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ABSTRACT

We introduce a new technique for proving termination of term rewriting systems. The
technique, a specialization of Zantema’s semantic labelling technique, is especially useful for
establishing the correctness of transformation methods that attempt to prove termination by
transforming term rewriting systems into systems whose termination is easier to prove. We
apply the technique to distribution elimination, dummy elimination, and currying, resulting
in shorter correctness proofs, stronger results, and a positive solution to an open problem.

1. Introduction

“Termination is an undecidable property of term rewriting systems. In the literature (Dershowitz
* [2] contains an early survey of termination techniques) several methods for proving termination
are described that are quite successful in practice.” We can distinguish roughly two kinds of
termination methods:
(1) basic methods like recursive path order and polynomial interpretations that apply directly
to a given term rewriting system, and
(2) methods that attempt to prove termination by transforming a given term rewriting system
into a term rewriting system whose termination is easier to prove, e.g. by a method of the
first kind, and implies termination of the given system.
Transformation orders (Bellegarde and Lescanne [1]) and distribution elimination (Zantema [8])
are examples of methods of the second kind. Semantic labelling (Zantema [7]) is a very powerful
method of this kind. The starting point of the present paper is the observation that semantic
labelling is in a sense too powerful. We show that any terminating term rewriting system can
be transformed by semantic labelling into a system whose termination can be shown by the
recursive path order. The proof of this result gives rise to a new termination method which we
name self-labelling. We show that self-labelling is especially useful for proving the correctness
of termination methods of the second kind:
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o Using self-labelling we give a positive solution to an open problem in [8] concerning distri-
bution elimination: right-linearity is not necessary for the correctness of distribution elim-
ination in the absence of distribution rules. The proof reveals how to improve distribution
elimination in the absence of distribution rules.

¢ Using self-labelling we give an alternative proof of the correctness of dummy elimination, a
recent transformation method of Ferreira and Zantema [3]. From the proof we infer how to
lift the restriction that the symbol to be eliminated may not occur in the left-hand sides of
the rewrite rules. '

o Using self-labelling we give a short proof of the main result of Kennaway, Klop, Sleep, and
De Vries [4] stating the correctness of currying, which for the purpose of this paper we view
as a termination method of the second kind.

The proofs of the above results are remarkably similar.

The remainder of this paper is organized as follows. In the next section we recapitulate
semantic labelling. In Section 3 we show that every terminating term rewriting system can be
transformed by semantic labelling into a term rewriting system whose termination is very easy
to prove. This completeness result gives rise to the self-labelling technique. In Section 4 we
use self-labelling to solve the conjecture concerning distribution elimination. The self-labelling
proof gives rise to a stronger result, which we explain in Section 5. In Section 6 we observe how
self-labelling can be used to show the correctness of an extension of dummy elimination. Our
final illustration of the strength of self-labelling can be found in Section 7 where we present a
short proof of the preservation of termination under currying.

2. Preliminaries

We assume the reader is familiar with the basics of term rewriting (as expounded in, e.g., Klop
(5]). This paper deals with the termination property. A term rewriting system (TRS for short)
(F,R) is said to be terminating if it doesn’t admit infinite rewrite sequences. It is well-known
that a TRS (F,R) is terminating if and only if there exists a reduction order—a well-founded
order that is closed under contexts and substitutions—on 7 (F, V) that orients the rewrite rules
of R from left to right. Another well-known fact states that (—x U )" is a well-founded order
on T7(F,V) for any terminating TRS (F,R). Here s > t if and only if ¢ is a proper subterm of s.
Observe that (—x U )7 is in general not a reduction order as it lacks closure under contexts.
In this preliminary section we briefly recall the ingredients of semantic labelling (Zantema
[7]). Actually we present a special case which is sufficient for our purposes. Let (F,R) be a
TRS and A = (A,{fa}ser) an F-algebra. Let > be a well-founded order on the carrier A of
A. We say that the pair (A, >) is a quasi-model for (F,R) if
e the interpretation f4 of every function symbol f € F is weakly monotone (with respect to
>) in all its coordinates, and v
o [a](]) = [a](r) for every rewrite rule I — r € R and assignment a:V — A. Here [a] denotes
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the unique homomorphism from 7(F,V) to A that extends a, i.e.,

