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Abstract. A simple derivation of the Lorentz theorem is presented
which gives the perturbation pressure and velocity due to the
presence of a plane wall introduced into an unlimited viscous fluid
of given pressure and velocity obeying the Stokes equation.

An extension to the case of spherical boundary is made in the
same manner, leading to the case of plane boundary as a limit of
large radius. The sphere theorem is revised and applied to three
elementary solutions by Lamb .

1. Introduction _

In 1896 Lorentz [1] developed a theorem yielding a mirror image
of the pressure and velocity of the Stokes flow due to a plane wall in
a unlimited viscous fluid . In a previous review [2] this theorem has
been shown to be derived by the use of the general solution in terms
of three harmonics proposed by Imai[3].

As to the case of spherical boundary the present author [4]. '
presented a sphere theorem for the perturbed stream function of the
axisymmetric flow due to a sphere introduced into an unlimited
viscous flow in axisymmetric motion obeying the Stokes equation.
This theorem has been presented by Collins in a more compact form
[5].

Recently Paraniappan et al [6,7] have extended this theorem to a
general non-axisymmetric flow represented by a biharmonic
function and a harmonic function, on the basis of an inversion
theorem for the polyharmonics due to Chwang[8] . This formalism
has been applied by their group to several internal flows [9] and has
been extended to the case of spherical interface [10] .

In this paper will be presented a simple procedure giving the
reflected pressure and velocity due to a plane or spherical boundary
[11,12] directly from the original flow without recourse to auxiliary
functions, in a similar way to the original Lorentz formula .

The sphere theorem is given in an alternative form and is applied
to three types of elementary solutions given by Lamb [13] .



2. Plane wall
2.1 Preliminaries

Let us derive the image field due to the presence of a plane wall
z = 0 in the Cartesian system (x,y,z ) with the unit vector e normal
to the wall. For this purpose, it is convenient to define the
reflection of any function f(x, y, z) by f* (x, ¥, 2) =f(x, y,- z) and
start from the following lemmas for any harmonic function H (x,y,z)
and biharmonic function B (x,y,z ).

Lemma 1

H= - H * is harmonic : _
A =0 @.1)
and satisfies H+H=0atz=0.
Lemma 2
Let B=-[B-2zB' +2z2ABJ*

where the prime ' denotes the z derivsative e-grad.

Then B is biharmonic

A2B=0 - 2.2)

and satisfies B + B =0 as well as B; +B=0atz=0.
Lemma 3
AB = [4B"- 3 AB - 2z AB’ ]* . o 2.3)
2.2 Lorentz Theorem

Let us start from the velocity u and the pressure p of the
viscous flow satisfying the continuity and the Stokes equation:

divu =0 2.4)
and
Au = gradp/p (2.9
or
rotw= - gradp /u (2.6)

where o is the vorticity
o = rotu . 2.7
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Then it is easily seen that
i) p, p '=e-gradp, e x gradp ,0 and w, =e - are all harmonic.

ii) u ,w =u-e ,e xu and z o are all biharmonic, satisfying (2.2) as
well as

Aleru)=p'lu , 2.8)
and '
Az w)=20" . (2.9)

It should be noted that these properties are valid also for the
perturbed quantities denoted by tilde ~ .
Applying the Lemma 2 to the biharmonic function w = e -u
satisfying w +w =0 and (w +w )'=0atz= 0, we have

w=- e-qlu,pl*, (2.10)
where g
qu,pl=u-2zu'+ z%grad p /p, (2.11)

and we have made use of (2.8) .
The application of Lemma 3 to (2.10) yields

= pAW =[Apw " -3p'-22p "1 . | (2.12)
Integrating (2.12) v‘vith,“rcspect toz =- z¥ we have
p=[p +2zp'-4uw 1*=[Qzp-4uw) -pl* (2.13)

