ON FUNCTIONAL EQUATIONS OF PREHOMOGENEOUS ZETA DISTRIBUTIONS
OVER A LOCAL FIELD OF CHARACTERISTIC P

TATSUO KIMURA, MAKIKO FUJINAGA AND TAKEYOSHI KOGISO

Institute of Mathematics
University of Tsukuba
IBARAKI, 305, JAPAN

ABSTRACT. For a local field of characteristic 0, the functional equations of zeta distributions of prehomogeneous vector spaces are obtained by M.Sato, T.Shintani, J.Igusa and F.Sato (See [17], [9], [13], [15].) In this paper, we shall consider the case of local fields of characteristic $p > 0$.

§1. K-regular P.V.’s

We fix a local field K of characteristic $p > 0$. Let G be a connected linear algebraic group, ρ its rational representation of G on a finite-dimensional vector space V, all defined over an algebraic closure \overline{K} of K. We call a triplet (G, ρ, V) a prehomogeneous vector space (abbrev. P.V.) if V has a Zariski-dense G-orbit Y.

Any point of Y is called a generic point and the isotropy subgroup

$$G_y = \{g \in G; \rho(g)y = y\}$$

of a generic point y is called a generic isotropy subgroup. Note that we have $\dim G_y = \dim G - \dim V$ if and only if $y \in Y$. A non-zero rational function $f(x)$ on V is called a relative invariant of (G, ρ, V) if $f(\rho(g)x) = \chi(g)f(x)$ holds for any $g \in G$ and $x \in Y$ where $\chi : G \to GL_1$ is a rational character of G.

The complement S of Y is a Zariski-closed set which is called the singular set of the P.V. (G, ρ, V). Now we assume that (G, ρ, V) is defined over K, i.e., G, ρ, V are all defined over K. Let $S_i = \{x \in V; f_i(x) = 0\}$ $(i = 1, \ldots, l)$ be the K-irreducible component of the K-rational points S_K of S of codimension one defined by a K-irreducible (not necessarily absolutely irreducible) polynomial $f_i(x)$ $(i = 1, \cdots, l)$.

Then $f_1(x), \ldots, f_l(x)$ are algebraically independent relative invariants and any relative invariant $f(x)$ in $K(V)$ is of the form $f(x) = c \cdot f_1(x)^{m_1} \cdots f_l(x)^{m_l}$ $(c \in K^\times, (m_1, \ldots, m_l) \in \mathbb{Z}^l)$. We call $f_1(x), \cdots, f_l(x)$ the basic K-relative invariants of (G, ρ, V). Let χ_i be the rational character of G corresponding to $f_i(i = 1, \ldots, l)$. Let $X(G)_K$ be the group of K-rational characters of G, $X_1(G)_K$ its subgroup corresponding to K-relative invariants. Then $X_1(G)_K$ is a free abelian group of rank l generated by χ_1, \ldots, χ_l.
Let G_1 be a subgroup of G generated by the commutator subgroup $[G,G]$ and a generic isotropy subgroup. This does not depend on a choice of a generic point. For $\chi \in X(G)_K$, it is in $X_1(G)_K$ if and only if $\chi_{1,G_1} = 1$. For a relative invariant $f(x)$ of (G,ρ,V), we can define a rational map $\varphi_f : Y \to V^*$ by

$$\varphi_f(x) = t \left(\frac{1}{f(x)} \cdot \frac{\partial f}{\partial x_1}(x), \ldots, \frac{1}{f(x)} \cdot \frac{\partial f}{\partial x_n}(x) \right)$$

where V^* is the dual vector space of V. We sometimes denote $\varphi_f(x)$ by $\text{grad log} f(x)$. By a direct calculation, we have

(1) $\varphi_f(\rho(g)x) = \rho^*(g)\varphi_f(x)$ for $g \in G$ and $x \in Y$ where ρ^* denotes the contragradient representation of ρ,

and

(2) $\langle d\rho(A)x, \varphi_f(x) \rangle = \delta \chi(A) \text{ for } x \in Y \text{ and } A \in \text{Lie}(G)$ where $d\rho$ (resp. $\delta \chi$) is the infinitesimal representation of ρ (resp. the infinitesimal character of χ) of the Lie algebra $\text{Lie}(G)$ of G.

