Réalisation des modules irréductibles ayant un poids dominant dans des espaces des fonctions analytiques

Yi ZHU

Résumé - Soit $\mathfrak g$ une algèbre de Lie simple sur $\mathbb C$, soit $\mathfrak h$ une sous algèbre de Cartan de $\mathfrak g$ et soit G un groupe connexe d'algèbre de Lie $\mathfrak g$. Pour tout $\nu \in \mathfrak h^*$, nous donnons une réalisation du $\mathfrak g$ —module irréductible de poids dominant ν dans un espace de fonctions analytiques au voisinage de l'élément neutre dans G. Lorsque ν est le caractère de certaines sous algèbres de Levi ayant des propriétés particulières, nous obtenons plusieurs réalisations distinctes du même module.

A realization of irreducible highest weight module in a space of analytic functions

Abstract - Let $\mathfrak g$ be a simple Lie algebra over $\mathbb C$, let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g$ and let G be a connected group with Lie algebra $\mathfrak g$. For all $\nu \in \mathfrak h^*$ we give a realization of irreducible $\mathfrak g$ -module with highest weight ν in a space of analytic functions near the origin in G. If ν is the character of some Levi subalgebras having specific properties, we obtain several distinct realizations of the same module.

Soit $\mathfrak g$ une algèbre de Lie simple complexe de dimension finie, et soit $\mathfrak h$ une sous algèbre de Cartan de $\mathfrak g$. Soit G un groupe connexe complexe d'algèbre de Lie $\mathfrak g$. On note $\mathcal R$ le système de racines de la paire $(\mathfrak g, \mathfrak h)$, et on fixe une base Ψ de $\mathcal R$. Soit θ une partie de Ψ . On définit l'élément H_{θ} par les équations suivantes :

$$lpha(H_{ heta}) = 2 \quad ext{si } lpha \in \Psi \setminus heta \ lpha(H_{ heta}) = 0 \quad ext{si } lpha \in heta.$$

On pose également

$$d_p(\theta) = \{X \in \mathfrak{g}, \ [H_\theta, X] = 2pX\}.$$

On a ainsi

$$\mathfrak{g} = \bigoplus_{p \in \mathbf{Z}} d_p(\theta).$$

On pose

$$\mathfrak{n}_{\theta}^- = \bigoplus_{p < 0} d_p(\theta), \ \mathfrak{l}_{\theta} = d_0(\theta), \ \mathfrak{n}_{\theta}^+ = \bigoplus_{p > 0} d_p(\theta).$$

La sous algèbre parabolique \mathfrak{p}_{θ} associée à θ est définie par

$$\mathfrak{p}_{\theta}=\mathfrak{l}_{\theta}+\mathfrak{n}_{\theta}^{+}.$$

Si $d\lambda$ est un caractère de l_{θ} , on peut étendre $d\lambda$ trivialement sur \mathfrak{p}_{θ} en posant

$$d\lambda(l+n) = d\lambda(l), l \in \mathfrak{l}_{\theta}, n \in \mathfrak{n}_{\theta}^+.$$

Tous les caractères de l_{θ} peuvent être ainsi considérés comme des caractères de \mathfrak{p}_{θ} .

DÉFINITION 1 ([1]). — On dit que $(l_{\theta}, d_1(\theta))$ est un espace préhomogène de Dynkin-Kostant s'il existe un élément $I^+ \in d_1(\theta)$ et un élément $I^- \in d_{-1}(\theta)$ tels que (I^-, H_{θ}, I^+) est un sl_2 -triplet.

On suppose dans tout ce paragraphe que la couple $(l_{\theta}, d_1(\theta))$ est un espace préhomogène de Dynkin-Kostant.