Making use of the relation
ex gradp/ u = (e- grad)w- grad(e -@ ) (2.14)
derived from (2.6), we have for the perturbed vorticity @
@ =J [e x gradp /u + grad(e -@ )]1dz , (2.15)
where the 2z component e - @ in the integrand is found to be
e-=-e¢-0% (2.16}
from Lemma 1 applied to the harmonic function satisfying

e d = -e* at z =0. : 2.17
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Introducing (2.13) and (2.16) into (2.15), the tangential component
w; = o-(e + w)e is obtained to be

| o¢= [wy + e x grad 4w -2z p /pu)] * (2.18)

where we have made use of (2.13).
The tangential velocity can be obtained by applying Lemma 2 to
the biharmonic function U :

U=¢e xu -z @ (2.19)
satisfying the boundary condition
U+U =0and(fJY+U)'=0atZ=0. (2.20)
Making use of ( 2.8),(2.9) and(2.11) we have

_ U=-[exqu,p)+z 0] * (2.21)
which yields by noting (2. 19)
exi= U+2z@

=-e x [ -2z u'+z2gradp /ul* +z (& + o *), (2.22)

where @ is given by (2.16) and (2.18) .
Combining (2.10) and (2.22) we have

i=-[u -2zu'+z2gradp/ ul* -zex (d+ o*) (2.23)
or .
w= -[w -2zw "+z2p' /ul*, (2,24)
and
iy =-[us+2z gradgw -z2gradsp/ pl*, (2.25)

where we have made use of (2.18) and (2.14).
The expressions (2.13), (2.24) and (2.25) for p, w and u, are

essentially the formulae given by Lorentz. [1]
3. Spherical boundary
3.1 Preliminaries
It is convenient to rewrite Kelvin's theorem for the harmonics
H (x ) and Chwang's theorem for the biharmonics B (x ) into the

following form:

Theorem 1 (Kelvin's exterior theorem)
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Let H (x) be the harmonic function of x = r e and be regular in
the domain r < a. Then :

H(x) = - a H(x*)/r (3.1)
is regular harmonic in r > a and satisfies the boundary condition
AH+H=0 atr=a ' (3.2)

where r is the radius from the center and e is the unit radial vector.
Here and hereafter the asterisk *  denotes the inversion

[f(x)] *= fix*)
with _

x*=ax/r?2=rt*e
and . ,
r¥=a 2/r. _ - (3.3)

Theorem 2 (Chwang's exterior theorem)

Let B (x) be the biharmonic function satisfying

A2B =0 | (34)
and regular in the domain r < a . Then B given by -

B=- [(r/a+a/r)B/2 + a (I-r?%a?)B'+a3(1-r%a?) AB /4 r)] *
: (3.5)

is regular biharmonic in r> a and satisfies the following boundary
conditions on the sphere r = a:

B+B=0 and (B+ B)'=0 atr=a (3.6)
where the prime ' denotes the derivative d/dr = (1/r)(x -grad) = e-grad.
The theorem 2 is a generalization of the sphere theorem

for the axisymmetric stream function in the Stokes flow derived by
the author [4] and Collins [5].

We may note the following formula for A B:

AB=-[(rB-4r2B' - 4r3B" ) a3
+ (r/fa + 5r3/a3) AB/ 2-a(r 2/a 2- r 4/a 4)( AB)' 1*, 3.7

which is easily derived from (3.4) and (3.3) by use of equalities
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(3.8)

A(F*/r ) = a 4(Af )*/r S
(3.9)

and
A(r f )=A(x - grad)f] = (x » grad + 2)Af.
Interior theorems 1' and 2'
In the interior problem where we interchange r>a and r< a in the
restrict H and B to be respectively O

above Theorems we have to
(1/r) and O(1/r?) as r -> oo[6].