A relative invariant $f(x)$ is called non-degenerate if $\varphi_f : Y \to V^*$ is dominant and the Hessian $H_f(x) = \det\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)$ is not identically zero. In this case, a rational function $F(x) = \frac{f(x)^n}{H_f(x)} (n = \text{dim } V)$ is a relative invariant corresponding to the character $\chi_0(g) = \det(\rho(g))^2$.

If there exists a non-degenerate relative invariant $f(x)$ in $K(V)$, we say that (G,ρ,V) is a K-regular P.V. Then we have $\det(\rho(g))^2 \in X_1(G)_K$. In general, we denote by Y_K, S_K, \ldots K-rational points of Y, S, \ldots. We write $X_1^*(G)_K$ (resp. $X^*(G)_K, Y^*, S^*, \ldots$) for (G,ρ^*,V^*) which corresponds to $X_1(G)_K$ (resp. $X(G)_K, Y, S, \ldots$) for (G,ρ,V).

Proposition 1.1

Assume that (G,ρ,V) and (G,ρ^*,V^*) are K-regular P.V.'s. Then we have the following assertion.

(1) $X_1(G)_K = X_1^*(G)_K$.

(2) For a non-degenerate K-relative invariant f, the map $\varphi = \text{grad log} f : Y \to Y^*$ is bijective.

[Proof]

Since $\varphi(Y)$ is a Zariski-dense G-orbit in V^*, we have $\varphi(Y) = Y^*$, i.e., $\varphi = \text{surjective}$. Since $\rho^*(g)\varphi(x) = \varphi(\rho(g)x)$, we have $G_x \subset G_{\varphi(x)}$ for $x \in Y$. Now let f^* be a non-degenerate relative invariant in $K(V^*)$, and put $\varphi^* = \text{grad log} f^* : Y^* \to Y$. Similarly we have $G_y \subset G_{\varphi^*(y)} = G_y \subset G_{\varphi^*(y)}$ for $y = \varphi(x)$ and $x' = \varphi^*(y)$, and hence $G_x \subset G_y \subset G_{x'}$. Since $x' = \rho(g_0)x$ for some $g_0 \in G$, we have $G_{x'} = g_0G_xg_0^{-1} \supset G_x$. Since $\text{dim } G_{x'} = \text{dim } G_x$, the algebraic group $G_{x'}$ and G_x have the same connected component H of the identity. Since $G_{x'}$ is isomorphic to G_x, the numbers of their connected components coincide, i.e., $[G_{x'} : H] = [G_x : H]$ with $G_{x'} \supset G_x$. This implies $G_{x'} = G_x$, and hence $G_x = G_y$ with $y = \varphi(x)$.
Thus we have $G_1 = G_1^*$ and hence $X_1(G)_K = X_1^*(G)_K$. Note that $X_1(G)_K = \{ \chi \in X(G)_K; \chi|_{G_1} = 1 \}$. Now assume that $\varphi(x_1) = \varphi(x_2)$ with $x_2 = \rho(g)x_1$ for some $g \in G$. Then we have $\varphi(x_1) = \varphi(x_2) = \varphi(\rho(g)x_1) = \rho^*(g)\varphi(x_1)$ and hence $g \in G_{\varphi(x_1)} = G_{x_1}$, i.e., $x_2 = \rho(g)x_1 = x_1$. Thus φ is injective. \hfill \Box

Now assume that (G, ρ, V) is a K-regular P.V. Then, as we have seen above, the dual triplet (G, ρ^*, V^*) is a P.V. For a generic point $y \in Y^*$, a dominant morphism $\psi : G \to V^*$ defined by $\psi(g) = \rho^*(g)y$ is called an open orbit morphism.

Proposition 1.2

Assume that (G, ρ, V) is a K-regular P.V. and an open orbit morphism $\psi : G \to V^*$ is a separable morphism. Then there exists a K-relative invariant f^* such that $\text{grad } \log f^* : Y^* \to V$ is dominant.

