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Prehomogeneous Vector Spaces over Finite Fields

AKIHIKO GYOJA

§0. Introduction.

Let G be a complex reductive group which acts linearly and prehomoge-
neously on V = C®, V'V the dual space, and f (resp. f¥) a relative invariant on V/
(resp. VV) such that f(v)fY(eVY) ((v,v¥) € V x VV) is absolutely G-invariant.

Roughly, the fundamental theorem of the theory of prechomogeneous vector

spaces due to M.Sato says that

(1) (Fourier transform of f*) = (f¥)™*x(¥)

for s € C, with some factor (*). One of the main problems is to determine (*)
explicitly.

In this note, we consider an analogue of (1) over a finite field F,. Especially,
we give a closed formula for (*) of (1) in the F -case assuming charF, > 0.

This work was started as a joint work with N.Kawanaka around 1981, and

has been completed recently (in 1991) as a joint work with J.Denef.

§1. Review of prehomogeneous vector spaces.

Let G be a linear algebraic group over an algebraically closed field &, and
p: G — GL(V) a finite dimensional rational representation. For ¢ € Hom(G, &™),
put
K[V]p = {f € kV]] flgv) = ¢(9) f(v)}.



1.1. Lemma. The following conditions are mutually equivalent.
(1) There exists an open (/-orbit in V.

(2) For any ¢ € Hom (G, k), dimy k[V]g < 1.

(3) tr.deg, k(V)¢ = 0.

(4) k(V)C = k.

Moreover, in this case, every f € k[V], is a homogeneous polynomial.

Proof. (1) = (2) Cf. the lecture of T.Kimura in the same volume.

(2) = (4) Assume that fi/fs € K(V)C\ &, f1, f € k[V] and (fi, f2) = L.
Then it is easy to see that fi, f € k[V]4 for some ¢. Hence dimy k[V]y > 2.

Since k is algebraically closed, (3) & (1).

The implication (4) = (1) follows from [R, Theorem 2]. (Cf. [G].)

Since f(ex) (¢ € kX) belongs to k[V]y, it is a constant multiple of f and
hence we get the last assertion.

1.2. Definition. If the ahove conditions are satisfied, (G, p, V) is called a

prehomogeneous vector space.

Let p¥ : ¢ — GL(VV) be the dual of p.

1.3. Lemma. Assume that the (i-module k[V] is completely reducible.
Then
(1) k[VV] is also completely reducible,

(2) dim k[V]g = dim k[VY]4-1 for any ¢, and
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(3) if (G, p, V) is a prechomogencous vector space, then (G, p¥,VV) is also a

prehomogeneous vector space.

Proof. Since k[VV] (resp. k[VV]y—1) is the dual G-module of k[V] (resp.
k[V]s), we get (1) and (2). Then (3) follows from (1.1).

1.4. Henceforth, we assume the following.
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Assumptions.

(1) base field = C.

(2) G = reductive.

(3) (G, p, V) = prehomogeneous vector space.
Notations etc.
prehomogeneous vector spaces

4 V=Ccr

(5) VV = dual space

(6) { ):VV xV — C pairing

() p: G— GL(V)

(8) p¥: G = CL(VY)

(9) (G, p¥,VY) = prehomogeneous vector space by (1.3, (3)_).
relative invariant |

(10) £ € C[V], f(gv) = 3(g)f(v) (9 € G, v EV)

(1) £¥ € €V, flgY) = 6(9)~" fY (") (g € G, vV € V) (The existence
is guaranteed by (1.3, (2)).)

(12) =V \ f7(0)

(13) Q= V¥ fY-1(0)

(14) O1 C Q : unique closed G-orbit

(15) 0Y C Y : unique closed G-orbit

(16) F := gradlog f, (¥($2) = O})

(17) FY = gradlog £V, (F¥(2Y) = 0))

(18) m := dim Oy = dim OY,

(19) d := deg f = deg fV.

