Generic quotient varieties

Акініко Gyoja

Introduction. The purpose of this note is to review [R1, Theorem 2].

Theorem 0.1. Let k be an algebraically closed field, X an irreducible algebraic variety over k, and G an algebraic group acting on X. Then there exists an open dense $X_0 \subset X$, a variety W_0 , and a morphism $\phi: X_0 \to W_0$ such that

- (1) $GX_0 = X_0$,
- (2) every fibre of ϕ is precisely a single G-orbit,
- (3) $\phi: X_0 \to W_0$ is smooth,
- (4) X_0 and W_0 are non-singular,

(5)
$$\phi^*: k(W_0) \xrightarrow{\simeq} k(X_0)^G (= k(X)^G)$$
, and

$$(6) \ \phi^* : k[W_0] \xrightarrow{\simeq} k[X_0]^G.$$

(Cf. (0.4) for notation.) In particular, $\phi: X_0 \to W_0$ is a geometric quotient in the sense of D.Mumford [Mu, p.4].

This theorem can be used in the theory of prehomogeneous vector spaces as follows. Put

$$m := \max \{ \dim Gx \mid x \in X \}.$$

Then this maximum is attained by x's belonging to a dense subset of X. From the above theorem, we get the following results concerning m.

Corollary 0.2. Let notation be as in (0.1). Then $\dim X - m = \dim W_0 = \operatorname{tr.deg}_k k(X)^G$.

Corollary 0.3. Let notation be as in (0.1). The following conditions are equivalent.

- (1) X has an open dense G-orbit.
- (2) tr. $\deg_k k(X)^G = 0$.
- $(3) k(X)^G = k.$
- **0.4. Convention and Notation.** We fix an algebraically closed field k, and we always assume that an algebraic variety is defined over k unless otherwise stated. We identify a (k-)variety, say X, with the set of its rational points X(k). We denote by k[X] (resp. k(X)) the ring of regular functions (resp. the filed of rational functions if X is irreducible) on X. For a group Γ acting on a set A, $A^{\Gamma} := \{a \in A \mid \gamma a = a \text{ for all } \gamma \in \Gamma\}$.

§1.

- 1.1. Flatness. The concept of 'flatness' plays an important role in the algebraic geometry [EGA]. A concise account can be found in [Mi, Chapter 1]. We recall two lemmas from [EGA].
- **Lemma 1.2.** [EGA, (IV, 6.9.1)]. Let Y be a locally noetherian (I, 2.7.1), integral scheme (I, 2.1.8), and $u: X \to Y$ a morphism of finite type (I, 6.3.2). Then there exists an open dense $U \subset Y$ such that $u: u^{-1}(U) \to U$ is flat.
- **Lemma 1.3.** [EGA, (IV, 2.4.6)]. Let $f: X \to Y$ be a flat morphism of locally of finite presentation (I, 6.2.1). Then f is universally open (IV, 2.4.2).
 - 1.4. Hilbert scheme. [Mu, pp.21 22]. It is known that there exist
- (1) a locally noetherian \mathbb{Z} -scheme $Hilb_{\mathbb{P}^n_{\mathbb{Z}}}$ whose connected components are projective over $\operatorname{Spec}(\mathbb{Z})$, and
 - (2) a closed \mathbb{Z} -subscheme $W_{\mathbb{Z}} \subset \mathbb{P}^n_{\mathbb{Z}} \times Hilb_{\mathbb{P}^n_{\mathbb{Z}}}$ flat over $Hilb_{\mathbb{P}^n_{\mathbb{Z}}}$.

such that for

- (3) any locally noetherian \mathbb{Z} -scheme $S_{\mathbb{Z}}$, and
- (4) any closed \mathbb{Z} -scheme $Z_{\mathbb{Z}} \subset \mathbb{P}^n_{\mathbb{Z}} \times S_{\mathbb{Z}}$, flat over $S_{\mathbb{Z}}$, there is a unique morphism $f_{\mathbb{Z}} : S_{\mathbb{Z}} \to Hilb_{\mathbb{P}^n_{\mathbb{Z}}}$ such that $Z_{\mathbb{Z}} = (1_{\mathbb{P}^n_{\mathbb{Z}}} \times f_{\mathbb{Z}})^*(W_{\mathbb{Z}})$.
- **1.5.** If we put $Hilb_{\mathbb{P}_k^n} := Hilb_{\mathbb{P}_{\mathbb{Z}}^n} \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(k)$ and $W_k := W_{\mathbb{Z}} \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(k)$, we may replace \mathbb{Z} with k everywhere in (1.3).

