<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>A Vanishing Theorem of Cohomology Groups of Local Systems</td>
</tr>
<tr>
<td>Author</td>
<td>趙 (康治)</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1995: 919: 56-67</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/59690</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
A Vanishing Theorem of Cohomology Groups of Local Systems

Introduction

この小論では題目にあるとおり、局所系の高次のコホモロジー群の消滅についてのあらゆる条件を与え、まず低空間が1次元の場合について説明を始める。

\mathbb{P}^1: 1次元複素射影空間

$U := \mathbb{P}^1 \setminus \{0, 1, \infty\}$ 但し $x \neq 0, 1, \infty$ とする。

$\omega = \alpha \frac{dx}{x} + \beta \frac{dx}{x-1} + \gamma \frac{dx}{x-\infty}$ ここで $\alpha, \beta, \gamma \in \mathbb{C}$ とおき

$C = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ の座標。

$D := d + \omega$: ω から定まる flat connection

$L := L_\omega = \ker (D : \Omega^1 \rightarrow \Omega^2)$ はω により定まるび上のlocal system で，Ω^1, Ω^2 はそれぞれびの構造層，1-form のなす層。

びは affine なので，$H^2(U, L) = 0$ （$i > 1$）となる。

また，$\chi(U, L) = \dim H^0(U, L) - \dim H^1(U, L)$ とおくと，

$\chi(U, L) = \chi(U) = -2$ ($\chi(U)$ はびの Euler 様数）となるので，$H^0(U, L) = 0$ ならば，
\(\dim H^i(\pi, L) = 2 \) となる。

さて、いつ \(H^i(\pi, L) = 0 \) となるか？ 簡単な計算から分るように、\(\alpha, \beta, \gamma \) のうち少なくともひとつが整数でないならば、\(H^i(\pi, L) = 0 \) となる。

このとき、\(H^i(\pi, L) \) の basis を見つけるのはたやすく、実際、

\(K \) : \(\mathbb{P}^n \) の canonical line bundle,

\(D \) : 0, 1, \ldots \) という 4 点からなる divisor とする。

\(H^4(\pi, L) \cong \Gamma(\mathbb{P}^n, K+D) / \mathcal{O}(1) \) という同型を用いると,

\[\Gamma(\mathbb{P}^n, K+D) = \mathcal{O}(\frac{d^4}{4} - \frac{d^4}{4} - \frac{d^4}{4}) + \mathcal{O}(\frac{d^4}{4}) \]

により、\(H^4(\pi, L) \) の basis の代表元が得られる。

さて、ホモロジー \(H^2(\pi, L) \) があれば、ホモロジー \(H_2(\pi, L) \)
（\(L \) は \(L \) の dual）を考えたのは当然であり、しかもこれらの
プログラミング（つまり積分）を考えても自然である。

\(H_2(\pi, L) \) の basis を図示すると下図のようになる。詳しく
は、吉田さんの論文を参照のこと。

\[\begin{array}{ccc}
\circ & \xrightarrow{\ell_1} & \circ & \xrightarrow{\ell_2} & \circ
\end{array} \]

ここで \(H^*(\pi, L) \) と \(H_*(\pi, L) \) の pairing を考えよう。

\(u := \ell^*(\ell - 1)^\alpha (\ell - 2)^\beta \) とすると \(d \cdot u = 0 \) となる。
このとき，問題のpauring（積分）は次の形になる．（正確には
2×2行列の(1,1)-成分であるが）

$$\int_0^1 u \left(\frac{dt}{x^t} - \frac{dt}{t-1} \right) = - \int_0^1 t^{x-1} (t-1)^{x-1} (t-x)^2 dt.$$

右辺は，（定数項を除いて）Gauss の超幾何函数の積分表示に
他ならない，良く知られているように，Gauss の超幾何函数
は2階の常微分方程式をみたす．dim \(H^2(\mu, L) = 2 \) と考えますと，この数値の一一致は当然ではなく，実は dim \(H^2(\mu, L) \) と上
述べたように導かれる微分方程式のランクの内には密接な
関係がある．このように消滅定理は超幾何方程式において重要になる
次章では，エポメロッキー消滅定理の喜多 - 野海によつた高
次元版を述べる．