(20) n ;= dimV = dim V",



b-function
(21) fY¥(grad,) f(z)*+" = b(s) f(2)*
(22) f(grad,)f¥(y)* " = o(s) f¥(y)*
(23) b(s) = bOH (s 4+ aj), (by € C*, a; € @>o)
(24) b2(t) o= T, (F = ™V = T, (# = 10, (e(j) € 2)
finite field
| (25) charFy=p>0
(26) v € Hom(F,,C>*), # 1
(27) x € Hom(F,C)
(28) GO, ¥) = Xperx \(2)e(2)
rank : notation for r],‘hcm:em B.
(20) 7 := card{j | a; € Z} = 5, ().
(30) #( ) := rank = dimension of a maximal torus.
(31) s( ) := split rank = dimension of a maximal split. torus.
(32) Gyv = isotropy group at v¥ € VVY(F,).
(33) r(@¥) = 1(G) — (Gav).
(31) s(v¥) := a(G) — s(Gv):

quadratic form (charF, # 2) : notation for Theorem C.

(35) x1/2 € Hom(F),C>), # 1, (x1/2)* = 1 (Legendre symbol)
(36) hY(vY) = discriminant of (g—d—;—?%;f—(v )) (v¥ € OY(F,))

N . N N N m . p .
(For a symmetric matrix A, (discriminant of A) = [[;2; @; it A ~ (diag(ay, - -

Jamaoa"' 70))
(37) (m+r)/2€l
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§2. Main Theorems.

Theorem Al. Assume that char(Fg) > 0. Then

" Y x(F@)p({vY,e)

—m/‘Z ( (X7, ) Cy ‘—_;— . H’V v\/ llfl»'v I= OV [F{
_ { q JI;II Vi ' (szl(j’)e(’J " T
0

ifv¥ e (QV\ OY)(Fy),

where xY(vY) = £1 depends on v¥ but not on x.

Theorem A2. Assume that char(F;) > 0. Then

D IR AT EAR)

oVeOy (Fq)

o }
1 g va ! IT;51(59)¢0) (F{v))

for v € Q(F,), with x¥ the same as in Theorem Al

Theorem B. Assume that char(Fg) > 0. Then

kY (vY) = (_].).,('_.L,V)_,q(_,,\/)

for vV € OY (F,).

Theorem C. Assume that char(F,) > 0. Then

321

V(oY) = xu/2 ((—1)""“)/2 I hV(vV))
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for vv € O}’([Fq).

Remark. Note that ¢(j)’s appear in many places in the above theorems. In
other words, b*P(#) often appears. (See (1.4, (24).) The function 6*P(¢), which was
constructed using the b-function 6(s), is known to be the minimal polynomial of the
Picard-Lefschetz monodromy of ‘the vanishing cycle sheaf” Ry ¢(C). Thus (at least at
present), [ can not expect that these theorems could be proved in an clementary way,
completely in the framework of finite fields, without using the algebraic gcometry
such as l-adic étale sheaves, or the L-functions etc.

§3. Example.

Notations etc.

(1) V(R) = {(zij)i<ij<n | 2ij = 2j; € R (1 < j)}, where R=12, C, F,.

(2) VV(R)? {(ygj,)lgi,jgn | 'Zli’j :-y;i, yéi € R, Qy;'j € R (<)}

. ' v (i=17)
(3) Yij = {
2y;; (1<)

(4) f(v) = deto.

%det(»‘l-vvr) (n = odd)
(5) )= {

det(20Y)  (n = even)

(Then f € Z[V] and the coefficients have no common divisor, and similarly for f¥.)
(6) ( v,vY ) = trace(vvY).

(7) p(g)v = gv'lg for g € G = G Ly,

(8) pV(g)vY =tg~ 1. wV.g7 for g € G = GL,.

(9) #(g) = det(g)*.
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(10) b(s) = bo(s + 1)(s + 3)(s + 3) -~ (s + ).

(11) by = (22) if n = 204+ 1 or 2I.

(12) bR(1) =

(13) bo/ [T;(7) ) =1.

Let O(vY) (vY € VV) be the orthogonal group with respect to the symmetric matrix

vV,

N [+1 (n=20+1)
(14) r(vV) = (G L) —r(O(Y)) =71 =

) (n=21)
0 (O(Y)=split type)

(15)  r(o¥)—s(¥) = {
—1  (O(»Y) = non-split type)
() =~ (n=2041)
(16) (__1:)(m+r]/‘.2 — {

(—1)*+H =1 (n = 20)
(17) [[/¥ =2"iftn=20+10r2
iz1
(18)  h(v) = det (G5EL(0) = (~1)r /2072 ()7,
RY(vY) = det (%(rv))
(19) (—1)rtD/29m=N(m /2 Y (V) =n=l (= 20 4 1),
B { (=)l /2gnn D2 Y V)=l (= 1),

Since O; = Q and OY = QVY, Theorem Al and Theorem A2 become the same. In
1 ’
such a case, we refer to them simply as “Theorem A’.