§**2**.

We start this section with the following simple lemma.

Lemma 2.1. Let $f: X \to Y$ be a morphism between algebraic varieties, and $Z \subset X$ a constructible subset (i.e., a finite disjoint union of locally closed subsets with repsect to the Zariski topology.) We further assume that Z is irreducible and $\overline{f(Z)} = Y$. Then

(1)
$$Y_0 := \{ y \in Y \mid \overline{f^{-1}(y) \cap Z} = f^{-1}(y) \cap \overline{Z} \}$$

contains an open dense subset of Y. (Let Y^{\sharp} denote the largest open subset of Y contained in Y_0 .)

Proof. Let Z_0 be the largest subset of Z which is open in \overline{Z} . Since Z is constructible, Z_0 is open dense in \overline{Z} . Let $\{Z_i\}_{i\in I}$ (resp. $\{Z'_j\}_{j\in J}$) be all the irreducible components of $\overline{Z}\setminus Z_0$ such that $\overline{f(Z_i)}=Y$ (resp. $\overline{f(Z_i)}\nsubseteq Y$). Let Y_1 be the totality of $y\in Y$ such that

(3)
$$f^{-1}(y) \cap Z'_j = \phi \quad \text{for all } j \in J.$$

Then Y_1 is a constructible dense subset of Y. (The condition (2) gives an open subset, while (3) gives a constructible one in general.) For $y \in Y_1$, we have

$$(4) f^{-1}(y) \cap Z \subset \overline{f^{-1}(y) \cap Z} \subset f^{-1}(y) \cap \overline{Z} = \bigcup_{i \in I \sqcup \{0\}} (f^{-1}(y) \cap Z_i).$$

by (3). Especially,

$$\dim(f^{-1}(y) \cap \overline{Z}) = \max_{i \in I \sqcup \{0\}} \dim(f^{-1}(y) \cap Z_i)$$
$$= \max_{i \in I \sqcup \{0\}} (\dim Z_i - \dim Y) \text{ by } (2)$$
$$= \dim Z_0 - \dim Y = \dim \overline{Z} - \dim Y.$$

(Indeed, dim $Z_i < \dim Z_0$ for all $i \in I$.) In other words, the fibres of $f : \overline{Z} \to Y$ attain the minimum dimension at $y \in Y_1$. Hence all the irreducible components of $f^{-1}(y) \cap \overline{Z}$ are of the same dimension dim $\overline{Z} - \dim Y$. (See [**EGA**, (IV, 13.2)] for the related generality.) Since

$$\dim(f^{-1}(y) \cap Z_i) = \dim Z_i - \dim Y < \dim \overline{Z} - \dim Y$$

for $i \in I$, $f^{-1}(y) \cap Z_i$ $(i \in I)$ are nowhere dense in $f^{-1}(y) \cap \overline{Z}$, and consequently (4) yields that $f^{-1}(y) \cap Z_0$ $(\subset f^{-1}(y) \cap Z)$ is dense in $f^{-1}(y) \cap \overline{Z}$. Hence $\overline{f^{-1}(y) \cap Z} = f^{-1}(y) \cap \overline{Z}$, i.e., $Y_1 \subset Y_0$. Since Y_1 is constructible and dense in Y, we get the desired result. \blacksquare

2.2. Let k, G, X be as in the introduction, and \overline{X} an irreducible projective variety containing X as an open dense subset. (Such \overline{X} exists $[\mathbf{N}]$, but possibly the G-action on X can not be extended to \overline{X} . See $[\mathbf{S}]$ for equivariant completions.) Let Z be the Zariski closure of $\{(gx,x) \mid x \in X, g \in G\}$ in $\overline{X} \times X$, and $\pi: Z \to X$ the second projection. Intuitively, $\pi: \pi^{-1}(X^{\sharp}) \to X^{\sharp}$ is the family of orbit closures \overline{Gx} in \overline{X}

parametrized by $x \in X^{\sharp}$, where X^{\sharp} is defined as in (2.1) using Z and $\pi : \overline{X} \times X \to X$ in place of Z and $f : X \to Y$. Let X_0 be the largest open (dense) subset of X^{\sharp} such that $\pi : \pi^{-1}(X_0) \to X_0$ is flat (cf. (1.2)). Then applying (1.5) to $S = X_0$ and $Z = \pi^{-1}(X_0)$ ($\subset \overline{X} \times X_0 \subset \mathbb{P}^n_k \times X_0$ for some n), we get a morphism $f : X_0 \to Hilb_{\mathbb{P}^n_k}$ which makes the following diagram cartesian.

$$\begin{array}{ccc}
\pi^{-1}(X_0) & \longrightarrow & W \\
\downarrow & & \downarrow \\
X_0 & \xrightarrow{f} & Hilb_{\mathbb{P}^n_k}
\end{array}$$

Let Y_1 be the largest open subset of $\overline{f(X_0)}$ such that $f: f^{-1}(Y_1) \to Y_1$ is flat (cf. (1.2)) and surjective. Put $X_1 = f^{-1}(Y_1)$.

