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Generic quotient varieties

AKIHIKO GYOJA

Introduction. The purpose of this note is to review [R1, Theorem 2].

Theorem 0.1. [Let & be an algebraically closed field, X an irreducible al-
gebraic Varietyvovcr k, and (/ an algebraic group acting on X. Then there exists an
open dense Xy C X, a variety Wy, and a morphism ¢ : Xq — W) such that

(1) GXo = Xo,

(2) every fibre of ¢ is preciscly a single G-orbit,

(3) ¢: Xo — Wy is .smooth.,

(4) Xo and Wy arc non-singular,

(5) * + k(Wo) —> k(X0)C (= k(X)9), and
(6) ¢* = k[Wo] — k[Xo].
(Cf. (0.4) for notation.) In particular, ¢ : Xo — Wy is a geometric quotient in the

sense of D.Mumford [Mu, p.1].

This theorem can be used in the theory of prehomogencous vector spaces as
follows. Put

m = max{dimGxr | r € X}.

Then this maximum is attained by @’s belonging to a dense subset of X. From the

above theorem, we get the following results concerning m.

Corollary 0.2. Let notation be as in (0.1). Then dim X —m = dimW, =

tr. degy k(X)C.
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Corollary 0.3. Let notation he as in (0.1). The following conditions are
equivalent.

(1) X has an open dense (G-orbit.

(2) tr.degy k(X)) = 0.

(3) k(X)¢ = k.

0.4. Convention and‘Notation. We fix an algebraically closed field k. and
we always assume that an algebraic variety is defined over & unless otherwise stated.
We identify a (A-)varicty, say X, with the set of its rational points X (£). We denote
by k[X] (resp. k(X)) the ring of regular functions (resp. the filed of rational functions

if X is irreducible) on X. For a group 1" acting on a set A, Al := {a € A|ya=a

for all vy € T'}.

§1.
1.1. Flatness. 'The concept of ‘flatness’ plays an importanﬁ role in the

algebraic geometry [EGA]. A concise account can be found in [Mi, Chapter 1]. We

recall two lemmas from [EGA)].

Lemma 1.2. [EGA, (IV, 6.9.1)]. Let Y be a locally neetherian (I, 2.7.1),
integral scheme (I, 2.1.8). and v : X — Y a morphism of finite type (I, 6.3.2). Then

there exists an open dense U/ C Y such that v : u=YU) — U is flat.

Lemma 1.3. [EGA, (IV, 2.4.6)]. Let f : X — Y be a flat morphism of

locally of finite presentation (1, 6.2.1). Then [ is universally open (1V, 2.4.2).

1.4. Hilbert scheme.[Mu, pp.21 22]. It is known that there exist

(1) a locally noetherian Z-scheme Hilbpy whose connected components are

projective over Spec(Z), and

(2) a closed Z-subscheme W7 C P7 x Hilbp; flat over Hilbp;,



such that for
(3) any locally noetherian Z-scheme 5z, and
(1) any closed Z-scheme %z C P x 57. flat over Sz,
there is a unique morphism fz : Sz — H?f/hp; such that 7z :(blp; x fz)*(Wz).

1.5. If we put Hilbpy := Hilbpy Xgpeq(z) Spec(k) and Wy := Wz Xg,ec@)

Spec(k), we may replace Z with k everywhere in (1.3).

§2.

We start this section with the following simple lemma.

Lemma 2.1. Let f: X — Y be a morphism between algebraic varieties,
and Z C X a constructible subset (i.c., a finite disjoint union of locally closed subscts
with repsect to the Zariski topology.) We further assume that 7 is irreducible and

F(Z) =Y. Then
(1) eV | FWnZ= (N7

contains an open dense subset of Y. (Let Y denote the largest open subset of Y

contained in Yq.)