Now Theorem A implies that



gt/ Z x(det v) trace(v¥v)

veV(F,)
(20) det v5£0 .
. { GOGIGOE Y)Y (Y)Y (Y)  (n=2041)
GOE )N Y (@Y) TRV () (n = 21)

if v¥ e VVY(F,) and detvY # 0.

Theorem B implies that

1 it n is odd
(21) £V(vY)=1¢ 1  if nis even and O(vV) is of split type

—1 if nis even and O(vV) is of non-split type

Theorem C implies

1 if n is odd
(22) kY (0Y) = {

\’1/‘2(_(“‘1)l.fv('lr'v):) if n is even

(It is easy to see that (21) and (22) are equivalent.)

§4. History.
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Around 1981, 7.Chen started to study an Fg-analogue of the theory of pre-

homogeneous vector spaces. Especially, he explicitly calculated the character sum

M Y xR e) Y e VYE\ FH0)

v€V(F\f~1(0)

for several prehomogencous vector spaces. (This character sum is an F,-analogue of

the Fourier transform of f*. See §0.)



Around 1983, N.Kawanaka has taken up the same problem, independently of
7.Chen. His motivation lies in the theory of complex linear representations of G(F)
with G reductive; he found that character sums of type (1) actually appears in the
character table of G(F,). (The explicit determination of the character table is the
main open problem in the representation theory of G(Fg) (in April, 1995).)

Later, Kawanaka formulated the following conjecture concerning (1), which

is now contained in Theorems A and C.

4.1. ‘Conjecture’ of Kawanaka. Assume that (G,p, V) is an irreducible

regular prehomogeneous vector space, and char(F4) > 0. Then

¢ YT (@) ((0Ysv)
(I\] ) | 1’69(0:(17)

= (YY) (Y (V) )

with some constant =(x, ).

(K2) Fix an isomorphism (Tl—EZ/Z) =, Hom(FJ,C*), a — x. Put

m(a) :=card{j | a+a; =0 mod Z}.

Then

—'rn.(_n‘)/‘2.

le(x, )| = ¢

4.2. Remark. In the irreducible regular case, k¥ is a non-zero constant

multiple of f¥=2*/¢. Hence

X2 (FY @V~ xa (Y (0Y)) ~ £V (0Y)
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up to €. Thus (4.1) implies “Theorem A + Theorem C up to a constant, say C'(y),
of absolute value one’ in the irreducible regular case..

4.3. Lefschetz principle. One of the motivations for the conjecture of
Kawanaka was what [ would like to call the Lefschetz principle, after Harish-Chandra;
in the context of prehomogencous vector spaces, whatever is true for the R-casc or the

C-case is also true for the Fy-casc. In fact, in the R-case, it is known that

(Fourier transform of f(2)*)
d
= (some function of s) x H P(s+a;) x fY(y)~* x &¥(y)
i=1
(s € €C), with some £¥(y) independent of 5. (Cf. the lecture of T .Kimura in the same

volume.) In (4.1, (K1)), the constant £(x,7) is the counterpart of ‘(some function

of 5) x T]_; T(s + @)

§5. Idea of proof (1).

The study of finite field is ‘easy’ in the sense that we do not need to worry
about difficulty such as the convergence problem. However it is same to say that the
deep analytic tools are not at our disposal. Therefore, once we can not decal with
some problem within the framework of finite ficld, we need to recover the continuity
at the cost of the finiteness.