[a](t):{ alt) ?ftev,
Falled(t).. o [al(t) it =ty t)

The above takes care of the semantical content of semantic labelling. We now describe the
labelling part. We label function symbols from F with elements of A. Formally, we consider the
labelled signature Fi;, = {f. | f € F and a € A} where each f, has the same arity as f. For
every assignment o we inductively define a labelling function laby from T(F,V) to T(Fas,V)
as follows:

labo (1) iftev,
a0y = .
f[a](t)(laba(tl)s [P Iaba(tn)) ift= f(tl, N ,tn).

So function symbols in ¢ are simply labelled by the value (under the assignment a) of the
corresponding subterms. We define the TRSs Ry, and dec(F,>) over the signature F,; as
follows:

Riab = {laby(l) — laby(r) |l — 7 € R and a:V — A},
dec(F, =) = {fa(z1,... 2n) — fo(21,...,2,) | f € F and a,b € A with a > b}.

The following theorem is a special case of the main result of Zantema [7].

‘THEOREM 2.1. Let (F¥,R) be a TRS, A an F-algebra, and > a well-founded order on the
carrier of A. If (A, >) is a quasi-model then termination of (F,R) is equivalent to termination

of (Fiaps Riap U dec(F,>)). O

Observe that in the above approach the labelling part of semantic labelling is completely
determined by the semantics. This is not the case for semantic labelling as defined in [7]. The
additional expressive power of [7] results in some quite impressive termination proofs. In this
paper we hope to make clear that the special case of semantic labelling presented above is quite
successful as well.

3. Self-Labelling

In this section we show that every terminating TRS can be transformed by semantic labelling
into a TRS whose termination is very easily established. The proof of this result forms the basis
of a powerful technique for proving the correctness of transformation techniques for establishing

termination.

DEFINITION 3.1. A TRS (F,R) is called precedence terminating if there exists a well-founded
order 73 on F such that root(l) 1 f for every rewrite rule [ — r € R and every function symbol
f € Fun(r).
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LEMMA 3.2. Every precedence terminating TRS is terminating.

PrOOF. Let (F,R) be a precedence terminating TRS. So there exists a well-founded order 3
on F that satisfies the condition of Definition 3.1. An easy induction argument on the structure
of r reveals that [ 2,,, 7 for every | — r € R. Since 1y, is a reduction order, termination of
(F,R) follows. O

The next result states any terminating TRS can be transformed by semantic labelling into
a precedence terminating TRS.

THEOREM 3.3. For every terminating TRS (F,R) there exists a quasi-model (A, >) such that
(Fiab, Riap U dec(F,>)) is precedence terminating.

PROOF. As F-algebra A we take the term algebra 7(F,V). We equip 7(F,V) with the well-
founded order »=—%. (Well-foundedness is an immediate consequence of termination of R.)
Because rewriting is closed under contexts, all algebra operations are (strictly) monotone in
all their coordinates. Because assignments in the term algebra 7(F,V) are substitutions and
rewriting is closed under substitutions, (A, >) is a quasi-model for (F,R). It remains to show
that (Fiap, Rias U dec(F,>)) is precedence terminating. To this end we define a well-founded
order 1 on Fy,; as follows: fs ¢, if and only if s (= U )t t. Let I — r be a rewrite rule of
Riap U dec(F,>).

o Ifl — r € Ry then there exist an assignment a: V — T(F,V) and arewriterule!’ — 7' € R
such that | = labs(!') and 7 = laby(r’). The label of root(l) is [a](I') = l'a. Let £ be the
label of a function symbol in r. By construction £ = [@](t) = ta for some subterm t of /.
Hence l'a —x 7'a > €. So root(l) 1 f for every f € Fun(r). :

o Ifl — r € dec(F,>) then l = fs(21,...,2,) and r = fi(zy,...,z,) with s-—>£ t. Clearly
root(l) = fs 1 fi.

