that even if simple-right-linear TRS's are E-overlapping, some additional conditions ensure that they are CR [9,13,15].

However, these results were restricted to those on the CR property of subclasses of right-linear TRS's. On the other hand, if we omit the right-linearity condition, then it has been shown that
only the non-E-overlapping condition is insufficient for ensuring the CR property of TRS's. For example, the following non-E-overlapping TRS \(R_1 \) is not CR: \(R_1 = \{ f(x, x) \rightarrow a, g(x) \rightarrow f(x, g(x)), c \rightarrow g(c) \} \) given by Barendregt and Klop. Here, \(f, g, a, c \) are function symbols and \(x \) is a variable.

In this paper, we consider the CR property of nonlinear, nonterminating and depth-preserving TRS's. Here, a TRS is depth-preserving if for each rule \(\alpha \rightarrow \beta \) and any variable \(x \) appearing in both \(\alpha \) and \(\beta \), the maximal depth of the \(x \) occurrences in \(\alpha \) is greater than or equal to that of the \(x \) occurrences in \(\beta([6]) \). For example, TRS \(R_2 = \{ f(x, g(x)) \rightarrow h(k(x), x) \} \), where \(x \) is a variable, is depth-preserving, since the maximal depths of the \(x \) occurrences of the left-hand-side and of the right-hand-side are 2 and 2, respectively.

We first show that only the non-E-overlapping and depth-preserving properties are insufficient for ensuring the CR property. That is, the following TRS \(R_3 \) is not CR: \(R_3 = \{ f(x, x) \rightarrow a, c \rightarrow h(c, g(c)), h(x, g(x)) \rightarrow f(x, h(x, g(c))) \} \) where \(x \) is a variable. Note that \(R_3 \) is non-E-overlapping and depth-preserving, but \(R_3 \) is not CR, since \(c \rightarrow h(c, g(c)) \rightarrow^* a \) and \(c \rightarrow^* h(a, g(a)) \), but \(a \) and \(h(a, g(a)) \) are not joinable. Note that \(R_3 \) is also non-duplicating, since for each rule the number of \(x \) occurrences of the left-hand side \(\geq \) that of the right-hand side. Thus, non-E-overlapping, non-duplicating and depth-preserving conditions do not necessarily ensure CR.

Next, we introduce the notion of strongly depth-preserving property (stronger than the depth-preserving one). A TRS \(R \) is strongly depth-preserving if \(R \) is depth-preserving and for each \(\alpha \rightarrow \beta \) and for any variable \(x \) appearing in \(\alpha \), all the depths of the \(x \) occurrences in \(\alpha \) are the same. For example, TRS \(R_4 = \{ h(g(x), g(x)) \rightarrow f(x, h(x, g(c))) \} \) is strongly depth-preserving, since \(R_4 \) is depth-preserving and all the depths of \(x \) occurrences of the left-hand side are 2.

In this paper, we prove that non-E-overlapping and strongly depth-preserving TRS's are CR. For example, the following three TRS's \(R_1', R_3' \) and \(R_5 \) are ensured to be CR:

\[
R_1' = \{ f(x, x) \rightarrow a, c \rightarrow g(c), g(x) \rightarrow f(x, x) \}
\]

\[
R_3' = \{ f(x, x) \rightarrow a, c \rightarrow h(c, g(c)), h(g(x), g(x)) \rightarrow f(x, h(x, g(c))) \}
\]

\[
R_5 = \{ f(x, x) \rightarrow h(x, z, z) \}
\]

This paper is organized as follows. Section 2 is devoted to definitions. In Section 3, we explain how to prove the above main theorem. In Section 4, we make concluding remarks about the strongly depth-preserving property.

2 Definitions

The following definitions and notations are similar to those in [3, 10]. Let \(X \) be a set of variables, \(F \) be a finite set of operation symbols and \(T \) be the set of terms constructed from \(X \) and \(F \).