[Proof]

Let f be a non-degenerate relative invariant in $K(V)$ and put $\varphi = \text{grad } \log f : Y \to Y^*$. First we show that φ is injective. Assume that $\varphi(x) = \varphi(x')$. Since $\delta \chi(A) = \langle d\rho(A)x, \varphi(x) \rangle = -\langle x, d\rho^*(A)\varphi(x) \rangle$, we have $\langle x - x', d\rho^*(A)\varphi(x) \rangle = 0$ for all $A \in \text{Lie}(G)$. Since $\psi : G \to V^*$ with $\psi(g) = \rho^*(g)\varphi(x)$ is separable, we have $\{d\rho^*(A)\varphi(x); A \in \text{Lie}(G)\} = V^*$, and hence $x - x' = 0$, i.e., $x = x'$. For any $g \in G_{\varphi(x)}(\supset G_x)$, we have $\varphi(\rho(g)x) = \rho^*(g)\varphi(x) = \varphi(x)$. As φ is injective, we have $\rho(g)x = x$, i.e., $g \in G_x$. This implies that $G_x = G_{\varphi(x)}$ and hence $X_1(G)_K = X_1^*(G)_K$. A rational character χ corresponding to f is in $X_1(G)_K$ and hence $\chi^{-1} \in X_1^*(G)_K$.

This implies that there exists a relative invariant f^* in $K(V^*)$ satisfying $f^*(\rho^*(g)y) = \chi(g)^{-1}f^*(y)$ for $g \in G$ and $y \in Y^*$.

Put $\varphi = \text{grad } \log f^*$. Then we have $\langle \varphi^*(y), d\rho^*(A)y \rangle = -\delta \chi(A)$. Since $\delta \chi(A) = \langle d\rho(A)x, \varphi(x) \rangle = -\langle x, d\rho^*(A)\varphi(x) \rangle$, we have $\langle x - \varphi^*(y), d\rho^*(A)y \rangle = 0$ for $y = \varphi(x)$ and all $A \in \text{Lie}(G)$.

Since the open orbit morphism ψ is separable, we have $\{d\rho^*(A)y; A \in \text{Lie}(G)\} = V^*$, and hence $\varphi^*(y) = x \in Y$, i.e., $\varphi^*(Y^*) = Y$. \hfill \Box

Note that in the case of $\text{ch}(K) = 0$, the proof of Proposition 1.2 gives the equivalence between K-regularity of (G, ρ, V) and that of (G, ρ^*, V^*).

Proposition 1.3

Assume that (G, ρ, V) and (G, ρ^*, V^*) are K-regular P.V.'s. Then we have ${\# \rho(G)_K \backslash Y_K = \# \rho^*(G)_K \backslash Y_K}$.

[Proof]
Let f be a non-degenerate relative invariant in $K(V)$ and put $\varphi = \text{grad log } f$. Then for any $x \in Y_K$, we have
\[\varphi(\rho(G)_K \cdot x) = \rho^*(G)_K \cdot \varphi(x) \subset Y_K^\ast, \text{ i.e., } \varphi \text{ maps an orbit in } Y_K \to \text{ an orbit in } Y_K^\ast. \]

By Proposition 1.1, this map φ is injective, and hence $\# \rho(G)_K \backslash Y_K \leq \# \rho^*(G)_K \backslash Y_K^\ast$. Similarly we have $\# \rho^*(G)_K \backslash Y_K^\ast \leq \# \rho(G)_K \backslash Y_K$. \square

Now we shall consider a sufficient condition that $\# \rho(G)_K \backslash Y_K$ is finite.
Professor J.P.Serre kindly let us know the following theorem with the proof which was explained by Tits to him.

Theorem 1.4

Let K be a local field of characteristic $p > 0$ (or more generally let K be a field complete with respect to a discrete valuation, and with the residue field k of type (F) in the sense of Serre [18]. Let G be a connected smooth reductive group over K. Then $H^1(K, G)$ is finite.

[Proof](after Serre's letter on 9th. September 1992.)