The particular use of semantic labelling in the above proof (i.e., choosing the term algebra as
semantics and thus labelling function symbols with terms) is what we will call self-labelling. One
may argue that Theorem 3.3 is completely useless, since the construction of the quasi-model in
the proof relies on the fact that (F,R) is terminating. Nevertheless, in the following sections we
will see how self-labelling gives rise to many new results and significant simplifications of existing
results on the correctness of transformation techniques for establishing termination. Below we
sketch the general framework.

Let ® be a transformation on TRSs, designed to make the task of proving termination
easier. The question is how to prove correctness of the transformation, i.e., does termination of
the transformed TRS ®(F,R) imply termination of the given TRS (F,R)? Let ®(F,R) be the
TRS (F',R'). The basic idea is to label the TRS (F,R) with terms of (F’,R’). This is achieved
by executing the following steps:

e turn the term algebra 7(F’,V) into an F-algebra A by choosing suitable interpretations for
the function symbols in F\F’ (and taking term construction as interpretation of the function

symbols in F N F'),
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e equip the F-algebra A with the well-founded order = = —%,, and
o define the well-founded order T on Fy, as follows: f; 1 g; if and only if s (—x/ U )7t t.
Now, if we can show that
o (A,>)is a quasi-model for (F,R), and
o the TRS (Fiep, Rias U dec(F,>)) is precedence terminating with respect to 7,
then termination of (F,R) and thus the correctness of the transformation @ is a consequence
of Theorem 2.1.

We would like to stress that the only creative step in this scheme is the choice of the inter-
pretations for the function symbols that disappear during the transformation ®. All our proofs
will follow the above scheme, except that in Section 7 we have to consider a slight refinement of

the well-founded order on the labelled signature in order to conclude precedence termination.

4. Distribution Elimination

Our first application of self-labelling is the proof of a conjecture of Zantema [8] concerning
distribution elimination.

Let (F,R) be a TRS and let e € F be a designated function symbol whose arity is at least
one. A rewrite rule | — r € R is called a distribution rule for e if | = Cle(zy,...,2,)] and
7 = e(C[z1],...,C[zy]) for some non-empty context C in which e doesn’t occur and pairwise
different variables x1,...,2,. Distribution elimination is a technique that transforms (F,R)
by eliminating all distribution rules for e and removing the symbol e from the right-hand sides
of the other rules. First we inductively define a mapping E g, that assigns to every term in
T(F,V) a non-empty subset of 7(F\{e},V), as follows:

{1} ifteV,
Egisir(t) = { | Eaistr(ti) i1 =e(ty,...,tn),
=1

{f(s1,-.08n) | 8 c Euisey(t:)} if t = f(t1,...,t,) with f #e.

The mapping E s, is illustrated in Figure 1, where we assume that the numbered contexts do
not contain any occurrences of e. It is extended to rewrite systems as follows:

Egistr(R) = {l — ' | 1 = r € R is not a distribution rule for e and r’ € Fy;5.(7)}.

Observe that e does not occur in Ey;5,(R) if and only if e does not occur in the left-hand sides
of rewrite rules of R that are not distribution rules for e.
One of the main result of Zantema [8] is stated below.

THEOREM 4.1. Let (F,R) be a TRS and let ¢ € F be a non-constant symbol which does not
occur in the left-hand sides of rewrite rules of R that are not distribution rules for e.

(1) If Ejistr(R) is terminating and right-linear then R is terminating.

(2) If Ejistr(R) is simply terminating and right-linear then R is simply terminating.

(3) If E4isir(R) is totally terminating then R is totally terminating.
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The following example from [8] shows that right-linearity is essential in parts (1) and (2).