REMARQUE 2

- a) Les espaces préhomogènes de ce type (Dynkin-Kostant) avaient déja été considérés par Rubenthaler [2] qui en avait donné une caractérisation (Proposition 1.3.8, p. 31).
- b) Une étude détaillée des espaces préhomogènes de Dynkin-Kostant se trouve dans [1].
- c) Les parties θ correspondant à des espaces de Dynkin-Kostant comprennent les parties admissibles au sens de [3]. Donc notamment la partie $\theta = \emptyset$ (qui correspond à la sous algèbre de Borel) définit un espace préhomogène de Dynkin-Kostant.

Soit

$$w = \exp_G I^+ \exp_G I^- \exp_G I^+ \in G.$$

Soit \mathfrak{s}_2 la sous algèbre engendrée par le sl_2 -triplet (I^-, H_θ, I^+) , et soit S_2 le sous groupe analytique de G correspondant à \mathfrak{s}_2 . Puisque $SL(2, \mathbb{C})$ est simplement connexe, l'isomorphisme $d\varphi$ de $sl(2, \mathbb{C})$ sur \mathfrak{s}_2 donnée par

$$\begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \longmapsto I^{-}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \longmapsto I^{+}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \longmapsto H_{\theta}$$

nous donne un morphisme φ de $SL(2, \mathbb{C})$ sur S_2 .

On notera que w^4 est l'élément neutre du groupe G et que $w^2 \in \exp_G \mathfrak{h}$. Et on a

$$\mathrm{Ad}w(\mathfrak{l}_{\theta})=\mathfrak{l}_{\theta},\ \mathrm{Ad}w(\mathfrak{n}_{\theta}^{+})=\mathfrak{n}_{\theta}^{-},\ \mathrm{Ad}w(I^{+})=I^{-},\ \mathrm{et}\ \mathrm{Ad}w(I^{-})=I^{+}.$$

Soient N_{θ}^+ , N_{θ}^- , L_{θ} les sous groupes analytiques correspondant respectivement à \mathfrak{n}_{θ}^+ , \mathfrak{n}_{θ}^- , \mathfrak{l}_{θ} , soit $d\lambda$ un caractère de \mathfrak{l}_{θ} . Soit P_{θ} le normalisateur de \mathfrak{p}_{θ} dans G. Soient \widetilde{P}_{θ} le revêtement universel de P_{θ} et $\pi: \widetilde{P}_{\theta} \to P_{\theta}$ la projection canonique. Soit \widetilde{L}_{θ} le sous groupe analytique de \widetilde{P}_{θ} d'algèbre de Lie \mathfrak{l}_{θ} . Le groupe \widetilde{L}_{θ} est le revêtement universel de L_{θ} . Soit $\pi_1: \widetilde{L}_{\theta} \to L_{\theta}$ la projection canonique.

Pour tout groupe J, on note e_J l'élément neutre de J.

Si w^2 est l'élément neutre e_G de S_2 , on choisit un voisinage ouvert $V \subset L_\theta$ de e_{L_θ} satisfaisant les conditions suivantes :

1- Il existe une section $\sigma_1: V \to \widetilde{L_{\theta}}$ de l'application π_1 tel que $\sigma_1(e_{L_{\theta}}) = e_{\widetilde{L_{\theta}}}$.

$$2-V^{-1}=V$$
.

Si w^2 n'est pas l'élément neutre de S_2 , on choisit un voisinage ouvert $V_1 \subset L_\theta$ de e_{L_θ} satisfaisant les conditions suivantes :

1'- Il existe une section $\sigma_1:V_1\to \widetilde{L_\theta}$ de l'application π_1 tel que $\sigma_1(e_{L_\theta})=e_{\widetilde{L_\theta}}$.

$$2' - V_1^{-1} = V_1.$$

$$3' - w^2 V_1 w^2 = V_1.$$

$$4'-V_1\cap w^2V_1=\emptyset.$$

Dans ce dernier cas on pose

$$V = V_1 \cup w^2 V_1.$$

Soit $h \in \mathfrak{h}$ tel que $w^2 = \exp_{L_{\theta}} h$. On pose $w_1^2 = \exp_{\widetilde{L_{\theta}}} h$. On a $\pi_1(w_1^2) = w^2$. On étend l'application σ_1 à V de la manière suivante :

$$\sigma_1(w^2g) = w_1^2 \sigma_1(g), \ g \in V_1.$$

Il est facile de voir que (σ_1, V) est une section de l'application π_1 .