Proof. Let Zy bhe the largest subsct of 7 which is open in 7. Since Z
is constructible, Zo is open dense in Z. Let {Z}ier (vesp. {Z}}jes) be all the
irreducible components of 7 \ Zy such that f(Z;) =Y (resp. f(Zi) g Y). Let ¥y be

the totality of y € ¥ such that

(2) dim(f~Yy)N %) =dimZ; —dimY  foralli € U {0}, and

3) lonZy=¢ foralljel.
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Then Y| is a constructible dense subset of Y. (The condition (2) gives an open sithset,

while (3) gives a constructible one in general.) For y € Y], we have
(1) Flonzcwmnzcr'wnZzZ= |J (' wn ).
by (3). Especially,

dim(f~' ) N7) = max dim(f~ ' (y) N %)
' ie1ufo)

= max (dimZ; —dimY) by (2)
iefufo} ‘

=dimZ —dim}y =dimZ — dim Y.

(Indeed, dim Z; < dim %, for all i € 1.) In other words, the fibres of f : 7 =Y
attain the minimum dimension at y € Yi. Hence all the irreducible components of
! (¥) N7 are of the same dimension dim 7 —dim Y. (See [EGA, (IV. 1 3.2)] for the

related generality.) Since
dim(f~'(y)n %) =dim % —dim¥ <dimZ — dim ¥’

fori € I, f~Yy)N %; (i € 1) arc nowhere dense in f~! (y) N Z, and consequently (1)
yields that f='(y) N Zy (C f~'(y) N 4) is dense in £~ (y) N Z. Henee f~Hy) N Z =
f_'(_y_) NZ, ic., ¥ C Yy. Since ¥y is constructible and dense in ¥, we gt the desired
result. g

2.2. Let k, (.. X be as in the introduction, and X an irreducible projective
variety containing X as an open dense subset. (Such X exists [N], but possihly. the
G-action on X can not he extended to X. See [S] for equivariant completions.) Lot 7
be the Zariski closure of {(gr.2) |+ € X,g € (/}in Xx X,and 7 : Z — X the second

projection. Intuitively. 7 : 77/ (X?) — X% is the family of orbit closires Gr in X
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parametrized by & € X%, where X* is defined as in (2.1) using 7 and 7 : XxX—=X
in place of Z and f : X — Y. Let Xg be the largest open (dense) subset of R
such that 7 : #='(Xg) — Xg is flat (cf. (1.2)). Then applying (1.5) to .S = Xg and

Z=r"YXp) (C X x Xy C P? x X for some n), we get a morphism f: Xog — Hilbpy

which makes the following diagram cartesian.

7 (Xg) — W

L

Xo —— Hilbpy

Let Y; be the largest open subset of f(Xo) such that f @ f71(Y)) — Y} is flat (cf.

(1.2)) and surjective. Put Xy = =),

Lemma 2.3. (/) The open dense subset X (C X) is preserved by (.
(2) The fibres of f: X| — Y| are precisely the G-orbit in .\'.|. _

(3) j : X1 — Y| is universally open.

Proof. (1) is ohvious. (3) follows from (1.3): For » € Xy, let 2, : Spec(k) —

X be the corresponding gecometric point. Then we get cartesian squares

Hence for xr,2' € X|.
Gr=0Gr & CGr=01 & foi, = foin & f(a)= f(x').

('To see the first equivalence, note that G is the unique G-orbit which is open in

Gx N X. The second ecquivalence follows from the uniqueness part in (1.1).) 8



§3.

We need some preliminary from the ficld theory.

Lemma 3.1. If I./K is a finitely generated field extension., and M a field

such that K € M C L. then M/ K is also finitely gencrated.

Proof. Let K' be a purely transcendental extension of i, contained in M,
and such that the transcendental degree tr. deg, K (< tr.degy L < +00) is maximal
among such extensions. Replacing A’ with A, we may assume that AM/A is an
algebraic extension.