ExaMpLE 4.2. Consider the TRS
fla.be.2) —  flz,z,e(a,b),e(a,b))
R=1 fle(r,y)zv,w) — elf(z,2,0,0), f(y,20,0))
f(x,e(y,2)v,w) — e(f(2,y,v,w), f(2,2,0,0))

The last two rules are distribution rules for e and e does not occur in the left-hand side of the
first rule. The TRS

fla,b,z,2) — f(z,2,a,a)
Edistr(R): f((l-.,b._l‘,.’l,‘) - f(.’l),.’l,‘,(l,b)
fla.b,z,2) —  f(z,z,b,a)
f((l'vba:l* 1’) - .f($5$7b7b)

is easily shown to be terminating. It is even simply terminating since for length-preserving TRSs
termination and simple termination coincide. Nevertheless, the term f(a,b,e(a,b),e(a,b)) has
an infinite reduction in R.

In [8] it is conjectured that in the absence of distribution rules for e the right-linearity
assumption in part (1) of Theorem 4.1 can be omitted. Before proving this conjecture with the
technique of self-labelling, we show that a similar statement for simple termination doesn’t hold,

i.e., right-linearity is essentialin part (2) of Theorem 4.1 even in the absence of distribution rules
for e.

EXAMPLE 4.3. Let R/ consist of the first rule of the TRS R of Example 4.2. Simple termination
of Egistr(R') = Eyist,(R) was established in Example 4.2, but R’ fails to be simply terminating
as s = f(a,b,e(a,b),e(a,b)) —r' f(e(a,b),e(a,b),e(a,b),e(a,b)) = t with s embedded in t.
(Termination of R’ follows from Theorem 4.4 below.)
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THEOREM 4.4. Let (F,R) be a TRS and let e € F be a non-constant symbol which does
not occur in the left-hand sides of rewrite rules of R. If E4is(R) is terminating then R is
terminating.

Proor. We turn the term algebra 7(F\{e},V) into an F-algebra A by defining

e_A(tl,...,tn) =t,r

for all terms ti,...,t, € T(F\{e},V). Here 7 is an arbitrary but fixed element of {1,...,n}.
So e4 is simply projection onto the m-th coordinate. We equip A with the well-founded order
- = _-)Edistr(n) and we define a well-founded order 3 on i, as follows: f, 3 g, if and only if
$ (2B R) U >)t t. We have to show that (A,>) is a quasi-model for (F,R) and that the
TRS (Fias, Riap U dec(F,>)) is precedence terminating with respect to 1.

First we show that (A,>) is a quasi-model for (F,R). It is very easy to see that ey is
weakly monotone in all its coordinates. All other operations are strictly monotone in all their
coordinates (as —g,, (r) is closed under contexts). Let ¢ be the identity assignment from V
to V. We denote [¢]() by {t). An easy induction proof shows that [a](t) = (t)a for all terms
t € T(F,V) and assignments a:V — T(F\{e},V). Also the following two properties are easily
shown by induction on the structure of t € 7(F,V): (1) (t) € Fyist,y(t) and (2) if s < ¢ then
there exists a term t' € E ;5 (1) such that (s) Q¢'.

(1) If t € V then (t) = t and Eyisr(t) = {t}. For the induction step we distinguish two cases.
Ift = e(t1,...,tn) then () = (tr) and Eyistr () = Uy Edistr(t;). We have (tx) € Eistr(tr)
according to the induction hypothesis. Hence (t) € Egisir(t). If t = f(t1,...,1,) with f # e
then (t) = f({t1),....(tn)) and Egs(t) = {f(s1,...,8n) | 8i € Egisty(t:)}. The induction
hypothesis yields (¢;) € Eg;,(t;) for all 7 = 1,...,n. Hence also in this case we obtain the
desired (t) € Eisir(1). '