On pose $O = VN_{\theta}^+$, l'ensemble O est donc un voisinage ouvert de l'élément neutre de P_{θ} sur lequel il existe une section $\sigma: O \to \widetilde{P_{\theta}}$ de l'application π .

LEMME 3. — L'ensemble $\Omega = N_{\theta}^- \cap w^{-1} N_{\theta}^- O$ est un ouvert non vide de N_{θ}^- . En particulier, on $a \exp_G(-I^-) \in \Omega$ et $\exp_G(I^-) \in \Omega$.

Soit $d\lambda_w$ le caractère de l_θ défini par

$$d\lambda_w(x) = -d\lambda(\operatorname{Ad}(w^{-1})x), \ x \in \mathfrak{l}_{\theta}.$$

Soit λ_w (resp. λ) le caractère de $\widetilde{L_\theta}$ correspondant à $d\lambda_w$ (resp. $d\lambda$). Pour $g\in O$, on a donc

$$\lambda_w(\sigma(q)) = \lambda^{-1}(\sigma(w^{-1}qw)) = \lambda(\sigma(w^{-1}q^{-1}w)).$$

On va rappeler la construction de Rubenthaler d'un invariant relatif de la représentation $(L_{\theta}, \mathfrak{n}_{\theta}^{-})$. ([2](théorème 1.4.2 et remarque 1.4.3) et [4]). Soient $\tilde{\gamma}$ et \tilde{p} les applications définies sur Ω par

$$wv = \tilde{\gamma}(v)\tilde{p}(v)$$

avec $\tilde{\gamma}(v) \in N_{\theta}^{-}$ et $\tilde{p}(v) \in O$.

Lemme 4. — L'application $\tilde{\gamma}$ est une bijection de Ω sur Ω .

On note $\tilde{\gamma}^{-1}$ l'application inverse de $\tilde{\gamma}$.

Soit f_{λ_m} la fonction définie sur Ω par

$$f_{\lambda_{\boldsymbol{w}}}(v) = \lambda_{\boldsymbol{w}}(\sigma(\tilde{p}(v))),$$

La fonction f_{λ_w} est analytique sur Ω puisque λ_w et \tilde{p} le sont. (C'est cette fonction définie sur $N_{\theta}^- \cap w^{-1} N_{\theta}^- P_{\theta}$ lorsque λ est un caractère de L_{θ} , qui était considérée dans [2].)

LEMME 5. — Pour $X \in \mathfrak{l}_{\theta}$, $v \in \Omega$ et t assez petit, on a

$$f_{\lambda_w}(\exp_G(tX)v\exp_G(-tX)) = \lambda \lambda_w(\sigma(\exp_G(-tX)))f_{\lambda_w}(v).$$

Nous définissons à présent l'espace $H(\lambda)$ où nous allons réaliser le \mathfrak{g} -module irréductible de poids dominant λ en posant

$$H(\lambda) = \{h : \Omega O \to \mathbb{C} | h \text{ est analytique}, h(nq) = \lambda_w(\sigma(q))h(n), q \in O, n \in \Omega\}$$

Soit $X \in \mathfrak{g}$, pour t assez petit et $nq \in \Omega O$ fixé, le produit $(\exp -tX)nq$ est encore dans ΩO , ce qui permet de définir $(\exp tX.h)(nq)$ par

$$\exp tX.h(nq) = h((\exp -tX)nq)$$

On définit alors

$$(X.h)(nq) = \frac{d}{dt}_{|_{t=0}} (\exp tX.h)(nq) = \frac{d}{dt}_{|_{t=0}} h((\exp -tX)nq)$$

Nous avons ainsi muni $H(\lambda)$ d'une structure de \mathfrak{g} -module.