Lemma 2.3. (1) The open dense subset $X_1 \subset X$ is preserved by G.

- (2) The fibres of $f: X_1 \to Y_1$ are precisely the G-orbit in X_1 .
- (3) $f: X_1 \to Y_1$ is universally open.

Proof. (1) is obvious. (3) follows from (1.3): For $x \in X_1$, let $i_x : \operatorname{Spec}(k) \to X_1$ be the corresponding geometric point. Then we get cartesian squares

$$\overline{Gx} \longrightarrow \pi^{-1}(X_1) \longrightarrow W$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(k) \stackrel{i_x}{\longrightarrow} X_1 \stackrel{f}{\longrightarrow} Hilb_{\mathbb{P}^n_k}$$

Hence for $x, x' \in X_1$,

$$Gx = Gx' \Leftrightarrow \overline{Gx} = \overline{Gx'} \Leftrightarrow f \circ i_x = f \circ i_{x'} \Leftrightarrow f(x) = f(x').$$

(To see the first equivalence, note that Gx is the unique G-orbit which is open in $\overline{Gx} \cap X$. The second equivalence follows from the uniqueness part in (1.4).)

We need some preliminary from the field theory.

Lemma 3.1. If L/K is a finitely generated field extension, and M a field such that $K \subset M \subset L$, then M/K is also finitely generated.

Proof. Let K' be a purely transcendental extension of K, contained in M, and such that the transcendental degree $\operatorname{tr.deg}_K K'$ ($<\operatorname{tr.deg}_K L<+\infty$) is maximal among such extensions. Replacing K' with K, we may assume that M/K is an algebraic extension.

Let N be a purely transcendental extension of K, contained in L, and such that $\operatorname{tr.deg}_K N$ is maximal among such extensions. Then L/N is an algebraic, finitely generated extension, i.e., $[L:N]<+\infty$. On the other hand, M/K is algebraic, N/K is purely transcendental, and hence they are lineary disjoint. Therefore $[M:K]=[MN:N]\leq [L:N]<+\infty$.

3.2. Separably generated extension. ([W, p.14]) A finitely generated extension is called a separably generated extension if it is a separably algebraic extension of a purely transcendental extension.

Concerning this concept, we need the following easier half of [W, Chap.1, Prop.19].

Lemma 3.3. Let L/K be a finitely generated field extension contained in a fixed algebraically closed field. If $K^{p^{-1}}$ and L are linearly disjoint over K, then L/K is a separably generated extension.

Proof. (An extract from [**W**].) Let $L = K(a_1, \dots, a_n)$, and let us prove the lemma by induction on n. Let $I := \{ f \in K[x_1, \dots, x_n] \mid f(a_1, \dots, a_n) = 0 \}$, where $x_1, \dots x_n$ are indeterminates. If I = 0, then our conclusion holds. If not, let

 $P(x_1, \dots, x_n) \in I \setminus \{0\}$ be a polynomial of minimal degree. Put $P_i := \partial P/\partial x_i$. If $P_1 = \dots = P_n = 0$, then $P = Q^p$ with some $Q \in K^{p^{-1}}[x_1, \dots, x_n]$. Then $Q \in \{g \in K^{p^{-1}}[x_1, \dots, x_n] \mid g(a_1, \dots, a_n) = 0\}$, and, by the sublemma below (with $K' = K^{p^{-1}}$), we can see that the right hand side is $\{\sum_i \lambda_i g_i \mid \lambda_i \in K^{p^{-1}}, g_i \in I\}$. This is impossible since $\deg Q < \deg P$. Therefore, we may assume that $P_n \neq 0$. Since $\deg P_n < \deg P$, $P_n(a_1, \dots, a_n) \neq 0$. This means that a_n is separable over $L' := K(a_1, \dots, a_{n-1})$. Since $K^{p^{-1}}$ and L' are linearly disjoint, L'/K is separably generated extension by the induction hypothesis. Hence $L = L'(a_n)$ is separably generated over K.