(2) Observe that for s = ¢ the statement follows from property (1) because we can take t' = (t).
This observation also takes care of the base of the induction. Suppose t = f(t1,...,tn)
and let s be a proper subterm of ¢, so s is a subterm of t; for some k € {1,...,n}. From
the induction hypothesis we obtain a term ), € Egisi(t5) such that (s) < t},. Again we
distinguish two cases. If f = e then Egsr(t) = Uy Edistr(t:) and thus we can take t' = .
If f # ethen Egisir(t) = {f(s1,....5,) | 8 € Egisir(ti)}. Let t' = f((t1),.. .,t'k,...,(tn)).
Using property (1) we infer that ¢ € Fgis,(t). Clearly (s) <t

Now let I — 7 be an arbitrary rewrite rule of R and a: V — 7 (F\{e}, V) an arbitrary assignment.

We have [a](]) = ()a and [@](r) = {r)a. Since e doesn’t occur in I, (I) = I and hence [a](]) = lo.

Because (r) € Eqis,(7), the rule I — (r) belongs to Eyisr(R). Therefore la — g, . (r) (r)a and

thus also [a](1) = [a](7).

It remains to show that (Fj., R U dec(F,>)) is precedence terminating with respect to
3. Let | — r be a rewrite rule in Ry U dec(F,>). We distinguish two cases. f | — 7 € Ryg
then there exist an assignment a:V — 7(F\{e},V) and a rewrite rule I’ — 7’ € R such that
| = lab,(I') and r = lab,(r"). The label of root(l) is [a](I') = (I')a = I'a. Let £ be the label of a
function symbol in r. By construction ¢ = [a](t) = (t)a for some subterm t of /. According to
property (2) above, (t) is a subterm of some 1’ € E i, (7). By construction I’ — 7" € Egisir(R).
Hence l'a —pg,,, (r) """ > (. So root(l) O f for every f € Fun(r). If | — r € dec(F,>) then



92

Il = fo(z1,...,2,) and r = fy(21,...,2,) with f € F and s > ¢. In this case we clearly have
TOOt(l) =fs3f. O

The only creative element in the above proof is the choice of e4. The rest is a routine
verification of the two proof obligations of self-labelling.

5. Distribution Elimination Revisited

In the proof of Theorem 4.4 we saw that we can take any projection function as semantics for e.
This freedom makes it possible to improve distribution elimination (in the absence of distribution
rules) by reducing the number of rewrite rules in E 45, (R) while preserving correctness of the
transformation.

What are the essential properties of Fg;, that make the proof of Theorem 4.4 work? A
careful inspection reveals, apart from the obvious termination requirement for Eg4,(R), the
following two properties:

(1) (&) € Bgur(t), and

(2) if s 9t then there exists a term t' € Ey;5,(t) such that (s) < ¢/,

for every t € T(F,V). Below we define a new transformation E7,,, that satisfies these two
properties. The transformation is parameterized by the argument positions 7 of the function
symbol e. The definition relies on the F-algebra defined in the proof of Theorem 4.4 in that we
use (t).

DEFINITION 5.1. Let (F,R) be a TRS and let e € F be a function symbol whose arity is at
least one. Fix m € {1,...,arity(e)}. We inductively define mappings ¢ and ET,, that assigns '
to every term in 7(F,V) a subset of 7(F\{e},V), as follows:

) ifteV,
(tr)U | Efgu(ti) ift=ety,... ts),
#(t) = . i£7(f)
U o(t:) if t = f(t1,...,t,) with f # e,
=1

E;yirist7'(t) = ¢(t)uU {<1>}
We extend the mapping E7J;,,. to R as follows:

Egistr(R) = {l = »' | Il = r € R is not a distribution rule for e and ' € E7._, ()}

Figure 2 shows the effect of E}., and E%_, on the term ¢ of Figure 1. Observe that each
numbered context occurs exactly once in each set. The following lemma states that ET, , has
the two required properties.

LEMMA 5.2. Let (F,R) be a TRS and let e and 7 be as above. For every t € T(F,V) we have



93

EL . (t)=¢ /1\ /9\ A &
distr\ " A A &
A

R AN
Elisiy(1) = A A
/5\

VAN

FIGURE 2.