Notons que si $H(\Omega)$ désigne l'espace des fonctions analytiques sur Ω , l'application restriction des fonctions de $H(\lambda)$ à Ω permet d'identifier $H(\lambda)$ et $H(\Omega)$. Ceci permet de considérer f_{λ_w} comme un élément de $H(\lambda)$ en posant pour $n \in \Omega$ et $q \in O$,

$$f_{\lambda_w}(nq) = \lambda_w(\sigma(q)) f_{\lambda_w}(n).$$

On pose également

$$W(\lambda) = \mathcal{U}(\mathfrak{g}) f_{\lambda_w}.$$

C'est un sous \mathfrak{g} -module de $H(\lambda)$.

LEMME 6. — la fonction f_{λ_w} est un vecteur primitif de poids $d\lambda$.

Lemme 7. — Soit $v \in \Omega$, on a

$$w^{-1}v = \tilde{\gamma}^{-1}(v)(\tilde{p}(\tilde{\gamma}^{-1}(v)))^{-1}.$$

Soit γ l'application de $\mathbb{R} \setminus \{0\}$ dans $SL(2, \mathbb{C})$ donnée par

$$s \longmapsto \gamma(s) = \begin{pmatrix} 1 & 0 \\ \frac{1}{s} & 1 \end{pmatrix}.$$

LEMME 8. — On a $\varphi \gamma(t) = \tilde{\gamma}(\exp_{S_2}(tI^-))$

On note R_g la multiplication à droite par g (dans $SL(2, \mathbb{C})$ ou S_2). On note aussi $(d\varphi)_g$ la différentielle de φ au point g. On note e l'élément neutre de $SL(2, \mathbb{C})$, alors on a $d\varphi_e = d\varphi$. On remarque que $\varphi(e)$ est l'élément neutre de S_2 (donc aussi l'élément neutre de G). On note $(dR_g)_x$ la différentielle de R_g au point x.

LEMME 9. — On a

$$(d\tilde{\gamma}^{-1})_{\varphi(\gamma(s))}((dR_{\varphi(\gamma(s))})_{\varphi(e)}I^{-}) = s^{2}(dR_{\exp_{S_{2}}sI^{-})})_{\varphi(e)}I^{-}.$$

LEMME 10. — Soit $f \in H(\lambda)$, soit $s \in \mathbb{C}$ tel que $\exp_{S_2} sI^- \in \Omega$. Si f satisfait l'équation suivante

$$I^+.f(\exp_{S_2} sI^-) = 0,$$

alors on a

$$(df)_{\exp_{S_2} sI^-} ((dR_{\exp_{S_2} sI^-})_{\varphi(e)}I^-) = -s^{-2} A f(\exp_{S_2} sI^-).$$

Où

$$A = \frac{d}{dt}_{|_{t=0}} (\lambda_w(\sigma((\tilde{p}(\tilde{\gamma}^{-1}(\exp_{S_2} tI^- \tilde{\gamma}(\exp_{S_2} sI^-)))^{-1} \tilde{p}(\exp_{S_2} sI^-))))$$

est une constante qui ne dépend pas de f.