Sublemma. Let L/K and K'/K be field extensions in a fixed algebraically closed field, and assume that L and K' are linearly disjoint over K. Let $a_1, \dots, a_n \in L$ and $g \in K'[x_1, \dots, x_n]$, and assume $g(a_1, \dots, a_n) = 0$. Then there exists $\kappa_i \in K'$ and $g_i \in K[x_1, \dots, x_n]$ $(1 \le i \le N)$ such that $g_i(a_1, \dots, a_n) = 0$ and $g(x_1, \dots, x_n) = \sum_i \kappa_i g_i(x_1, \dots, x_n)$.

Proof. Let $\{\kappa_{\ell}\}_{\ell}$ be a K-linear basis of K'. Then g can be uniquely expressed as $g = \sum_{\ell} \kappa_{\ell} g_{\ell}$ (finite sum) with $g_{\ell} \in K[x_1, \dots, x_n]$. Since

- (1) $0 = g(a_1, \dots, a_n) = \sum_{i} \kappa_i g_i(a_1, \dots, a_n),$
- (2) $\kappa_i \in K'$ are linearly independent over K,
- (3) $g_i(a_1, \dots, a_n) \in L$, and
- (4) L and K' are linearly disjoint over K,

it follows that $g_i(a_1, \dots, a_n) = 0$.

Lemma 3.4. Let $f: X \to Y$ be a dominant morphism between irreducible varieties. Then there exists an open dense $U \subset X$ such that f|U is étale (resp. smooth) [**EGA**, (IV, §17)] if and only if k(X)/k(Y) is a separably algebraic extension (resp. a separably generated extension).

What is necessary for our present purpose is the 'if part' whose proof is an easy exercise. For the 'only if part', see [Mi, Chap.1, §3] and [SGA, exposé II].

We also need the following lemma of M.Rosenlicht [**R2**, p.4, $\uparrow \ell.8 - p.5, \downarrow \ell.9$].

Lemma 3.5. Let L be a field, G a group of field automorphisms of L, and $K = L^G$ the subfield of L consisting of all elements of L left fixed by each automorphism of G. Then L/K is separably generated.

Proof. (An extract from [**R2**].) By (3.3), it suffices to show that $K^{p^{-1}}$ and L are linearly disjoint over K, i.e., that if we have a relation $\sum_{i=1}^{n} \kappa_i \lambda_i^p = 0$, where $\kappa_i \in K$, $\lambda_i \in L$ and where not all κ_i 's are 0, then $\lambda_1, \dots, \lambda_n$ are linearly dependent over K. Clearly we may take n > 1. If $\sigma_1, \dots, \sigma_n \in G$, we have $\sum_{i=1}^{n} \kappa_i \sigma_j(\lambda_i^p) = 0$ $(j = 1, \dots, n)$, so $\det(\sigma_j(\lambda_i^p))_{1 \le i,j \le n} = 0$ and hence $\det(\sigma_j(\lambda_i))_{1 \le i,j \le n} = 0$. Let r be the maximal rank that $(\sigma_j(\lambda_i))_{1 \le i,j \le n}$ can assume for $\sigma_1, \dots, \sigma_n \in G$; then $1 \le r < n$. Reorder λ_i 's and choose $\sigma_1, \dots, \sigma_r \in G$ so that $\det(\sigma_j(\lambda_i))_{1 \le i,j \le r} \ne 0$. Hold $\sigma_1, \dots, \sigma_r$ fixed, and let $\sigma_{r+1} \in G$ be arbitrary. Then $\det(\sigma_j(\lambda_i))_{1 \le i,j \le r+1} = 0$, so there exist $\mu_1, \dots, \mu_r \in L$ such that

(1)_j
$$\sigma_j(\lambda_{r+1}) = \sum_{i=1}^r \mu_i \sigma_j(\lambda_i)$$

for all $j=1,\dots,r+1$. Here $(1)_{r+1}$ is redundant, and μ_1,\dots,μ_r are uniquely determined only by $(1)_j, 1 \leq j \leq r$. Therefore these μ_i 's are independent of the choice of σ_{r+1} , and hence we have $\sigma(\lambda_{r+1}) = \sum_{i=1}^r \mu_i \sigma(\lambda_i)$ for any $\sigma \in G$. If $\tau \in G$, we have

$$\sigma(\lambda_{r+1}) = \tau \left(\tau^{-1}\sigma(\lambda_{r+1})\right) = \tau \left(\sum_{i=1}^r \mu_i \cdot \tau^{-1}\sigma(\lambda_i)\right) = \sum_{i=1}^r \tau(\mu_i) \cdot \sigma(\lambda_i).$$

By the uniqueness of μ_1, \dots, μ_r , we have $\tau(\mu_i) = \mu_i$, so each $\mu_i \in K = L^G$. Hence any one of $(1)_j$ yields $\lambda_{r+1} = \sum_{i=1}^r \mu_i \lambda_i$ with $\mu_1, \dots, \mu_r \in K$. Hence $\lambda_1, \dots, \lambda_n$ are linearly dependent over K.