5.1. How to recover the continuity.

— A rapid but insufficient course in /-adic étale sheaves.
(1) Vector space. Let V = C" and F € GL(V). Then we get a complex

number as follows:

F V= trace(F,V) € C.
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(2) Complex. Next, let us consider the following sequence of vector spaces
over C and linear mappings hetween them.

i1 7

‘,_r- — ( RN V’i—l ] ‘/’l _) ‘,’i+l —_— e )

Assume that d' - &' = 0, i.e., ker(d) D image(d='). In this case, V" is called
a complex. Put H'(V') := ker(‘rl"‘)/ image(d'~"), which is called the i-th cohomology.
Assume that an operator F' acts on cach % as a linear automorphism and compatibly

with d¥’s. Then F linearly acts on each H*(V"). Assume further that

dim H: (V") < oo for all 4, and

H z( V') =0 for almost all 7
Then we get a complex number as follows:

ForV =Y (1) trace(F,H'(V)) € C.
)

We identify a vector space V' with the complex

(V=0
w:{ .
0 i#0

Thus (2) can be regarded as a gencralization of (1).

(3) Sheaf. Third, let us consider a mapping 7 : L — X between two sets,
on which an operator F' acts compatibly with 7. Assume that L, := ) (= € X)

are finite dimensional vector spaces over C, and F : Ly — Lp(y) (¢ € X) are linear

mappings. Then we get a C-valued function on Xt = {re X | Fr=ux} as follows:
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L
Fn J/7r = tracey (z) := trace(F, L;) (x € XF_).
X
(4) Complex of sheaves. Note that L = |J,cy L« (disjoint union) can be
regarded as a family of vector spaces parametrized by X. In this sense, (3) can be
l‘ega.l‘decl as a gencralization of (1). |
Thus we get two generalizations of (1) (cf. the remark at the end of (2)).
Consider a family L; (# € X) of complexes as a generalization of (2) and (3). Then

we get a C-valued function on X' as follows:

L v
F \[W = tracey, (v) := Z(—-])".tra‘ce(_ﬂ Hi(‘L')z) (ze Xh).
X i
(5) Constructible sheaf. If X is a complex algebraic variety (with the
Hausdorff topology), we need to claim some kind of ‘continuity’ for the correspondence

X 3z — L. In fact, we can define a category D!(X,C) Whése 6l)joct gives some
L' 5 X asin (4).
I
DYX,C)> W lw .
X
(Here T omit the definition of D%(X,C), and so B is a black box.)

(6) Etale @-sheaf. Let X be an algebraic variety over F,. (If X is an

affine variety, this means that

X =X(k)={(x1, -, on) €&V | Pz, ,any)=0(i=1,--- M)}



with some P; € Fylr1,--- ,zx]. Here and below, k denotes an algebraic closure of
F,, and we identify X with the set of rational points X(k).) Let F € Gal(k/Fy) be

the Frobenius endomorphism; Fr = 27 (2 € k). Then

Frn X (FactsonX),

Xt = X(Fg), and
I
PYX, Q)M |F~ l,r
X

(Exercise: @ ~ C.) Therefore, we can obtain a C-valued function on X (Fq)

tracer () := Z(_—l)i trace(F*, H'(L);) (= € X(F,)),

i

where F* = IF‘—1.

5.2. Example 1.

(1) Multiplicative character x of FX (C-valued function on F). Let
us explain how to find [ 2 kX which gives x as in (5.1, (6)).

(2) Lang torsor L, on k* (Q-sheaf on k*). Put A(z) = 297! (¢ €
k*). For a € FY, fix o € A~YHa). Then A7la) = d'F). Thus A : k> — k™ is
something like a principal F-bundle on kX, from which we construct a ‘line bundle’
7 k> XEx C — k> as follows.

Let F¢ act on % x C by ¢ (2,t) = (cz,x(c)-t) (ce FY, x € kX, t € C).

q ?
Put L, = kX% XX C := (kX x C)/Fy. Denote the image of (x,t) in Ly by [x,1].
Then we can define 7 : Ly, — k* by n([z,t]) := A(z), and the F-action on Ly by
F([z,1])) == [29,#]. Tt is easy to see that #~'(a) = {[d',t] | t € C}, which we shall

identify with C by [d/,t] = t.
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Now, let us calculate the F-action on 7~ '(a) =: (Ly), (a € Fy)- Since

d? 1 =a, d'? = ad'. Hence

t=[d, 1 ik [, 1] = [ad', 1] = [¢, x(a) ] = x(a) 7',

and, finally we get

tracer (7) = x(z) (x € F[).

(Recall that we have used #* = F~! instead of F to define tracey (x) in (5.1, (6).)