Definitions of \(< O(M), M/u, M[u \leftarrow N], V(M), O_x(M) >\)

For a term \(M \), we use \(O(M) \) to denote the set of occurrences (positions) of \(M \), and \(M/u \) to denote the subterm of \(M \) at occurrence \(u \), and \(M[u \leftarrow N] \) to denote the term obtained form \(M \) by replacing the subterm \(M/u \) by term \(N \), \(V(M) \) to denote the set of variables in \(M \), \(O_x(M) \) to denote the set of occurrences of variable \(x \in V(M) \).

Definitions of \(< \bar{O}(M) >\)

\(\bar{O}(M) \) is the set of non-variable occurrences, i.e.,

\(\bar{O}(M) = O(M) - \cup_{x \in V(M)} O_x(M) \)
Definition of $h(M)$ — height of M

For a term M, $h(M) = \max\{|u| \mid u \in O(M)\}$. $h(M)$ is called "height of $M".

Example.

$h(f(g(x))) = 2$, $h(a) = 0$, $h(g(x)) = 1$.

Definition of TRS

A term-rewriting system (TRS) is a set of directed equations (called rewrite rules).

Definition of $\text{depth-preserving TRS } R$

TRS R is depth-preserving if

$\forall \alpha \rightarrow \beta \in R \forall x \in V(\alpha) \quad \max\{|v| \mid v \in O_x(\beta)\} \leq \max\{|u| \mid u \in O_x(\alpha)\}$

Note

TRS R is depth-preserving if and only if R is locally increasing, i.e., $\exists l \geq 0$ such that $\forall \alpha \rightarrow \beta \in R \forall \sigma \in \mathcal{O}(\alpha)$: $h(\sigma(\alpha)) < h(\sigma(\beta))$ then $h(\sigma(\alpha)) \leq l$

Definition of $\text{strongly depth-preserving TRS } R$

TRS R is strongly depth-preserving if R is depth-preserving and satisfies that $\forall \alpha \rightarrow \beta \in R \forall x \in V(\alpha) \forall \sigma \in \mathcal{O}(\alpha)$:

$|u| = |v|$ hold.

Definition of $\text{parallel-one-step } \leftrightarrow$

$M \leftrightarrow N$ if

$\exists U \subseteq O(M)$ s.t.

$\forall u, v \in U \quad u \neq v \Rightarrow u \nmid v \text{ (disjoint)}$

$\forall u \in U \quad M/u \nmid N/u$

$N = M[u \leftarrow N/u, u \in U]$ where $M/u \nmid N/u$ is one step reduction between $\{M/u, N/u\} = \{\sigma(\alpha), \sigma(\beta)\}$ for some $\alpha \rightarrow \beta \in R$ and $\sigma : X \rightarrow T$.

In this case, let $R(M \leftrightarrow N) = U$.

(Note. $U = \emptyset$ is allowed.)

Example.

Let $R = \{a \rightarrow c\}$, then $f(c, g(a)) \leftrightarrow f(a, g(c))$.

Definition of $R(\gamma)$, $\text{MR}(\gamma)$, u-invariant

$R(\gamma) = \{u_i \mid u_i \in R(M_i \leftrightarrow M_{i+1}) (0 \leq i \leq n)\}$

$\text{MR}(\gamma)$ is the set of minimal occurrences in $R(\gamma)$.

For $u \in O(M_0)$, if there exists no $v \in R(\gamma)$ such that $v \leq u$, then γ is said to be u-invariant.

Definition of $\text{composition, cut of reduction sequence}$

Let $\delta : N_0 \leftrightarrow N_1 \leftrightarrow \cdots \leftrightarrow N_k$. If $M_n = N_0$, then the composition of γ and δ, i.e.,

$M_0 \leftrightarrow M_1 \leftrightarrow \cdots \leftrightarrow M_n(=N_0) \leftrightarrow N_1 \leftrightarrow \cdots \leftrightarrow N_k$ is denoted by $(\gamma; \delta)$.

Let γ be u-invariant, then the cut sequence of γ at u is $\gamma/u = (M_0/u \leftrightarrow M_1/u \leftrightarrow \cdots \leftrightarrow M_n/u)$.