Let K' be the maximal unramified extension of K. The field K' is known to be of $\text{dim.} \leq 1$ (in the sense of CG, II, §3). By a theorem of Steinberg (for K' perfect) and of Borel-Springer (for K' imperfect - see Borel Col. Papers II, p.761) we have $H^1(K', G) = 0$. Hence the Galois cohomology of G over K is killed by K', i.e., it is equal to $H^1(K'/K, G)$. We may now apply a theorem of Bruhat-Tits (J.Fac.Sci.Tokyo, 34 (1987), p.693, th.3.12); this says that $H^1(K'/K, G)$ is contained in a finite union of cohomology sets $H^1(k, G_i)$, where the G_i's are algebraic linear groups (non necessarily connected) over k. Since k is type (F), each $H^1(k, G_i)$ is finite (see e.g. Borel, Col.Papers II, p.404, th.6.2, or Coh. Gal. III-30, th.4). Hence $H^1(K, G)$ is finite. \square

Proposition 1.5

Let (G, ρ, V) be a P.V. defined over K with a reductive generic isotropy subgroup. Then $\# \rho(G)_K \backslash Y_K$ is finite.

[Proof]

Let H be a generic isotropy subgroup of a point in Y_K. Then there exists a bijection between $\rho(G)_K \backslash Y_K$ and $\text{Ker}(H^1(K, H) \to H^1(K, G))$ (see Serre [18]).

By Theorem 1.4, $H^1(K, H)$ is finite, and hence $\rho(G)_K \backslash Y_K$ is a finite set. \square

Example 1.6

Let G be the subgroup of GL_n consisting of all lower triangular matrices. Let V be the totality of symmetric $n \times n$ matrices and define ρ by $\rho(g)x = gx^tg$ for all $g \in G$.
and } x \in V. \text{ Since } \dim G = \dim V, \text{ a generic isotropy subgroup is a finite subgroup and hence we have } \# \rho(G) \setminus Y_K = \nu < +\infty \text{ by Proposition } 1.5.

Moreover det } x \text{ is a non-degenerate } K\text{-relative invariant. By } \text{ tr}(xy) (x, y \in V), \text{ we identify } V \text{ with its dual } V^*.

Then } (G, \rho, V) \text{ and } (G, \rho^*, V^*) \text{ are } K\text{-regular P.V.'s. Hence, by Proposition } 1.3, \text{ we have } \# \rho^*(G) \setminus Y_K^* = \nu < +\infty.

\textbf{Proposition 1.7}

Let } (G, \rho, V) \text{ be an irreducible regular P.V. defined over } K. \text{ Then we have } \# \rho(G) \setminus Y_K < +\infty.

[Proof]

By a classification of irreducible P.V.'s (see Z. Chen [4]), we know that a generic isotropy subgroup is reductive.

\square

\S 2. Zeta distributions

Let } K \text{ be a local field of characteristic } p > 0. \text{ Assume that } (G, \rho, V) \text{ and its dual } (G, \rho^*, V^*) \text{ are } K\text{-regular P.V.'s. Moreover we shall assume that } Y_K = Y_1 \cup \cdots \cup Y_\nu \text{ decomposes into a finite union of } \rho(G) \setminus Y_K = \nu < +\infty. \text{ Then by Proposition } 1.3, \text{ we have } Y_K^* = Y_1^* \cup \cdots \cup Y_\nu^*.

Let } f_1(x), \ldots, f_\ell(x) \text{ (resp. } f_1^*(y), \ldots, f_\ell^*(y)) \text{ be basic } K\text{-relative invariants of } (G, \rho, V) \text{ (resp. } (G, \rho^*, V^*)). \text{ Let } \chi_i \text{ (resp. } \chi_i^* \text{) be the corresponding character of } f_i \text{ (resp. } f_i^* \text{). Then we have}

\[X_1(G)_K = \langle \chi_1, \ldots, \chi_\ell \rangle \text{ and } X_1^*(G)_K = \langle \chi^*_1, \ldots, \chi^*_\ell \rangle. \]

By Proposition 1.1, we have } X_1(G)_K = X_1^*(G)_K \text{ so that there exists uniquely a matrix}

\[U = (u_{ij}) \in GL_l(\mathbb{Z}) \]

satisfying } \chi_i = \prod_{j=1}^l \chi^*_j u_{ij}. \text{ Since } \det \rho(g)^2 \in X_1(G)_K, \text{ we have } \det \rho(g)^2 = \chi_1^{2\lambda_1} \cdots \chi_\ell^{2\lambda_\ell} \text{ for some } \lambda = (\lambda_1, \cdots, \lambda_\ell) \in (\frac{1}{2} \mathbb{Z})^l \text{ and } \det \rho^*(g)^2 = \chi_1^{*2\lambda_1} \cdots \chi_\ell^{*2\lambda_\ell} \text{ for some } \lambda^* = (\lambda_1^*, \cdots, \lambda_\ell^*) \in (\frac{1}{2} \mathbb{Z})^l. \text{ Since } \det \rho^*(g) = \det \rho(g)^{-1}, \text{ we have } \lambda^* = -\lambda U.