喜多 - 野海の消滅定理

Notation:

\(u = (u_1, \ldots, u_n) \)

\(p_j (w) \)：次数 \(j \) の多項式（\(1 \leq j \leq m \)）

\(P_j (w) \)：\(P_j \) の最高次数の項

\(c_j : = \sum_{j=1}^{m} - \alpha_j \frac{dP_j}{P_j} \) \((w, \ldots, \alpha_m \in \mathbb{C}) \)

\(d + c \)
定理（喜多－野海）
次の (1), (2), (3) を仮定しよう。

(1) $1 \leq r \leq \min (m, n-1)$, $1 \leq j_1 < \cdots < j_r \leq m$ について、
\[\text{height}(d\overline{P}_{j_1} \wedge \cdots \wedge d\overline{P}_{j_r}, \overline{P}_{j_1}, \cdots, \overline{P}_{j_r}) \geq n. \]

(2) $1 \leq s \leq \min (m, n)$, $1 \leq j_1 < \cdots < j_s \leq m$ に対して、
\[\overline{P}_{j_1}, \cdots, \overline{P}_{j_s} \text{ は regular sequence.} \]

(3) $\sum_{j=1}^{m} l_j \alpha_j \in \mathbb{Z}$
このとき，
\[H^3(u, v, w) = 0 \]
従って，
\[H^n(u, v, w) = (-1)^n \chi (v) \]
ここで、**height, regular sequence** の定義については述べませんでした（興味ある人は可積分論の本を参照して下さい）。実は (1)，(2) は後で述べるように幾何的に解釈出来る。
さて、この定理は大変重要であったが、次のような重要な例には直接適用出来ない。

\[\text{Appell's } F_4 \]

\((*) \int\int u_1^{\alpha_1} u_2^{\alpha_2} (1 - u_1 - u_2)^{\alpha_3} (u_1 u_2 - x_1 u_1 - x_2 u_2)^{\alpha_4} du_1 \wedge du_2 \)

\[x_1, x_2 \text{ は一般} \]

\[p_1 := u_1 \]

\[p_2 := u_2 \]

\[p_3 := 1 - u_1 - u_2 \]

\[p_4 := u_1 u_2 - x_1 u_1 - x_2 u_2 \text{ とおく。} \]
直ぐに分かることは、このときの定理の条件を満たしていない。しかし、金子謙一氏が次のような言葉を開発した。

\(\nu_1 = \frac{-u_1}{1-u_1-u_2}, \quad \nu_2 = \frac{-u_2}{1-u_1-u_2} \)

そうすることにより、定数が除いて次の形になる。

\[\int \left| \prod_{i=1}^{k} Q_j(\nu_i, \nu_2) \right| d\nu_i d\nu_2 \]

但し,

\[Q_1 = \nu_i, \quad Q_2 = \nu_2, \quad Q_3 = 1 - \nu_i - \nu_2, \]
\[Q_4 = x_1\nu_i + x_2\nu_2 - x_1\nu_i^2 + (1 - x_1 - x_2)\nu_i
\nu_2 - x_2\nu_2^2 \]
\[\beta_1 = x_1, \quad \beta_2 = x_2, \quad \beta_3 = -x_1 - x_2 - x_1 - 2x_1 - 3 \]
\[\beta_4 = x_1 \]

このとき、条件 1, 2, 3, 4 は定理の条件 (1), (2) を満たすことがわかる。

従って、\(\beta_1 + \beta_2 + \beta_3 + 2\beta_4 = -x_1 - 3 \) となり、\(H^i(v, L) = 0 \) と \(H^3(v, L) = 4 \) となる。

反省：何故、元の形（4）ではうまく定理が適用出来なかったのに、（4）という射影姿勢はどこかと定理が適用出来るようにになったのだろうか？
射影変換(※)をよく見ると、局所のとこで、新しい座標では、1-u_1-u_2=0 で定まる直線が無限遠直線になっている。
さて、元の座標での無限遠直線と他の曲線の交わりで見ると正規交又でない、一方、新たな無限遠直線と他の曲線の交わりは正規交又である。定理、このことが新しい座標で考えると物事かよくいった理由である、これに気づけば、定理の条件(1). (2)は次のように言い換えられることもすぐ分かった。