Definition of \(H(\gamma) \) — the height of reduction sequence

\[
H(\gamma) = \text{Max}\{h(M_i) \mid 0 \leq i \leq n\}
\]

Example.
Let \(\gamma : f(c) \to f(g(c)) \to a \), then \(H(\gamma) = h(f(g(c))) = 2 \).

Definition of \(|\gamma|_{p} \) — the number of parallel reduction steps of \(\gamma \)

\(|\gamma|_{p} = n \)

Note.
If \(\delta : M \leftrightarrow M \), then \(|\delta|_{p} = 1 \).

Example.
Let \(\gamma : f(c) \to f(g(c)) \to a \to a \), then \(|\gamma|_{p} = 2 \).

Definition of \(\text{net}(\gamma) \)

\(\text{net}(\gamma) \) is the sequence obtained from \(\gamma \) by removing all \(M_i \to M_{i+1} \) satisfying \(M_i = M_{i+1} \), \(0 \leq i < n \).

Example.
Let \(\gamma : f(c) \to f(g(c)) \to a \to a \), then \(\text{net}(\gamma) : f(c) \to f(g(c)) \to a \).

Definition of \(|\gamma|_{np} \)

\(|\gamma|_{np} = |\text{net}(\gamma)|_{p} \)

Definitions of \(\text{left}(\gamma, h), \text{right}(\gamma, h), \text{width}(\gamma, h), \text{ldis}(\gamma, h), \text{rdis}(\gamma, h) \)

\[
\text{left}(\gamma, h) \downarrow \overset{\text{def}}{=} \text{left}(\gamma, h) \neq \perp \quad \text{if } \exists i \ (0 \leq i \leq n) \text{ s.t. } h(M_i) = h \text{ and } \forall j (0 \leq j < i) \ h(M_j) < h \\
\text{otherwise}
\]

\[
\text{right}(\gamma, h) \downarrow \overset{\text{def}}{=} \text{right}(\gamma, h) \neq \perp \quad \text{if } \exists i \ (0 \leq i \leq n) \text{ s.t. } h(M_i) = h \text{ and } \forall j \ (i < j \leq n) \ h(M_j) < h \\
\text{otherwise}
\]

\[
\text{left}(\gamma, h) \uparrow \overset{\text{def}}{=} \text{left}(\gamma, h) = \perp
\]

\[
\text{right}(\gamma, h) \uparrow \overset{\text{def}}{=} \text{right}(\gamma, h) = \perp
\]

\[
\text{width}(\gamma, h) = \text{right}(\gamma, h) - \text{left}(\gamma, h)
\]

\[
\text{width}(\gamma, h) = \text{right}(\gamma, h) - \text{left}(\gamma, h')
\]

\[
\text{left}(\gamma, h) \downarrow \text{right}(\gamma, h) \downarrow \text{if } \text{left}(\gamma, h) \downarrow \land \text{right}(\gamma, h) \downarrow \\
\text{left}(\gamma, h) \uparrow \text{right}(\gamma, h) \downarrow \text{if } \text{left}(\gamma, h) \uparrow \land \text{right}(\gamma, h) \downarrow \\
h' = \text{Min}\{h' \mid h' > h \land \text{left}(\gamma, h') \downarrow \}
\text{if } \text{left}(\gamma, h) \downarrow \land \text{right}(\gamma, h) \uparrow \\
\text{left}(\gamma, h') \downarrow \text{right}(\gamma, h) \downarrow \text{if } \text{left}(\gamma, h) \downarrow \land \text{right}(\gamma, h') \downarrow \\
\text{otherwise}
\]
\begin{align*}
\text{ldis}(\gamma, h) & = n - \text{left}(\gamma, h) & \text{if } \text{left}(\gamma, h) \downarrow \\
& = \bot & \text{otherwise} \\
\text{rdis}(\gamma, h) & = \text{right}(\gamma, h) & \text{if } \text{right}(\gamma, h) \downarrow \\
& = \bot & \text{otherwise} \\
\text{ldis}(\gamma, h) \downarrow & \overset{\text{def}}{=} \text{ldis}(\gamma, h) \neq \bot \\
\text{rdis}(\gamma, h) \downarrow & \overset{\text{def}}{=} \text{rdis}(\gamma, h) \neq \bot \\
\text{ldis}(\gamma, h) \uparrow & \overset{\text{def}}{=} \text{ldis}(\gamma, h) = \bot \\
\text{rdis}(\gamma, h) \uparrow & \overset{\text{def}}{=} \text{rdis}(\gamma, h) = \bot \\
\end{align*}