Let N be a purely transcendental extension of A, contained in L. and such
that tr. deg, N is maximal among such extensions. Then L/N is an algebraie. finitely
generated cxﬁension. e, [L: N] < 4oc. On the other hand, M/ K is algebraic. N/ K
is purcly transcendental. and hence they are lincary disjoint. Therefore [M @ K] =
[MN:N)<[L:N]<+4oc.®

3.2. Separably generated extension. ([W, p.11]) A finitely generated ex-
tension is called @ separably gencrated cxtension it it is a separably algebraic extension
of a purely transcendental extension.

Concerning this concept, we need the following casier half of [W, Chap.1,

Prop.19].
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Lemma 3.3. Let /N bhe a finitely generated field extension contained in a

fixed algebraically closed field. If K™ and I, are lincarly disjoint over K, then L] K

is a separably generated extension.

Proof. (An extract from [W].) Let L = K(ay,--- ,a,), and let us prove
the lemma by induction on n. Let [ := {f € K[ry, -+ ,20] | flaj, -+ ,a,) = 0},

where 2y, .- -2, are indeterminates. If 1 = 0, then our conclusion holds. [f not., let
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P(xy,-+- ,2,) € I\ {0} be a polynomial of minimal degree. Put P := dP[dx;.
It P =--- =P, =0, then > = QF with some () € l&'f’_l[;z'[,uj .y]. Then
Qelge K”_l[aj,--- ) | glar, -+ ,an) = 0}, and, by the sublemma below (with

A € /\'7’_‘.9,' € 1}.

K = I\'f'_])_, we can sce that the right hand side is {)7; Aig;
This is impossible since degQ < deg PP. Therefore, we may assume that 1, # 0.
Since deg P, < deg P, Pyp(ay. -+ .a,) # 0. This means that a, is separable over
L' := K(az, -+ ,ay—y). Since K™ and 1! are linearly disjoint, L'/ K" is separably
generated extension by the induction hypothesis. Hence L = L'(ay) is sq‘»ara.hly

generated over K.

Sublemma. lLet L/K and K'/K be field extensions in a fixed algebraically
closed field, and assume that I and K' are lincarly disjoint over K. Letay, -+ .a, € L
and g € K'[xy,--+ ,2,]. and assume g(ay.--+ ,a,) = 0. Then therc exists x; € K'

and g; € K[xy, -+ ,7v,] (1 <i < N)such that gi(ay,--+ ,ay)=0andg(xry.--- .0y) =
Zi Kigi(T1, 0 ,00).

Proof. Let {#,}, be a K-lincar basis of K. Then g can be uniquely expressed
as g = Y, £,9, (finite sum) with g, € K[ry,--- 2], Since

(1) 0= glars--+ an) = 5, kagilar, -+ ,an),

(2) &, € K' are lincarly independent over K,

(3) g.(ar, -+ .an) € L, and

(4) L and A’ are linearly disjoint over A,

it follows that g,(ay, -+ ,a,) =0. 8

Lemma 3.4. lLet f: X — Y he a dominant morphism between irreducible
varicties. Then there exists an open dense U7 C X such that fll/ is étale (resp.
smooth) [EGA, (IV.§17)] if and only if k(X )/k(Y') is a scparably algebraic extension

(resp. a separably generated extension).



What is necessary for our present purpose is the ‘if part’ whose proof is an
easy excrcise. For the ‘only if part’, see [Mi, Chap.1, §3] and [SGA. exposé 11]. §

We also need the following lemma of M.Rosenlicht [R2, p.1, 7 €.8 p.5. | ¢.9].

Lemma 3.5. let [ be a field, (i a group of field automorphisms of L.,
and K = LC the subficld of I consisting-of all clements of I left fixed hy cach

automorphism of (. Then L/ K is separably generated.