Preuve : D'après l'hypothèse, on a

$$\begin{split} 0 = & (-I^+).f(\exp_{S_2} sI^-) = \frac{d}{dt}_{|_{t=0}} f(\exp_{S_2} tI^+ \exp_{S_2} sI^-) \\ & = \frac{d}{dt}_{|_{t=0}} f(w^{-1}(w \exp_{S_2} tI^+ w^{-1})(w \exp_{S_2} sI^-)) \\ & = \frac{d}{dt}_{|_{t=0}} f(w^{-1} \exp(t(\operatorname{Ad}w)I^+)\tilde{\gamma}(\exp_{S_2} sI^-)\tilde{p}(\exp_{S_2} sI^-)) \\ & = \frac{d}{dt}_{|_{t=0}} f(w^{-1} \exp_{S_2} tI^-\tilde{\gamma}(\exp_{S_2} sI^-)\tilde{p}(\exp_{S_2} sI^-)) \\ & \text{d'après le lemme 7} \\ & = \frac{d}{dt}_{|_{t=0}} [f(\tilde{\gamma}^{-1}(\exp_{S_2} tI^-\tilde{\gamma}(\exp_{S_2} sI^-))) \\ & \qquad \qquad (\tilde{p}(\tilde{\gamma}^{-1}(\exp_{S_2} tI^-\tilde{\gamma}(\exp_{S_2} sI^-))))^{-1}\tilde{p}(\exp_{S_2} sI^-))] \\ & = \frac{d}{dt}_{|_{t=0}} [f(\tilde{\gamma}^{-1}(\exp_{S_2} tI^-\tilde{\gamma}(\exp_{S_2} sI^-)))) \\ & \qquad \qquad \lambda_w(\sigma((\tilde{p}(\tilde{\gamma}^{-1}(\exp_{S_2} tI^-\tilde{\gamma}(\exp_{S_2} sI^-)))))^{-1}\tilde{p}(\exp_{S_2} sI^-))))] \end{split}$$

D'après le lemme 8, on a $\tilde{\gamma}(\exp_{S_2} sI^-) = \varphi(\gamma(s))$. On obtient

$$\begin{split} 0 &= (-I^+).f(\exp_{S_2} sI^-) \\ &= \lambda_w(\sigma((\tilde{p}(\exp_{S_2} sI^-))^{-1}\tilde{p}(\exp_{S_2} sI^-))))(\frac{d}{dt}_{|_{t=0}} f(\tilde{\gamma}^{-1}(\exp_{S_2} tI^-\varphi(\gamma(s))))) \\ &+ f(\exp_{S_2} sI^-)\frac{d}{dt}_{|_{t=0}} (\lambda_w(\sigma((\tilde{p}(\tilde{\gamma}^{-1}(\exp_{S_2} tI^-\tilde{\gamma}(\exp_{S_2} sI^-))))^{-1}\tilde{p}(\exp_{S_2} sI^-)))) \\ &= (df)_{\exp_{S_2} sI^-}((d\tilde{\gamma}^{-1})_{\varphi(\gamma(s))}((dR_{\varphi(\gamma(s))})_{\varphi(e)}(I^-))) + Af(\exp_{S_2} sI^-) \end{split}$$

Οù

$$A = \frac{d}{dt}_{|_{t=0}} (\lambda_w(\sigma((\tilde{p}(\tilde{\gamma}^{-1}(\exp_{S_2} tI^- \tilde{\gamma}(\exp_{S_2} sI^-)))^{-1} \tilde{p}(\exp_{S_2} sI^-))))$$

En utilisant le lemme 9, On obtient

$$0 = s^2 (df)_{\exp_{S_2} sI^-} ((dR_{\exp_{S_2} sI^-})_{\varphi(e)} I^-) + Af(\exp_{S_2} sI^-)$$

On a donc

$$(df)_{\exp_{S_2} sI^-}((dR_{\exp_{S_2} sI^-})_{\varphi(e)}I^-) = -s^{-2}Af(\exp_{S_2} sI^-). \quad \Box$$

LEMME 11. — Soit μ une forme linéaire sur \mathfrak{h} , soit $f \in H(\lambda)$ telle que $H_{\theta}.f = \mu(H_{\theta})f$. On a, pour $\exp_{S_2} sI^- \in \Omega$,

$$(df)_{\exp_{S_2} sI^-}((dR_{\exp_{S_2} sI^-})_{\varphi(e)}I^-) = \frac{1}{2s}(d\lambda_w(H_\theta) + \mu(H_\theta))f(\exp_{S_2} sI^-).$$