In Fig. 1, we illustrate \textit{width}, \textit{ldis} and \textit{rdis} with examples.

\begin{figure}
\centering
\begin{tikzpicture}
\draw[->] (0,0) -- (5,0) node[below] {height};
\draw[->] (0,0) -- (0,5) node[left] {\text{ldis}(\gamma, h)};
\draw[->] (0,0) -- (0,5) node[above] {\text{rdis}(\gamma, h)};
\draw[->] (0,0) -- (0,5) node[above] {\text{width}(\gamma, h)};
\draw[->] (0,0) -- (0,5) node[above] {\text{left}(\gamma, h)};
\draw[->] (0,0) -- (0,5) node[above] {\text{right}(\gamma, h)};
\draw[->] (0,0) -- (0,5) node[above] {\text{width}(\gamma, h)};
\draw[->] (0,0) -- (0,5) node[above] {\text{ldis}(\gamma, h)};
\end{tikzpicture}
\caption{Definitions of \textit{ldis}, \textit{rdis}, \textit{width}.}
\end{figure}

Example.

Let \(\gamma : f(c) \leftarrow f(g(g(c))) \leftarrow f(g(c)) \leftarrow f(f(g(g(c)))) \leftarrow f(f(c)) \leftarrow g(c) \). Then \(\text{left}(\gamma, 1) = 0, \text{left}(\gamma, 2) \uparrow, \text{ldis}(\gamma, 1) = 5, \text{ldis}(\gamma, 2) \uparrow, \text{right}(\gamma, 1) = 5, \text{right}(\gamma, 3) \uparrow, \text{right}(\gamma, 0) \uparrow, \text{rdis}(\gamma, 1) = 5, \text{rdis}(\gamma, 3) \uparrow, \text{width}(\gamma, 1) = \text{right}(\gamma, 1) - \text{left}(\gamma, 1) = 5, \text{width}(\gamma, 2) = 3, \text{width}(\gamma, 3) = 2, \text{width}(\gamma, 4) = 0 \)

\textbf{Definition of } \langle K(\gamma), W(\gamma) \rangle

\begin{align*}
K(\gamma) & = \{(h, \text{ldis}(\gamma, h)) \mid \text{ldis}(\gamma, h) \downarrow\} \\
W(\gamma) & = \{(h, \text{width}(\gamma, h)) \mid \text{width}(\gamma, h) \downarrow\}
\end{align*}

\textbf{Notation}

We denote by \(\gamma[\delta'/\delta] \) the sequence obtained from reduction sequence \(\gamma \) by replacing the subsequence or cut sequence \(\delta \) of \(\gamma \) by sequence \(\delta' \).
3 Assertions

In this section, we explain how to prove that non-E-overlapping and strongly depth-preserving TRS R is CR. For this purpose, we need the following five assertions $S(k), S'(k), P(k), Q(k), Q'(k)$ for $k \geq 0$.

Assertion $S(k)$

Let $\gamma : M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_k$ where $|\gamma|_p = k, M_0 = \sigma(\beta), M_1 = \sigma(\alpha), M_{k-1} = \sigma'(\alpha), M_k = \sigma'(\beta)$ for some rule $\alpha \rightarrow \beta \in R$ and mappings σ, σ' and $\gamma : M_1 \rightarrow \ldots \rightarrow M_{k-1}$ is ϵ-invariant.