Proof. (An extract from [R2].) By (3.3). it suffices to show that KT and
L are linearly disjoint over ', i.c., that if we have a relation Y. #; A = 0. where
ki € K, A\; € L and where not all w;'s are 0. then Ap,--- . A, are lincarly dependent
over K. Clearly we may take n > 1. fo,-++ ,0, € (i, we have Z,":I h'.irfj(,\f-') =0
(j =1,---,n), so det(aj(M))i<ij<n = 0 and hence det(a(Ai))i<ij<n = 0. Let
r be the maximal rank that (0(\;))i<ij<n can assume >f01‘ o1, .0 € .5 then
1<r« n.. Reorder ;\i"s and choose Tl ,0r € (/ so that det(o;(\;))i<ij<r # 0.
Hold o¢,--- , 0, fixed, and let ‘(74,--+| € G be arbitrary. Then det(o;(Ai))i<ij<r+1 =0,

so there exist pp.--- . jt, € I, such that

,
(1); 7i(Ari1) = D pioi(Ai)

=1
for all ;j = 1,---.r + 1. Here (1),41 is redundant, and pq,---, g, are uniquely

determined only by (1),;, 1 < j < ». Therefore these y;’s are independent of the

choice of o,41, and hence we have a(A,4y) = Yoi_, pio(N;) for any o € (. If 7 € (0,

we have
o) =7 (7 o(gn)) = 7 (Z i r-‘a(,f\.,-_)) = 3" () o(A).
i=1 i=1
By the uniqueness of jiq,-++ . jtr, we have 7(j;) = jii, so cach y; € K = L. Hence
any one of (1); yields Argl = S pidi with g, -+ g € K. Hence Ay, -+ LA, are

linearly dependent over KA. g
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3.6. Proof of Theorem 0.1. Now let us return to (2.3). Put . = k(X)) and
K = LY. By (3.1), K/k is finitely generated. Hence there is an irreducible A-variety
W) such that K = k(1) and we get a G-equivariant dominant rational morphism
é: X1 — Wi. (The G-action on Wy is trivial.) Let X3 be the locus where ¢ is defined
and smooth. Put ¢(X2) =: Wy, Then s C W is open dense (cf. (3.1) and (3.5)),
¢ : Xo — Wy is an open mapping (cf. (1.3)). and /Xy = Xy,

By (2.3, (2)). k(Y1) C A(X1)Y = k(W) = k(W2). Hence we get a dominant
rational morphism v : Wy — Y|, Take open dense Wy C Wy and Y3 C V) so that
¥ W3 — Y3 is surjective regular morphism. Put X3 := o~ (W3).

Since ¢ : X3 — Wy is G-equivariant, cach fibre of ¢ is a union of (/-orbits.
But each fibre of f = "0 is precisely a (-orbit. Henee cach fibre of ¢ is also precisely
a (i-orbit.

Hence all the assertions of (2.3) remain valid when f: X| — Y| is replaced
with ¢ X3 — Wi, Morcover ¢ : X3 — Wy is smooth, and &(W3) = lr(.‘\'g)(".

Let Wy be the non-singular locus of Wy, and put Xy := ¢~ (Wy). Then all

the conditions (0.1, (1) (5)) are satisfied. and
ST R[Wy] C R[X4)C C k(X)) = *k(Wy).

In order to prove (0.1. (6)). let us assume the contrary, i.c., that there exists o €
E[X4)C\ ¢*k[W4]. Then a = ¢*3 with som 3 € k(W) \ k[Wy]. Let Wy be the locus
where 1/4 is regular. Since Wy is a normal variety, 7 := {w € Wy | Ae)~ =0} is

a non-empty subvaricty of a pure codimention one. Take 29 € Xy so that o(aq) € Z.

Then both ¢*3 and 1/0*4 are regular 0:'1 »~ 1 (Wy). and
1= (6*)(a) - (6" A)(wa)™" = (6" 3)(a) X 0.

Thus we get a contradition, and get (0.1, (6)). 1
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3.7. Remark. [n order to simplify the exposition, we assumed in (0.1) that
k is algebraically closed and that X is irreducible, but these assumptions are not

essential, and indeed are not assumed in [R1].
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