Preuve : D'après les hypothèses, pour $\exp_{S_2} sI^- \in \Omega,$ on a

(*)
$$H_{\theta}.f(\exp_{S_2} sI^-) = \mu(H_{\theta})f(\exp_{S_2} sI^-).$$

Or on a

$$\begin{split} H_{\theta}.f(\exp_{S_2}sI^-) &= \frac{d}{dt}_{|_{t=0}} f(\exp-tH_{\theta}\exp_{S_2}sI^-) \\ &= \frac{d}{dt}_{|_{t=0}} f(\exp-tH_{\theta}\exp_{S_2}sI^-\exp tH_{\theta}\exp-tH_{\theta}) \\ &= \frac{d}{dt}_{|_{t=0}} f(\exp-tH_{\theta}\exp_{S_2}sI^-\exp tH_{\theta})\lambda_w(\sigma(\exp-tH_{\theta})) \\ &= \frac{d}{dt}_{|_{t=0}} f(\exp(e^{ad(-tH_{\theta})}(sI^-)))\lambda_w(\sigma(\exp-tH_{\theta})) \\ &= \frac{d}{dt}_{|_{t=0}} f(\exp(sI^- + 2tsI^-))\lambda_w(\sigma(\exp-tH_{\theta})) \\ &= \frac{d}{dt}_{|_{t=0}} f(\exp(2tsI^-)\exp(sI^-))\lambda_w(\sigma(\exp-tH_{\theta})) \\ &= 2s(df)_{\exp_{S_2}sI^-}((dR_{\exp_{S_2}sI^-})\varphi(e)I^-) - d\lambda_w(H_{\theta})f(\exp_{S_2}sI^-) \end{split}$$

En utilisant la formule (*), on a

$$((df)_{\exp_{S_2} sI^-}((dR_{\exp_{S_2} sI^-})_{\varphi(e)}I^-) = \frac{1}{2s}(d\lambda_w(H_\theta) + \mu(H_\theta))f(\exp_{S_2} sI^-).$$

PROPOSITION 12. — Soit $\exp_{S_2} sI^- \in \Omega$. Si $f(\in H(\lambda))$ est une fonction propre de poids μ pour \mathfrak{h} satisfaisant les conditions suivantes

$$I^+.f(\exp_{S_2} sI^-) = 0, \quad f(\exp_{S_2} sI^-) \neq 0,$$

alors on a

$$\mu(H_{\theta}) = -2s^{-1}A - d\lambda_{w}(H_{\theta}).$$

Où A est la constante indépendante de f définie dans le lemme 10.

Preuve: Puisque la fonction f satisfait les hypothèses du lemme 10, on a

$$(df)_{\exp_{S_2} sI^-}((dR_{\exp_{S_2} sI^-})_{\varphi(e)}I^-) = -s^{-2}Af(\exp_{S_2} sI^-).$$

Puisque la fonction f satisfait les hypothèses du lemme 11, on a

$$(df)_{\exp_{S_2} sI^-}((dR_{\exp_{S_2} sI^-})_{\varphi(e)}I^-) = \frac{1}{2s}(d\lambda_w(H_\theta) + \mu(H_\theta))f(\exp_{S_2} sI^-).$$

Ces deux équations montrent que

$$-s^{-2} A f(\exp_{S_2} s I^-) = \frac{1}{2s} (d\lambda_w(H_\theta) + \mu(H_\theta)) f(\exp_{S_2} s I^-).$$

Puisque $f(\exp_{S_2} sI^-) \neq 0$, on a

$$\mu(H_{\theta}) = -2s^{-1}A - d\lambda_{w}(H_{\theta}). \qquad \boxed{}$$

Puisque les valeurs de f_{λ_w} sont toujours non nulles, la proposition 12 nous donnent la formule suivante

(1)
$$d\lambda(H_{\theta}) = -2s^{-1}A - d\lambda_{w}(H_{\theta}).$$

Supposons maintenant que ω est un autre vecteur primitif de $W(\lambda)$ dont le poids μ est strictement inférieur à $d\lambda$, et considérons $E = \mathcal{U}(\mathfrak{g})\omega$ le sous \mathfrak{g} —module propre de $W(\lambda)$ engendré par ω .