Then $\exists \delta : \sigma(\beta) \dashvarrow^{*} \sigma'(\beta)$ such that

(i) $|\delta|_p \leq k - 2$

(ii) If β is a variable, then $H(\delta) < H(\gamma)$.

Otherwise, δ is ϵ-invariant and $H(\delta) \leq H(\gamma)$.

(iii) $\forall h \geq 0$ if $ldis(\delta, h) \downarrow$, then

$\exists h' \geq h$ such that $ldis(\gamma, h') \downarrow$ and $ldis(\delta, h) < ldis(\gamma, h')$.

Assertion $S'(k)$

Let $\gamma : M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_k$

where $|\gamma|_p = k, M_0 = \sigma(\beta), M_1 = \sigma(\alpha), M_{k-1} = \sigma'(\alpha), M_k = \sigma'(\beta)$ for some rule $\alpha \rightarrow \beta \in R$ and mappings σ, σ' and $\gamma : M_1(= \sigma(\alpha)) \rightarrow \ldots \rightarrow M_{k-1}(= \sigma'(\alpha))$ is ϵ-invariant.

Then $\exists \delta : \sigma(\beta) \dashvarrow^{*} \sigma'(\beta)$ such that

(i) $|\delta|_p = |\gamma|_p, |\delta|_{np} \leq |\gamma|_{np} - 2$

(ii) If β is a variable, then $H(\delta) < H(\gamma)$.

Otherwise, δ is ϵ-invariant and $H(\delta) \leq H(\gamma)$.

(iii) $\forall h \geq 0$ if $left(\delta, h) \downarrow$, then

$\exists h' \geq h$ such that $left(\gamma, h') \downarrow$ and $left(\delta, h) \leq left(\gamma, h')$.

Assertion $P(k)$

Let $\gamma : \sigma(\beta) \rightarrow \sigma(\alpha) \rightarrow M$ for some rule $\alpha \rightarrow \beta \in R$ and mapping σ where $H(\gamma) = k$ and $\gamma : \sigma(\alpha) \rightarrow \ldots \rightarrow M$ is ϵ-invariant.

Then, if β is not a variable, then

$\exists \delta : \sigma(\beta) \dashvarrow^{*} N \dashvarrow^{*} M$ for some N such that

$H(\delta) \leq k, M \dashvarrow^{*} N$ and $\delta' : \sigma(\beta) \dashvarrow^{*} N$ is ϵ-invariant.

If β is a variable, then $\exists \delta : \sigma(\beta) \dashvarrow^{*} N \dashvarrow^{*} M$ for some N such that

$H(\delta) \leq k, M \dashvarrow^{*} N$ and $H(\delta') < k$ for $\delta' : \sigma(\beta) \dashvarrow^{*} N$

Assertion $Q(k)$

Let $\gamma : M \dashvarrow^{*} N$ where $H(\gamma) \leq k$.

Then, $\exists \delta : M \dashvarrow^{*} L \dashvarrow^{*} N$ such that $H(\delta) \leq k, M \dashvarrow^{*} L$ and $N \dashvarrow^{*} L$.

Assertion $Q'(k)$
Let $\gamma_i : M \leftarrow \ast M_i$, where $H(\gamma_i) \leq k$, $1 \leq i \leq n$. Then, $\exists \delta : M \leftarrow \ast N$ such that $H(\delta) \leq k$ and $\forall i$ $(1 \leq i \leq n)$ $M_i \leftarrow \ast N$.