(1) (t) € £}, (1), and

(2) if s Qt then there exists a term t' € EJ,, (t) such that (s) <t

ProOF. The first statement holds by definition. The second statement we prove by induction
on the structure of t € 7(F,V). If s = t then the result follows from the first statement. Hence
we may assume that s < t. This is only possible if ¢ is a non-variable term f(ty,...,t,). There
existsa k € {1,...,n} such that s < t;. The induction hypothesis yields a term ¢} € E7._, (1) =
d(t) U{(tr)} such that (s) < t}. We distinguish two cases. Suppose f = e. In this case we have

Tiaw(1) = 0() U {(1)} = (1) U{()} U | Efiger(ta).
. T
If £k =« then t} € o(tr) U {(1x)} = é(t,) U{(t)} C ET., (t). If k # 7 then t, € ET,,, (t).C
Tistr(1). Hence in both cases we can take t' = t}.. Suppose f # e. We have

gisr(1) = SO U {1} = [ o) U {F((tr),- ... (ta))}-
=1
If t}, € ¢(tr) then clearly t) € E7., (t) and hence we can take t’ = t}. If t} = (¢;) then we take

t' = f({t1),-..,(tn)) which satisfies (s) <1}, <t’. O
Hence we obtain the following result along the lines of the proof of Theorem 4.4.

THEOREM 5.3. Let (F,R) be a TRS and let e € F be a non-constant symbol which does
not occur in the left-hand sides of rewrite rules of R. If E7,, (R) is terminating for some
m € {1,...,arity(e)} then R is terminating. O

ExaMPLE 5.4. Consider the TRS R = {f(a) — f(e(a,b))}. Distribution elimination results in
the non-terminating TRS

fla) —  fla)

fla) —  f(b)

The termination of the TRS

Eiisir(R) = {

Egi.st'r(R) = {
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can be verified using, e.g., the recursive path order with precedence a > b. Hence termination
of R follows from Theorem 5.3. Observe that EJ;, (R) fails to be terminating.

An obvious question is whether E7, , works in combination with distribution rules, i.e., does
Theorem 4.1 hold for E7,,, 7 The following example shows that the answer is negative.

ExaMPLE 5.5. Consider the non-terminating TRS

f((L, b) - f(e(("a b),e((l, b))
R: f(‘f’(ﬂfay)’3) - € f(.’L',Z f(y,Z))
f(mve(yvz)) - €(f T, T f(1 "‘))

The TRS E7, , (R) is right-linear and (simply and totally) terminating for both choices of .
For instance,

Ejisir(R) 2{ fla,b) — fla.a) }
fla,b) — b

A natural question to ask is whether we need the assumption in Theorems 4.4 and 5.3 that e
does not occur in the left-hand sides of the rewrite rules in R. In the proof of Theorem 4.4 this
assumption is only used to conclude that (I) = I (where [ is the left-hand side of a rewrite rule in
R). We need this identity because the left-hand sides of rewrite rules in E 45, (R) and E7,, (R)
are of the form / rather than (I). This implies that we can completely remove the restriction that
e does not occur in the left-hand sides of rules in R, provided we change E7., (R) accordingly:

Efi(R) = {{) — ' | I — r € R and +' € EJ;,,,(1)}.

This extension is useful since it enables us to conclude the termination of a non-simply termi-
nating TRS like R = {f(e(a,b),a) — f(e(a,b),e(a,b))} by transforming it into the TRS

flbya) — f(b,b)
dzstr(R {f(b.(l-) — a }

whose termination can be verified using, e.g., the recursive path order with precedence b > a.