\textbf{Example 2.1}

For simplicity, we deal with the case } n = 2 \text{ in Example 1.6. Then we have}

\[G = \{ g = \begin{pmatrix} a & 0 \\ c & b \end{pmatrix}; ab \neq 0 \} \]

and
The basic K-relative invariants of (G, ρ, V) (resp. (G, ρ^*, V^*)) are $f_1(X) = x$ and $f_2(X) = \det X$ (resp. $f_1^*(X) = x$, $f_2^*(X) = \det X$) corresponding to $\chi_1(g) = a^2$, $\chi_2(g) = a^2b^2$ (resp. $\chi_1^*(g) = b^{-2}$, $\chi_2^*(g) = a^{-2}b^{-2}$) for

$$g = \begin{pmatrix} a & 0 \\ c & b \end{pmatrix}$$

in G.

Hence $\chi_1 = \chi_1^* \chi_2^* - 1$ and $\chi_2 = \chi_2^{-1}$ so that we have

$$U = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}.$$

Since

$$\det \rho \left(\begin{pmatrix} a & 0 \\ c & b \end{pmatrix} \right) = a^3b^3,$$

we have $\lambda = \lambda^* = (0, \frac{3}{2})$.

Let $\{\varepsilon_1, \cdots, \varepsilon_\nu\}$ be the complete representatives of $K^\times/K^\times 2$ in K^\times. Then we have $Y_K = Y_1 \cup \cdots \cup Y_\nu$ with

$$Y_i = \{ y \in Y_K; f_2(y) \equiv \varepsilon_i \mod K^\times 2\} \ (i = 1, \cdots, \nu).$$

Let $\omega^{(i)} : K^\times \to \mathbb{C}^\times$ (i = 1, \cdots, l) be a quasicharacter, i.e., a continuous homomorphism.

For $\omega = (\omega^{(1)}, \cdots, \omega^{(l)})$ and the basic K-relative invariants $f(x) = (f_1(x), \cdots, f_l(x))$, we write $\omega(f(x))$ instead of $\Pi_{i=1}^{l}\omega^{(i)}(f_i(x))$ for simplicity of notations.

Let $| |$ be the absolute value of K normalized by $|q| = q^{-1}$ for a prime element q where q is the module of K. For $s = (s_1, \cdots, s_l)$, we write $\omega_s = (|s_1|, \cdots, |s_l|)$ so that $\omega_s(f(x)) = \Pi_{i=1}^{l}|f_i(x)|^{s_i}$.

Let dx be the Haar measure on $V_K = K^n$ normalized by $\int_{R^n} dx = 1$ where R is the maximal compact subring of K. Since $d(\rho(g)x) = |\det \rho(g)|dx$ and $\omega_\lambda(f(\rho(g)x)) = |\det \rho(g)|\omega_\lambda(f(x))$, the measure $dy(x) = \frac{dx}{\omega_\lambda(f(x))}$ is a G-invariant measure on Y.

For $\Phi \in \mathcal{S}(V_K)$ where $\mathcal{S}(V_K)$ denotes the Schwartz-Bruhat space of V_K, we define an integral

$$Z_i(\omega, \Phi) = \int_{Y_i} \omega(f(x))\Phi(x)dY(x) \ (i = 1, \cdots, \nu).$$

Now any quasi-character $\omega^{(i)} : K^\times \to \mathbb{C}^\times = \{ z \in \mathbb{C}; z \neq 0 \}$ can be written uniquely as $\omega^{(i)} = |s_i| \cdot \phi_i$ for some $s_i \in \mathbb{C}$ and $\phi_i : R^\times \to C_1^\times = \{ z \in \mathbb{C}; |z| = 1 \}$ where R^\times is the units of R. Put $Re \omega^{(i)} = Re s_i \ (i = 1, \cdots, l)$. The following lemma is easy to prove and we omit the proof (cf. F.Sato [15]).