(3) Similar sheaf on C*. Note that A(2) = 297! can be considered also for
z € C*. Then A : C* — C* is a principal F-bundle, and we can define 7 : L, — C*
in the same way as in (2). The ‘principal FX-bundle’ A : & — k> considered in (2)
is obtained from A : C* — C* by the ‘reduction modulo p’. (More precisely, first
note that A is defined over @. Then, in general, regard the coefficients of the defining
equations as p-adic integers, if p > 0, and then as elements of F, (p := charF,). The
resulting geometric object is called the ‘reduction modulo p’.

(4) Another description of (3). Fix an isomorphism

(1_(1 /Z)—:} (F;,Cx), a— .

Then L, ~ Ca®. (Although 2” is multivalued, the ambiguity is multiplication by
some root of unity. Hence the totality of its scalar multiple is globally well-defined.)
(5) Differential equation of Fuchsian type. Note that u = 2 is char-

acterized by the differential equation

177



“which is of Fuchsian type, i.e., its singularities at 0 and oo are regular. In other
words, L, ~ Ca® in (4) can be regarded as the totality of local solutions of the above
equation.

5.3. Example 2 (additive character). Let 1 # ¥ € Hom(F,,C*). Put
a(z) =z — 29 (z € k). Since o(z) =1 — g~ =1 (¢g=0in k), a: k — kis an
unramified covering of the affine line &. Tt is casy to see that a : k — & isa ‘principal
F,-bundle’, and hence we can define 7 : Ly — K such that tracep, (7) = ()
(z € F,) in the same way as in (5.2). This Ly is called the Artin-Schreier torsor.

Obviously, L is not compatible with the ‘reduction modulojf.

5.4. Example 3 (substitution).

Let us come back to the situation of (5.1, (3)). Let 7 : L — X be a tamily
of vector spaces {L; | + € X} on which F acts as in (5.1, (3)). If a F-mapping
f:Y — X is given, we can define a new family of vector spaces {(f*L), | y € Y}

(i.e, f*L = Y) by

(7 L)y = Lpiy)

and we call f*L the pull-back of L by f. Then the F-action on L — X induces one

on f*L by

-* [" -* 3
(f*L)y = Ly — Lrgun = Lrrwy = LRy

Then

trace . (y) = trace(f(y)) (y € YF_').

Therefore, we can say that the ‘pull-back’ is the geometric counterpart of the
‘substitution’. Tt would be obvious how to generalize the content of this paragraph

to the situation of (5.1, (4)).
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5.5. Example 4 (multiplication). If L — X and L' — X are given as in
(5.1, (3)), define L. & L/ — X by

(Ley L)y = Ly @ L, (tensor product).

If F-actions on I and L' are given, then we can naturally define the F-action on

L [, and we get

trace () = tracey () x tracep(x) (z € XT).

Therefore, we can say that the ‘tensor product’ is the geometric counterpart of the

‘multiplication’.

5.6. Example 5 (summation).

Theorem (Grothendieck-Lefschetz trace formula). Let X be an alge-

braic variety over F,. Then for any L' € DY(X, @),

> (=1) trace(F* HI(X, L)) = Y traces(z).

i r€X(F,)

Here H! denotes the (l-adic étale) cohomology with compact supports, whose
definition we do not give here. Anyway, we can say that the ‘cohomology with compact
supports’ is the geometric counterpart of the ‘summation’.

5.7. Proof of (K1). (1) Summing up (5.2)-(5.6), we can find thc geometric
counterpart of the both sides of (4.1, (K1)) (= étale perverse @-sheaves on VV(k)).

(2) Using the fact that f is a homogeneous polynomial (cf. (1.1)), we can
eliminate (5.3), which is not compatible with the reduction modulo p. Since all the
remaining (i.e., (5.2) and (5.4)-(5.6)) are compatible with the reduction modulo p,
we can lift the geometric object over Fy obtained in (1) to a geometric object over C

(= perverse C-sheaves on VY(C)).



(3) The last geometric objects over C are in one-to-one correspondence with
the regular-holonomic D-modules on ¥(C) via the Riemann-Hilbert correspondence

(M.Kashiwara and Z.Mebkout).

regular holonomic D-modules on V(C)

(3) | Riemann-Hilbert correspondence
~

perverse C-sheaves on V(C)

(2) | reduction modulo p

~

étale perverse @-sheaves on V (k)

(1) | trace

~

function on V(F)

Now let us consider the identity (4.1, (K1)), which we are now going to prove.
This identity belongs to the bottom of the above diagram. After lifting the identity
to the top by the procedure explained so far, we can prove it as the identity between
two D-modules.