The assertions $S(k)$ and $S'(k)$ are similar to the Elimination lemma in [7]. For any reduction sequence $\gamma : \sigma(\beta) \leftarrow \sigma(\alpha) \leftarrow \ast \sigma'(\alpha) \rightarrow \sigma'(\beta)$ for some rule $\alpha \rightarrow \beta$ and mappings σ, σ' where $\tilde{\gamma} : \sigma(\alpha) \leftarrow \ast \sigma'(\alpha)$ is ε-invariant, $S(k)$ ensures that there exists $\delta : \sigma(\beta) \leftarrow \ast \sigma'(\beta)$ such that $|\delta|_p \leq |\gamma|_p - 2$, $H(\delta) \leq H(\gamma)$ (where δ is ε-invariant or $H(\delta) < H(\gamma)$) and $K(\delta) \ll K(\gamma)$. Here, \ll is the multiset ordering of a lexicographic ordering \prec. And $S'(k)$ ensures that there exists $\delta^* : \sigma(\beta) \leftarrow \ast \sigma'(\beta)$ such that $|\delta|_p = |\gamma|_p, |\delta|_{np} \leq |\gamma|_{np} - 2$, $H(\delta) \leq H(\gamma)$ (where δ is ε-invariant or $H(\delta) < H(\gamma)$) and $W(\delta) \preceq W(\gamma)$. Here, \preceq is \ll or \geq.

To prove these assertions, we use the following properties for left, right, width.

Property 1

Let $\gamma : M_0 \leftarrow M_1 \leftarrow \cdots \leftarrow M_k$,
$\delta : N_0 \leftarrow N_1 \leftarrow \cdots \leftarrow N_k$.

1. Assume that for $h > 0$, $left(\delta, h) \downarrow$ and there exists j such that $j \leq left(\delta, h)$ and $h(M_j) \geq h$.

Then, there exists $h' \geq h$ such that $left(\gamma, h') \downarrow$ and $left(\gamma, h') \leq left(\delta, h)$.

2. Assume that for $h > 0$, $right(\delta, h) \downarrow$ and there exists j such that $right(\delta, h) \leq j$ and $h(M_j) \geq h$.

Then, there exists $h' \geq h$ such that $right(\gamma, h') \downarrow$ and $right(\gamma, h') \geq right(\delta, h)$.

Property 2

If $H(\gamma) > H(\delta)$, then $K(\gamma) \gg K(\delta)$ and $W(\gamma) \gg W(\delta)$.

Here, \gg is the multiset ordering of a lexicographic ordering \succ.

These proofs are obvious by the definitions of left, right and width, etc.

We first prove $S(k)$ and $S'(k)$ by induction on $k \geq 0$, where k is the number of parallel reduction steps of γ. In the case of $k > 2$, we prove $S(k)$ and $S'(k)$ by induction on $weight(\gamma)$ which is defined as follows:

$$weight(\gamma) = \sum_{\gamma_i \in \Gamma} |\gamma_i|_{np}$$

where $\Gamma = \{ \gamma_i \mid \gamma_i = \gamma/u_i \text{ for some } u_i \in MR(\gamma) \cap \tilde{O}(\alpha) \}$,
$\gamma : \sigma(\alpha) \leftarrow \ast \sigma'(\alpha)$.

1. Basis, i.e., the case of $weight(\gamma) = 0$

 The proof is straightforward.

2. Induction step, i.e., the case of $weight(\gamma) > 0$

 Let $\gamma_1 = \gamma/u_1 : L_1 \leftarrow L_2 \cdots \leftarrow L_{k-1}$ where $\gamma_1 \in \Gamma$ and $L_i = M_i/u_1$, $1 \leq i \leq k - 1$.

 Then, there exist i, j such that $1 \leq i < j < k - 1$ and $\delta_1 : L_i \leftarrow \ast L_{i+1} \cdots \leftarrow L_j \leftarrow L_{j+1}$

 where $L_i = \theta(\beta'), L_{i+1} = \theta(\alpha'), L_j = \theta'(\alpha'), L_{j+1} = \theta'(\beta')$ for some rule $\alpha' \rightarrow \beta'$ and mappings θ, θ'.
By the induction hypothesis $S(k')$, where $k' = |\delta_1|_p$, there exists $\eta_1 : L_i \longleftarrow L_{i+1}$ satisfying the conditions (i), (ii) and (iii). Let $\eta'_1 = ((L_i \longleftarrow L_i \cdots \longleftarrow L_i); \eta_1)$ where $|\eta'_1|_p = |\delta_1|_p$.