6. Dummy Elimination

In this section we show that the recent dummy elimination technique of Ferreira and Zantema
(3] is also amenable to a self-labelling treatment. Let (F,R) be a TRS and let e € F be a
designated function symbol. Dummy elimination transforms (F,R) into a TRS Ejummy(R)
over the signature F, = (F — {e})U {¢}. Here ¢ is a fresh constant. First we inductively define
a mapping cap that assigns to every term in 7(F,V) a term in 7(F,,V), as follows:

t ifteV,
cap(t) =< o ift=e(ty,...,tn),
fleap(ty), ... cap(ty)) ift= f(tl,...,tn) with f # e.
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Next we associate with every term ¢ in 7(F, V) subsets 9(t) and Egymmy(t) of T(F,V):

( %] ifteV,
U Edummy(ti) ift= e(tl, PN 7tn)7
,(p(t) = 9 =1
U w(ti) if t = f(t1,...,t,) with f # e,
L i=1 .

Edummy(t) = %l’(t) U {C(lp(t)}.
The mapping Ejymmy is extended to R by defining
Egummy(R)={l = 7" |l = r € R and 7' € Eqummy(7)}-

Note the similarity between the mappings ¢ and E7,,. of Definition 5.1 and the mappings ¢ and
E jummy- Figure 3 shows the effect of E gy, on the term ¢ of Figure 1. Observe that Ej,mmy(t)
shares with E7, , (t) the characteristic that each numbered contexts occurs exactly once.

Edummy(th{é £\ @ /N A A A}
Ficure 3.

The main result of Ferreira and Zantema [3] states that dummy elimination is a correct
transformation technique for establishing termination.

THEOREM 6.1. Let (F,R) be a TRS and let e € F be a non-constant symbol which does
not occur in the left-hand sides of rewrite rules of R. If Egymmy(R) is terminating then R is
terminating. O ‘

It is easy to prove this result along the lines of the proof of Theorem 4.4, because the two
key properties identified earlier hold for Egymmy as well, i.e., for all t € T(F,V):
(1) cap(t) € Egummy(t), and
(2) if s 9t then there exists a term t' € Egymmy(t) such that cap(s) Q.
The first property holds by definition and the second property is easily proved by induction.
Observe that cap(t) = (t) in the term algebra 7(F\{e},V) augmented with the operation

ealty, ... ty) =0

for all ¢1,...,t, € T(F\{e}, V).

It is possible to strengthen Theorem 6.1 by dropping the restriction that e does not occur
in the left-hand sides of rewrite rules in R: simply replace every left-hand side ! of a rule in
Egummy(R) by cap(l). This enables us to conclude the termination of a non-simply terminating
TRS like R = {f(e(a),b,a) — f(e(2),e(x),e(z))} by transforming it into the TRS

flob,z) — _f(o,o,o)}

Edummy(R) =
flobyz) — 2
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whose termination can be verified using any standard technique.

A thorough investigation of the relative strength of (variants of) distribution elimination and
dummy elimination will be detailed elsewhere. Here we only remark that for left-linear TRSs
dummy elimination is to be preferred above distribution elimination.

7.. Currying

In this final section we show that the main result of Kennaway, Klop, Sleep, and De Vries [4]—
the preservation of termination under currying—is easily proved by self-labelling. Currying is
the transformation on TRSs defined below.

DEFINITION 7.1. With every TRS (F,R) we associate a TRS (Fa,Ra) as follows: the signature
Fa contains all function symbols of F together with

o function symbols f; of arity ¢ for every f € F of arity n with 0 <1 < n,

e a binary function symbol @, called application,

and Rg is the extension of R with all rewrite rules

@(fi(l'lw--yl'i)»?/) - fi-}-l(wla""mi’y)

with f € F of arity n > 1 and 0 < ¢ < n. Here 21,...,2;,y are pairwise different variables and
fi+1 denotes fif i+ 1 =n.

Clearly termination of Rg implies termination of R.
THEOREM 7.2 (Kennaway et al. [4]). If R is a terminating TRS then Rq is terminating. O
The proof in [4] is rather involved. We present a self-labelling proof.