(1). (2)

\[\Leftrightarrow \quad \overline{D}_j \cap D_j の IP^2 において交又 \]

\[H_{\infty} : IP^2 における無限遠超平面 とすると \]

\[(\bigcup_{j=1}^{\infty} \overline{D}_j) \cup H_{\infty} は H_{\infty} の近傍で正規交又 \]

また条件(3)は、H_{\infty}において(i)の留数が整数でないことが分かった。

このように定理の条件を解釈すれば、Appell's F4 の場合でも図を見ることにより直ちに定理が応用出来る。また、これらの考察から次の定理を予想することは自然である。

主定理

Notation

\(M: complex projective manifold of complex dimension n \)
D: effective reduced divisor on M

\[D = \sum_{j=1}^{m} D_j \] と仮の既約分解とする。

\(\omega \) を \(M \) における meromorphic 1-form で局所的には次のようない形をしているものと、

\[D_j \] の定義を産みで \(f_j \) とし、\(x \in M \) において

\[f_{j_1}(x) = \cdots = f_{j_r}(x) = 0, \text{ 他の} f_j \text{ に対して, } f_j(x) \neq 0 \text{ となるとき}
\]

\[\omega = \sum_{i=1}^{r} \alpha_i \frac{df_{j_i}}{f_{j_i}} + (d-closed holomorphic 1-form) \]

\[\nu = d + \omega, \quad (\nu^2 = 0 \text{ に注意}) \]

\(\nu := M \setminus D \)

\[L := \ker(\nu: \Omega_M \to \Omega^1_M) \] とのとき、次の定理が成立する。

定理

ある \(t \in \mathbb{N} \) が存在して、

(1) \(D^c := \sum_{j \in T} D_j \) は \(\exists \) effective ample divisor の台

(2) \(D \) は \(D^c \) の近傍で正規交叉

(3) \(x \in Z \) と \(f_j \in T \) を満たすならば、
\[H^i(\mathfrak{u}, \mathfrak{L}) = 0 \quad (i \neq \eta), \]
従って
\[H^\eta(\mathfrak{u}, \mathfrak{L}) = (-1)^\eta \chi(\mathfrak{u}). \]

ここでは説明については述べないが、key point は代数幾何で良く知られている Serre の消滅定理を使うことである。
因みに Serre の消滅定理とは、
\[M: \text{n 次元 projective variety} \]
\[L: \text{ample line bundle on } M \]
としたとき、任意の coherent sheaf \(M \) に対して、十分大きい \(m > 0 \) に対して、
\[H^i(M, M'^{\otimes m}) = 0 \quad \text{for } \nu > 0 \]
が成り立ちすることである。

エピローグ
主定理は実は [Ara] の結果を含むように拡張される。正確な statement を述べるのを止め、例をひとつつあげるのにとどめよう。
例

\mathbb{P}^2において下図のような直線の配置を考える。

各 ℓ_iは1次同次式で、$\alpha_i - x_i \in \mathbb{C}$を満たすものとし、$\omega := \sum_{i=1}^{6} x_i \frac{d\ell_i}{x_i}$とすると$
\omega$は$U := \mathbb{P}^2 \backslash \bigcup_{i=1}^{6} \ell_i = \Omega'$
上的正則な1-form。

もし、$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \in \mathbb{Z}$,
$x_1 + x_2 + x_3 + x_5 + x_6 \in \mathbb{Z}$,
$x_1 + x_2 + x_3 \in \mathbb{Z}$
ならば

$H^i(U, \Omega) = 0 \quad (i \neq 2)$

となる。但し、$\Omega := \ker (d + \omega : \Omega \rightarrow \Omega')$。

注意：この小論ではrank1のlocal systemのコホモロジー
一関数の消滅定理について述べたが、喜多一野海の結果を始め
主定理についても良いrankの場合についても同様の消滅定
理が成立する。
参考文献

[A-K] 青木 - 喜多, 超幾何関数論, シュヴァンガー - 現代数学シリーズ, シュヴァンガー - ファアファーク東京