Note that D-module is a system of linear differential equations. Thus we can
say intuitively that we have characterized functions by linear differential equations.
Thus in our characterization, the ambiguity of multiplication by scalar is inevitable.
This ambiguity causes the ambiguity of ‘some constant ¢(x,)” at the end.

5.8. Proof of (K2). After the famous work of P.Deligne on the Weil conjec-
ture (= the Riemann hypothesis for zeta functions of algebraic varieties), we can study
geometrically such an arithmetic problem as the determination of (archimedean) ab-
solute value of, say, a character sum. This procedure is called the Weil cstimate.
More precisely, we can determine such an absolute value by calculating the weight
filtration. |

In fact, we can start from the mixed Hodge module of M.Saito in the top of

the diagram of (5.7), and we get the Weil estimate at the bottom, and we get a proof

180



181

of (1.1, (K2)).
5.9. Remark. (1) When [ have first considered the procedure of (5.8) in
1986, the mixed Hodge theory of M.Saito was not yet available, and here I obtained
a substantial help from M.Kashiwara.
(2) Our main theorems in §2 can be now proved without using the mixed

Hodge theory.

56.

6.1. Although we have used many deep results, the ambiguity of arg(s(x, )
remained at the end of 5. (Without to say, this ambiguity will disappear at the very
end.) Furthermore, in the R-case, we do not. know a closed formula for ‘(some function
of 5)"in (4.3, (1)). Thus, once, there was a doubt about the existence of a closed
formula in the Fy-case. (Conversely speaking, since we have now obtained a closed
formula in the Fy-case. it becomes a realistic prohlom to find a closed formula in the
case of the other fields.)

6.2. Inl 989_, [ have succeeded to conjectire a closed formula for e(x, ). The
basic motivation was the fact that the left hand side of Theorem A1 is transformed in
a simple way under the castling transformation. (In general, I want to call a quantity
associated to a prehomogencous vector space a castling invariant if it is transformed
‘in a simple way’ under the castling transformation, although this is not a definition
in the usual sensc.) Therefore, it would be natural to assume that ¢(x, ) would be
expressed in terms of castling invariants. In fact, this assumption turned out to be
very definitive, and I have obtained conjectures, which are now Theorems A (.

[ expect that the same procedure would be useful in considering the problem

stated at the end of (6.1).

§7. Idea of proof (2).



7.1. In April of 1993, [ have learnt a crucial idea from J.Denef. I will explain
it here.
Let us come back to the situation of (5.1, (6)). There we have considered a

C-valued function

(1) tracep (v) = Z(_—]')itrace(F*, HY(E),) (z€ Xt

i

for £ € D¥(X,Q)). Instead of such an additive theory, we can consider the multi-

plicative theory:

(2) ep () == [[det(=#* HI(E)) "V (r € X1,

1

7.2. From additive theory to multiplicative theory. Assume that there

exists 79 € Z such that

dim H*(#'), =1 for all + € X, and
(1) ‘ .
H'(E) =0 if 7 # 2.

Then

tracep (),

cigenvaluc of F* on H®(E'),, and
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are essentially the same. Hence if (1) occurs in some place, we can move from the
additive theory to the multiplicative theory, and vice versa. In fact, we can do in the
situation of our present concern.

Next, let us explain an advantage of the multiplicative theory, i.c., the product
formula of G.Laumon. '

7.3. Grothendieck theory on Artin L. Let £ he a field and kg its separable

closure. Then

]

{E | étale @-sheaf of rank n on X = Spec k}

= {£' | n-dimensional (@, Gal(k,/k))-module}

and

(2) ' : Hiét.ale (“Y? k)= Hi(:}a.lois (Gal('l“’/k)a El)

For a general scheme X, 1‘)3(.\’,@,) which appeared in (5.1, (6)) (without definition)
is a certain generalization of (1), and the [-adic étale cohomology is a gencralization
of (2).