Let $\gamma' = \gamma[\eta'_1/\delta_1]$. Then, obviously weight(γ) > weight(γ') holds. Hence, by the induction hypothesis that $S(k)$ holds for γ', it follows that $S(k)$ holds for γ.

The proof of $S'(k)$ is similar to that of $S(k)$.

We then prove that $Q(k) \Rightarrow Q'(k)$ for all $k \geq 0$. Using these results, we can prove $P(k) \land Q(k)$ by induction on $k \geq 0$.

Outline of the proof of $P(k) \land Q(k)$.

We first prove $P(k)$. Basis: $k = 0$. The proof is obvious.

Induction step: Let $\gamma : M_0 \longleftarrow M_1 \longleftarrow M_2 \cdots \longleftarrow M_n$ where $H(\gamma) = k$, $M_0 = \sigma(\beta)$, $M_1 = \sigma(\alpha)$ and $M_n = M$. Let $\gamma : M_1 \longleftarrow M_2 \cdots \longleftarrow M_n$. We prove $P(k)$ by induction on the following weight(γ).

$$\text{weight}(\gamma) = \bigcup_{\gamma_i \in \Gamma} K(\text{net}(\gamma_i^R))$$

where $\Gamma = \{\gamma_i | \gamma_i = \gamma/u; \text{for some } u \in MR(\gamma) \cap \bar{O}(\alpha)\}.$

Here, γ_i^R is the reverse sequence of γ_i.

Note that if $\Gamma = \phi$, then weight(γ) = ϕ.

1. Basis: the case of weight(γ) = ϕ, i.e., all the reductions of γ occur in the variable parts of $\sigma(\alpha)$.

We can prove $P(k)$ by using the induction hypothesis $Q(k - 1)$ and the strongly depth-preserving property.

2. Induction step: the case of weight(γ) \gg ϕ i.e., some reduction occurs in the non variable part.

By the definition of γ_i^R, then there exists an ϵ-reduction.

Let $\delta = \text{net}(\gamma_i^R) : (L_0 \longleftarrow L_1 \cdots \longleftarrow L_m)$ where $m \leq n$, $L_0 = M_n/u_1$, $L_m = M_1/u_1$.

There are two cases depending on whether there exists $\xi : L_i(= \sigma'(\beta')) \longleftarrow \cdots L_i+1(= \sigma'(\alpha')) \longleftarrow \cdots L_j(= \sigma''(\alpha')) \longleftarrow \cdots L_{i+1}(= \sigma''(\beta'))$ for some i, j ($1 \leq i < j < m$), where $L_{i+1} \longleftarrow \cdots L_j$ is ϵ-invariant.

(a) The case in which δ includes ξ.

By $S([\xi']_p)$, there exists $\xi' : L_i \longleftarrow \cdots L_{i+1}$ satisfying the conditions (i), (ii), (iii).

Let $\delta' = \delta[\xi'/\xi]$ and $\gamma' = \gamma[\eta_1'/\delta_1]$ where $\text{net}(\gamma_1^R) = \delta'$ and $\text{net}(\gamma_i^R) = \delta$.

By weight(γ) \gg weight(γ'), the induction hypothesis for γ' ensures that $P(k)$ holds for γ.

(b) The case in which δ does not include such ξ.

In this case, δ includes ϵ-reductions, but the direction of the ϵ-reductions is left-to-right by the non-E-overlapping property.