3.2 Sphere theorem
in the section 2 by x. the procedure
We have

If we replace ze
proceeds analogously to the case of plane boundary.
1) p,rp'=x-gradp,x x gradp and x -® =r w, are all harmonic

i) u, r ur=x-u,x xu and r2w are all biharmonic, satisfying (3.4)
(3.10)

as well as '
| Ax-u)=rp'lu,. :

(3.11)
(3.12)

A(x xu)= 20 +x x gradp /p
A(r2o) = 4r 0 +60 |

and
It should be noted that these properties are valid also for the
satisfying

~

perturbed quantities denoted by tilde
Applying the theorem 2 to the biharmonic function x -u
(3.13)

x-(a+u )=0 and x-(a +u)'=0atr = a, we have

ir=x-u=-{x-q(u,p)}*,
(3.14)

where
rqu,p=a{B-r%a>Hul2 + A-r2/a?)u'’
+a?(1-r2a?)? gradp/(4p)}

and we have made use of (3.10).
The application of (3.10) and (3.7) yields
p'=uA(x-a)lr
={pa (4r2u, "+12r uy’ 43u;)+a3r(1-r2/a?)p”
+a 3(1-7r 2/ a 2)p' 12}*/r 3. (3.15)
The perturbed pressure p is obtained by the integration of (3.15)

with respect to r = a 2/r *
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p=—{(4r’u + 3‘[ rudryl a®+a(* 1d*=r*la*)p —1/Qa)}*
with

I=] @-r’/a)pdr=3-r"1a*)rp-3] (1-r*/ a*)pdr, (3.16)

where we assume that the integrals are convergent and take the
gauge pressure corresponding to. the lower limit (r =0 or infinity
according as outer or inner problem) to be zero.

Making use of the relation

x x gradp /p =(r o) '- grad(x - ) (3.17)

derived from (2.6), we have for the perturbed vorticity :

rao = J [x x gradp /u - grad{a (x - )*/r }]dr,  (3.18)

since x-®w = r o, is harmonic and satisfy the condition (3.2) of
theorem 1 on the sphere r=a. We have

ro =x-0® =-ax-w)*r, (3.19)
from theorem 1 .

The tangential velocity u; can be obtained by applying theorem
2 to the biharmonic function V

V=x><u-—(r2v—-a2)a)/2 : : (3.20)
satisfying the boundary conditions of the theorem. We get
V=—{xxqu,p)—ar/a-r’la®)w/2}* , (3.21)

where ¢q (u,p ) is given by (3.14) and we have made use of (3.11) and
(3.12).

Combining the expression for x xu obtained from (3.20), (3.21) and
(3.13) we have ’
u=—{@r/a-r*Ia®)a/2+ ¢/ a* —r* 1 a*)au +r(a® —r*) gradp | (4pa’)} *

~[(rla-r’/ a3){a3grad‘ j p *I(urt)dr+ex(ro+ gradj x-odr)}]*/2

, (3.22)
where grad; denotes the tangential derivative grad - e (e-grad).

Separating the radial and the tangential component we have

i =i-e=—{3rla-r’la’w, [2+G*1d* -r*la*)au, +r(a* -r*)’ p' 1(4ua®)}* (3.23)

r
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a =ia-ie

= r /a-(1-r*/ada*)grad [(rzu,-3 ru,/2dr)/a+a{r(1—r2/az)p—-3 (1-r*/a*)pdr}/ (4u)
t t

- (3.24)
where we have made use of the relation

x xo =-(ru)’ + grad(x ‘u ) ' (3.25)

as well as (3.17) to eliminate the vorticity and (3,16) to eliminate p.,
and assume that the integral constand cam be taken to be zero at
the lower limit.

The expression (3.24) is new and corresponds directly to (2.25) of the
previous section.

3.3 Limit of large radius
Let us put
' r=a(l +z/la + oz /la)) (3.26)
in the several expressions and retain the lowest order in z /a

For the pressure p , it is convenient to adopt the last expression of
I in (3.16) and neglect the integral in comparison with the first term.
We may put u as w, r -derivative as z - derivative to the lowest
approximation.obtaining (2.10) for p .

It is easily seen that the radial velocity (3.13) leads to the
expression (2.24) for w . In the. same manner, (2.25) is derived from
(3.24) by neglecting integral terms of O(z/a) in comparison with
other terms.