Coming hack to a variety X over F, and £~ € D¥(X, Q) let HY(X, E') be
the l-adic étale cohomology. After A.Grothendieck, we define the Artin L-function

by

3) L(X, £, 5) = [ det(1 — ¢~ F*, H(X, £7)1),

1

(This is a generalization of the usual Artin L-functions associated with (@, Gal(ks/k))-

modules.) Then the following functional equation follows from the Poincaré duality.



(4) L(X, B, 8) = (X, E ) OB (X DE, ),

where a( X, E') is the Euler characteristic, D( ) denote the Verdier duality, and

(5) (X, E) = [] det(—F*, H(X, £)D™

1

Note that here appears a similar product as (7.1, (2)). In fact, in essence, our task is
to calculate (5).

7.4. Langlands theory on Hecke L.

Notation.

X : a connected smooth projective curve over F,.

K : the function field of X.

Ka :-the adbliza‘t'ion of K.

7r.: an automorphic cuspical representation of G L, (K 4).

mV : the cont.ragra.di.ent representation of 7.

R.P.Langlands defined a Hecke L-function L(X,7,s), and showed the follow-

ing functional equation.

(1) L(X,7,8) = e(X,m)¢~* "D L(X, 7V 1 - ).

Since this functional equation is obtained as a product of local functional equations

(like the Tate theory),
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(2) ce(X,m)=0C- H (local e-factor at v)
v€|X|

with a certain constant (7, where | X| denotes the set of places of A, i.e, the set of
closed points of X. See [L, 3.1.3.5].

7.5. Langlands conjecture (a generalization of the reciprocity law of

E.Artin).

There would exist a correspondence

{E| smooth irreducible @-sheaf of rank n on some open dense U C X'}

— {rp | cuspidal automorphic representation of G L,(K 4)}

such that

(1) | L(X,7p,s) = L(X,E,s).

7.6. Local constant. Summing up (7.3)-(7.5), we get

[T det(r=, B (X, ENCY = (X, B) by (7.3, (5))

i

(1) ¢ e(X,mp) by (75, (1))

=CC"- ] (local e-factor at v) by (7.4, (2)),
€| X

with a certain constant (. (Here ‘7’ means that it is based on a conjecture.)
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A candidate for such ‘local c-factor’ associated to such £ was first constructed
by B.Dwork up to sign, and then hy R.P.Langlands unconditionally. P.Deligne sim-
plified the proof by a global argument, and proved that their product (multiplied by
a certain constant) is actually equal to the most left hand side of (1) under a cer-
tain assumption. G.Laumon [L, (3.2.1.1)] succeeded to prove the product formula in
general.

7.7. Although the most basic ingredient is the product formula of Laumon,

we need the following materials as well in an actual argument (= a joint work with

J.Denef).

(1) A work by F.Loeser and ('.Sabbah [LS], and independently by G.W.Anderson
[A] on Aomoto complexes. |

(2) A work by J.Denef and F.Loeser [DL], and independently by 'I'.Saito [S]
on global e-factors.
In fact, comparing (1) and (2), we get Theorem Al.

(3) An idea of N.Kawanaka [K, 3.1].
In fact, we get Theorem B using this idea.

The proof of Theorem ! depends on a comparatively direct calculation of

local e-factors.
References

[A] G.W.Anderson, Local facotrization of determinants of twisted DR cohomology -
groups, Compositio Math. 83 (1992), 69-105.
[DL] J.Denef and F.Loeser, Determination géométrique des sommes de Seclberg-Evans,

Bull. Soc. Math. France 122 (1994), 101--119.

[G] A.Gyoja, Gencric quotient varieties, in the same volume.



187

[K] N.Kawanaka, Generalized Gelfand-Gracy representations and Ennola duality, Ad-
vanced Studies in Pure Math. 6 (1985), 175-226.
[L] G.Laumon, Transformation dc Fourier, constantes d’équations fonctionelles et
conjecture de Weil, Publ. THES 65 (1987), 131-210.
[LS] F.Loeser and C.Sabbah, Kquations aux différences finies et déterminations dintégrales
de fonctions multiformes, Comment. Math. Helvetici 66 (1991), 158-503.
[R] M.Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78
(1956), 401-143.
[S] T.Saito, e-factor of tamely ramificd sheaf on a variety, Invent. Math. 113 (1993),
389--417.