Proor. Let F' = Fg\{@}. Using the well-known fact that termination is preserved under
signature extension—this follows e.g. from modularity considerations, see [6]—we infer the ter-
mination of the TRS (F'.R). So the question is how termination of (Fg,Rq) follows from
termination of (F',R). We turn 7(F’, V) into an Fg-algebra A by defining @ 4(s,t) by induc-
tion on the structure of s, as follows:

1 ifseV,
Qus,t) =< figr(s1,.. ., 8i,1) if s = fis1,...,8;) with 7 < arity(f),
Fl@A(s1,1),. .., @u(sn,1) ifs= f(s1,...,80).
As well-founded order on 7(F',V) we take —»745. We equip the labelled signature (Fa),,, with
the well-founded order 3 defined as follows: f; 3 g, if and only if

e s(—rUp)Ttandeither f,g£@or f,g =@, or
e f=Q@andg#G.
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It is easy to see that 7 is indeed a well-founded order. We have to show that (A, —%) is a
quasi-model for (Fg,Ra) and that the TRS (Ra),,; U dec(Fa,—%) is precedence terminating
with respect to 1. :

First we show that (A,—%) is a quasi-model for (Fg,Rq). We claim that every algebra
operation is strictly monotone in all its coordinates. Here we consider only the first coordinate
of @4, which is the most interesting case. Before proceeding we mention the following fact,
which is easily proved by induction on the structure of s:

ifse T(F,V),te T(F',V),and o € Z(F',V) then @4(s0,t) = sQ4(0,?).

Here the substitution @4(o,t) is defined as the mapping that assigns to every variable z
the term @ 4(z0,t). We show that @4(s,t) —r @4(u,t) whenever s,t,u € T(F',V) with
s —x u by induction on the structure of s. Strict monotonicity of @4 in its first coordi-
nate follows from this by an obvious induction argument. Since s cannot be a variable, we
have either s = fi(s1,...,8;) with i < arity(f) or s = f(s1,...,5,). In the former case
we have @4(s,t) = fiy1(s1,...,8i,t). Moreover, as s is root-stable, « must be of the form
fi(s1y. g,y 8) with s; —g uj. Hence @q(s,t) —r figr(s1,-- 0 uj,...,8:,t) = Q4(u,t).
Suppose s = f(s1,....5,). If the rewrite step from s to u takes place in one of the arguments
of s then v = f(s1,...,uj,...,8,) with s; —x¢ u;. From the induction hypothesis we obtain
@4(sj,t) —=r @4(u;,t) and therefore @ 4(s,t) = f(Qa(s1,),...,Q4(S;,1),...,@4(5n,1)) =R
Fl@4(s1,1),. .., @ g(uj,t),...., @ 4(s,,1)) = @4(u,t). If the rewrite step from s to u takes place
at the root of s then s = lo and u = ro for some rewrite rule [ — r € R and substitu-
tion 0 € L(F',V). Because I and r do not contain function symbols from F'\F, we obtain
Qu(s,t) = I@A(a,t') and @ 4(u,t) = r@y(o,t) from the above fact. Therefore also in this
case we have @4(s,1) —r @4(u,t). In order to conclude that (.A,—-r;'i) is a quasi-model for
(Fa,Ra), it remains to show that [a]({) —% [a](r) for every rewrite rule [ — r € Rq and
assignment a from V to 7(F',V). If | — r € R then [a](]) = la —r ra = [a](r). Otherwise
I =Q@(fi(z1,...,2i)y)and r = fip1(21,...,24,y) for some f € F and ¢ < arity(f), in which
case we have [a](I) = fis1(21.... 25, y)a = [¢](r) by definition.

To conclude our proof we show that (Ra),,, U dec(Fa, _*1+z) is precedence terminating with
respect to 3. Clearly (Ra),,;, = Riaw U(Ra\R),,;- The rewrite rules in R,y U dec(Fa, —>,'}'z) are
taken care of by the first clause of the definition of 3, just as in the proof of Theorem 3.3. For
the rules in (Ra\R),,;,; we use the second clause. O

The reader is invited to compare our proof with the one of Kennaway et al. [4].
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