3.6. Proof of Theorem 0.1. Now let us return to (2.3). Put $L = k(X_1)$ and $K = L^G$. By (3.1), K/k is finitely generated. Hence there is an irreducible k-variety W_1 such that $K = k(W_1)$, and we get a G-equivariant dominant rational morphism $\phi: X_1 \to W_1$. (The G-action on W_1 is trivial.) Let X_2 be the locus where ϕ is defined and smooth. Put $\phi(X_2) =: W_2$. Then $W_2 \subset W_1$ is open dense (cf. (3.1) and (3.5)), $\phi: X_2 \to W_2$ is an open mapping (cf. (1.3)), and $GX_2 = X_2$.

By (2.3, (2)), $k(Y_1) \subset k(X_1)^G = k(W_1) = k(W_2)$. Hence we get a dominant rational morphism $\psi: W_2 \to Y_1$. Take open dense $W_3 \subset W_2$ and $Y_3 \subset Y_1$ so that $\psi: W_3 \to Y_3$ is surjective regular morphism. Put $X_3 := \phi^{-1}(W_3)$.

Since $\phi: X_3 \to W_3$ is G-equivariant, each fibre of ϕ is a union of G-orbits. But each fibre of $f = \psi \circ \phi$ is precisely a G-orbit. Hence each fibre of ϕ is also precisely a G-orbit.

Hence all the assertions of (2.3) remain valid when $f: X_1 \to Y_1$ is replaced with $\phi: X_3 \to W_3$. Moreover $\phi: X_3 \to W_3$ is smooth, and $k(W_3) = k(X_3)^G$.

Let W_4 be the non-singular locus of W_3 , and put $X_4 := \phi^{-1}(W_4)$. Then all the conditions (0.1, (1), (5)) are satisfied, and

$$\phi^* k[W_4] \subset k[X_4]^G \subset k(X_4)^G = \phi^* k(W_4).$$

In order to prove (0.1, (6)), let us assume the contrary, i.e., that there exists $\alpha \in k[X_4]^G \setminus \phi^* k[W_4]$. Then $\alpha = \phi^* \beta$ with som $\beta \in k(W_4) \setminus k[W_4]$. Let W_4' be the locus where $1/\beta$ is regular. Since W_4 is a normal variety, $Z := \{w \in W_4' \mid \beta(w)^{-1} = 0\}$ is a non-empty subvariety of a pure codimention one. Take $x_0 \in X_4$ so that $\phi(x_0) \in Z$. Then both $\phi^* \beta$ and $1/\phi^* \beta$ are regular on $\phi^{-1}(W_4)$, and

$$1 = (\phi^*\beta)(x_0) \cdot (\phi^*\beta)(x_0)^{-1} = (\phi^*\beta)(x_0) \times 0.$$

Thus we get a contradition, and get (0.1, (6)).

3.7. Remark. In order to simplify the exposition, we assumed in (0.1) that k is algebraically closed and that X is irreducible, but these assumptions are not essential, and indeed are not assumed in $[\mathbf{R1}]$.

References

- [EGA] A.Grothendieck, Eléments de géométric algébrique, Chapter I., (1970), Springer; Chapters 2-4, Publ. IHES (1961-1967).
- [SGA] A.Grothendieck et al., Séminaire de géométrie algébrique, SGA I., Lecture Notes in Math. **224** (1971), Springer.
 - [Mi] J.S.Milne, Etale cohomology, (1980), Princeton University Press.
 - [Mu] D.Mumford et al., Geometric invariant theory, 3rd ed., (1994), Springer.
 - [N] M.Nagata, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ. 2-1 (1961), 1-10.
 - [R1] M.Rosenlicht, Some basic theorems on alchraic groups, Amer. J. Math. 78 (1956), 401–443.
 - [R2] M.Rosenlicht, Automorphisms of function fields, Trans AMS 79 (1955), 1-11.
 - [S] H.Sumihiro, Equivariant completion, I. J.Math. Kyoto Univ. 14 (1974), 1–28;
 II, ibid. 15 (1975), 573–605.
 - [W] A.Weil, Foundations of algebraic geometry, 2nd ed., (1962), Amer. Math. Soc. Colloq. Publ.