3.4 Example

As an illustrating example, three components of Lamb's general
solution [13] are considered. For the sake of simplicity we may take
a and u to be unity without loss of generality .
1) external flow r > 1.

u=rotx H) = - x x gradH'=-C,

where H and C are solid harmonics of n-th degree(n. is positive
integer,since n=0 is trivial) We have also
p =0and u = 0.
Introducing these into the corresponding expressions in 3.2, we
obtain

p=0 and & =0 sothat @, =[rC 1* ,

ile.. u=-u*lr.
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i) u = gradH

we have

u=nH/r , wu= gradeH =T /r

with -
T =r gradiH

aswellasp =0 ,u , '"=n(-1H /r,u' =0T /r?

and
jru,drz nr H (n+1)

Then (3.16), (3,23) and (3.24) give
p=-n@n2-1)(rH)Y/(n+1),

i=-n[{n+1/2-(n-1/2)r 2}H 1* |

and : »
= -[{l-n1 -r2)+3n (1-r2)/2n+2)}T }*

=[{(n -2)2n +1)-n 2n -1)r 2 }T 1*/2n +2).
iii)y p=H, u=1[(n+3)r 2grad H - 2nx H 1/(2n +2)(2n +3)]

We have
u, =nr H/(4n +6) , uy =(n+3)r T/ [2n +2)(2n +3)]

[rudr="n "H /[(n +3)(4n +6)], [ (1-r*)p dr = [r/(n+1)-r*/(n+3)]1H .
Introducing these eXpressions into (3.19), (3.23) and (3.24) we obtain
p=-n (2n -1)(r H )*/(2n +2)
i=-n [{2n+3 - 2n +1 )r*}H 1*/(8n +12)
and
i,= [{(n-2)-n 2n +1)r*/(2n +3)}T ] */ (4n + 4)
2) Interior flow r < 1.
In this case we have only to take solid harmonics of -(n+1) degree
or replace H by (rH) * etc. in the exterior problem ’
)u = rotx H ¥r) = - x x gradH *r=-C */r,

where H and C are solid harmonics of n th degree.and we obtain

p=0,id =0 so that u=C=-u*/lr.
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ii)u = grad(H */r). p=0, n>0

we have | '
p=- (n +1)2n+1) (2n+3)H /n

a=-(m +1){(n +1/2)r-(n +3/2)r }H
and

i,= -{(n +3)(n +1/2)r -(n +1)(n +3/2)/r }T /n

iii) p = (rH )*,

w = - [(n-2)r 2grad (rH )*- 2(n+D)x (rH)* 1/(2n)(2n-1)], n> 0
we obtain
p= (n+1) (2n+3)H /(2n)
i,= (n+1){r2 - 2n +1 )(2n-1) }H [4r)
and

= {(n+3)r2-(n +1)(2n +1)./(2n -D}T /(4nr ).

It is seen that n=0 is to be excluded according to the interior
Theorems 1" and 2' in 3.1. For example the case n=0 in ii)
correaponds to the presence of a single source in the cavity
contradicting the conservation of mass. On the other hand, the case
n=1,2 of iii)) becomes possible by the cancellation of formidable
terms. Summarising, our formulae 1s valid if p = O(l/r2) u= O
(1/r) for r->  as long as the total flux of singularities in r< a is
zero.and there are no singularities in the outside of the sphere.

4. Summary

A simple derivation of the Lorentz theorem is presented which
gives the perturbation pressure p and velocity i due to the
presence of a plane wall introduced into an unlimited viscous fluid
of given pressure p and velocity u obeying the Stokes equation.

An extension to the case of spherical boundary is made in the
same manner, leading to the case of plane boundary as a limit of
large radius. The  theorem is given in the form corresponding to
the original formula of Lorentz for the plane boundary.

As an illustrating example three elementary solutions by Lamb
[13] are chosen. Application to any case will be easily done except
some restrictions in the interior problem i.e. p = O(1/r?2) u= O
(1/r) as r->e ~ and zero total flux of singularities in r<a .
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