LEMME 13. — Pour s = 1 ou -1, il existe une fonction $h \in E$ satisfaisant $h(\exp_{S_2} sI^-) \neq 0$.

Comme toute fonction dans E est somme de fonctions propres pour \mathfrak{h} , on peut donc supposer que h est une fonction propre de poids μ pour \mathfrak{h} et que le poids μ est maximal parmi les poids des fonctions propres qui ne s'annulent pas au point $\exp_{S_2} sI^-$ (s=1 ou -1). On a donc

$$I^+.h(\exp_{S_2} sI^-) = 0$$
, $s = 1$ ou -1 .

D'après la proposition 12, on a

(2)
$$\mu(H_{\theta}) = -2s^{-1}A - d\lambda_{w}(H_{\theta}), \ s = 1 \text{ ou } -1.$$

D'aure part (1) et (2) nous donnent la formule

(3)
$$d\lambda(H_{\theta}) = \mu(H_{\theta}).$$

Lemme 14. — Le poids μ est de la forme $d\lambda - \sum \beta_i$ avec $\beta_i(H_\theta) \geq 2$.

Le lemme 14 montre que (3) est impossible. L'existence de ω nous donne une contradiction. La fonction f_{λ_w} est donc le seul vecteur primitif de $W(\lambda)$ (à la multiplication par une constante près). Le module $W(\lambda)$ est donc irréductible. On obtient ainsi le résultat principal suivant.

Théorème 15. — Le \mathfrak{g} -module $W(\lambda)$ est irréductible de poids dominant $d\lambda$ (l'élément f_{λ_w} est le vecteur primitif associé).

REMARQUE 16

- a) Dans le cas où \mathfrak{n}_{θ}^+ était commutative et \mathfrak{g} de type classique, Suga [5] avait obtenu, par un calcul cas par cas, un résultat analogue à partir de l'invariant relatif global de l'espace préhomogène associé. Nous avons par ailleurs montré que sa méthode s'étendait au cas exceptionnel. La méthode employée ici est différente.
- b) Dans le cas $\theta = \emptyset$ on a $\ell_{\theta} = \mathfrak{h}$ et notre construction donne alors une réalisation de n'importe quel \mathfrak{g} -module irréductible ayant un poids dominant. Dans le cas où $d\lambda$ est le caractère de plusieurs sous algèbres de Levi vérifiant la condition de la définition 1, on obtient autant de réalisations distinctes du \mathfrak{g} -module de poids dominant $d\lambda$.
- c) Dans le cas où $d\lambda$ est dominant, c'est à dire qu'il correspond à une représentation de dimension finie de \mathfrak{g} , notre résultat est bien sûr à rapprocher du classique théorème de Borel-Weil (voir par exemple Knapp [6], théorème 5.9)

Bibliographie. —

- [1] A. GYOJA. Invariants, Nilpotent Orbits, and Prehomogeneous Vector Spaces, J. of Algebra. 142, 1991, p. 210-232.
- [2] H. RUBENTHALER. Espaces préhomogènes de type parabolique, Thèse, Université de Strasbourg, 1982.
- [3] H. Rubenthaler. Construction de certaines sous-algèbres remarquables dans les algèbres de Lie semi-simples, J. Alg., 81, 1983, p. 268-278.
- [4] H. RUBENTHALER. Espaces préhomogènes de type parabolique, Lect. Math. Kyoto Univ. 14, 1982, p. 189-221.
- [5] S. Suga. Highest weight modules associated with classical irreducible regular prehomogeneous vector spaces of commutative parabolic type, Osaka J. Math. 28, 1991, p. 323-346.
- [6] A. KNAPP. Representation Theory of Semisimple Groups. An Overview Based on Examples, *Princeton Univ. Press, Princeton New Jersey*, 1986.

Institut de Recherche Mathématique Avancée(IRMA) Université Louis Pasteur 7 rue René Descartes 67084 Strasbourg cedex e-mail: zhu@math.u-strasbg.fr