Using a finite number of the induction hypothesis $P(k'), k' < k$, we can prove that there exists $\eta : L_0 \longleftarrow \cdots \longleftarrow L_i$ for some term N and i ($0 < i \leq m$) such that $H(\eta) \leq H(\delta), L_0 \longleftarrow \cdots N$ and either $i = m$ and $\eta : N \longleftarrow \cdots L_i$ is ϵ-invariant or $H(\eta) < H(\delta_i)$ holds where $\eta : N \longleftarrow \cdots L_i$ and $\delta_i : L_0 \longleftarrow \cdots L_i$.
Let $\delta = \delta[\eta'/\delta_1]$. Then, δ is ε-invariant or $K(\delta) \gg K(\delta)$ holds. Let $\gamma' = \gamma[\gamma_1'/\gamma_1]$ where $\delta = \text{net}(\gamma_1^{R})$ and $\delta = \text{net}(\gamma_1^{R})$. Then, $\text{weight}(\gamma) \gg \text{weight}(\gamma')$ holds, so that the induction hypothesis $P(k)$ for γ' ensures that $P(k)$ holds for γ.

Next, we prove $Q(k)$ by induction on $(H(\gamma), W(\gamma), \varepsilon(\gamma))$, where $\varepsilon(\gamma)$ is the number of ε-reductions in γ and $W(\gamma) = \{ (h, \text{width}(\gamma, h)) \mid \text{width}(\gamma, h) \}$. If $H(\gamma) \leq k - 1$ or γ has no ε-reductions, then the proof can be reduced to that of $Q(k - 1)$. So, let $H(\gamma) = k$ and γ has ε-reductions.

There are two cases depending on whether there exists a subsequence

$$\gamma_1 : N_1 \leftarrow^{\varepsilon} N_2 \rightarrow^{*} N_3 \rightarrow^{\varepsilon} N_4$$

of γ for some $N_i, 1 \leq i \leq 4$, where $N_2 \rightarrow^{*} N_3$ is ε-invariant.

1. The case in which γ includes such γ_1.

 In this case, we apply $S(|\gamma_1|)$ or $S'(|\gamma_1|)$ and obtain $\delta_1 : N_1 \rightarrow^{*} N_4$ satisfying the conditions (i),(ii) and (iii).

 Let $\gamma' = \gamma[\delta_1/\gamma_1]$. Then, either $W(\gamma) \gg W(\gamma')$ or $W(\gamma) = W(\gamma')$ and δ_1 is ε-invariant. In either case, the induction hypothesis for γ' ensures that $Q(k)$ holds for γ.

2. The case in which γ does not include such γ_1.

 We can prove this case by using $P(k)$ and $Q(k - 1)$. But, the details are omitted.

Since $Q(k), k > 0$, ensures that TRS R is CR, we have the following our main theorem.

Main Theorem

A TRS R is CR if R is non-E-overlapping and strongly depth-preserving.

Matsuura et al.[6] showed that if a TRS R is non-ω-overlapping and depth-preserving, then R is non-E-overlapping, so that we have the following corollary.

Corollary

A TRS R is CR if R is non-ω-overlapping and strongly depth-preserving.

Note

Whether R is non-ω-overlapping or not can be checked efficiently.

4 Concluding Remarks

In this paper, we have shown that there exists a non-E-overlapping and depth-preserving TRS which is not CR, but all the non-E-overlapping and strongly depth-preserving TRS's satisfy the CR property.

Finally, we make a comment on the strongly depth-preserving property. This property is defined by the depth-preserving property and the condition that for each rule $\alpha \rightarrow \beta$ and for any $x \in V(\alpha)$, all the depths of the x occurrences in α are the same. By replacing the restriction on α by that on β, we can define an analogous property. That is, this new property is defined by the depth-preserving property and the condition that for each rule $\alpha \rightarrow \beta$ and for any $x \in V(\beta)$, all the depths of the x occurrences in β are the same. However, this new property and non-E-overlapping do not necessarily ensure CR. For example, TRS $R_0 = \{ f(g(x), x) \rightarrow a, c \rightarrow h(c, g(c)), h(x, g(x)) \rightarrow f(g(x), h(x, g(c))) \}$ is non-E-overlapping and satisfies this new condition, but R_0 is not CR.

It will be a next step following the work of this paper to study the CR property of E-overlapping and strongly depth-preserving TRS, that is, to find restriction conditions that E-critical pairs must satisfy for ensuring the CR property of strongly depth-preserving TRS's.
References