Lemma 2.2
If $\text{Re} \, \omega^{(i)} > \lambda_i \ (i = 1, \cdots, l)$, the integral $Z_i(\omega, \Phi)$ is absolutely convergent and holomorphic with respect to $s = (s_1, \cdots, s_l) \in (\mathbb{C}/(\frac{2\pi i}{\log q}\mathbb{Z}))^l \cong \mathbb{C} \times \mathbb{C}$ for $\omega = (|s_1 \cdot \phi_1, \cdots, |s_l \cdot \phi_l)$.

Let $\mathcal{S}'(V_K) = \{z : \mathcal{S}(V_K) \rightarrow \mathbb{C}, \mathbb{C} - \text{linear mapping}\}$ be the space of distributions on V_K. By Lemma 2.2, the mapping $\Phi \mapsto Z_i(\omega, \Phi)$ defines a distribution on V_K when $\text{Re} \, \omega^{(i)} > \lambda_i \ (i = 1, \ldots, l)$.

For (G, ρ^*, V^*), we can define similar distribution $Z^*_j(\omega) \ (j = 1, \cdots, \nu)$ given by

$$Z^*_j(\omega, \Phi^*) = \int_{V^*_K} \omega(f^*(y))\Phi^*(y)dy.$$

Now we fix a non-trivial additive character $\psi : K \rightarrow \mathbb{C}_1^\times$ and define the Fourier transformation $\mathcal{S}(V_K^*) \ni \Phi^* \mapsto \hat{\Phi}^* \in \mathcal{S}(V_K)$ by

$$\hat{\Phi}^*(x) = \int_{V_K^*} \Phi^*(y)\psi(\langle x, y \rangle)dy$$

where dy is a Haar measure on V_K^* dual to a fixed Haar measure on V_K.

For $\omega = (\omega^{(1)}, \cdots, \omega^{(l)})$, put $\omega^* = \omega^U = (\prod_{i=1}^l \omega^{(i)u_{i1}}, \cdots, \prod_{i=1}^l \omega^{(i)u_{il}})$.

Our purpose is to show that $Z_i(\omega)$ and $Z^*_j(\omega)$ are continued analytically to all ω and satisfy the functional equation:

$$\hat{Z}_i(\omega) = \sum_{j=1}^\nu \Gamma_{ij}(\omega)Z^*_j(\omega^* \omega_{\lambda^*}) \ (i = 1, \cdots, \nu)$$

under some additional conditions where

$$\hat{Z}_i(\omega)(\Phi^*) = Z_i(\omega, \Phi^*).$$

Recall that $\omega_{\lambda^*} = (|\lambda_1^*, \cdots, |\lambda_l^*)$ with $\det \rho^*(g)^2 = \chi_1^{2\lambda_1^*} \cdots \chi_l^{2\lambda_l^*}$.

Actually when K is a local field of $ch(K) = 0$, then (2.1) is obtained under some conditions and it is called "the fundamental theorem of P.V. over K".

§3. Rationality for almost all p

For a rational prime p, let K_p denotes the local field with the constant field \mathbb{F}_p.

For $f \in \mathbb{Z}[x_1, \cdots, x_n]$, we denote $f \mod p \in \mathbb{F}_p[x_1, \cdots, x_n]$ by f_p. Then we have the following theorem which is suggested by Professor M.Kashiwara.
Theorem 3.1
For almost all p, the integral
\[Z_p(s, \Phi_p) = \int_{K_p^n} |f_p(x)|^s \Phi_p(x) d_p x \]
is a rational function of $t = p^{-s}$ where $\Phi_p \in \mathfrak{S}(K_p^n)$ and $d_p x$ is a Haar measure on K_p^n.

[Proof]
Let $K = \mathbb{Q}((t))$ be a field of formal power series over \mathbb{Q}, $X = \Omega^n$ the affine space and $X_K = K^n$. Let f denote the morphism $X \to \Omega$ defined by $f(x)$; then there exists a nonsingular algebraic variety Y and a projective morphism $h : Y \to X$ both defined over K with the following property: let b denote an arbitrary point of Y_K, \mathfrak{M}_K the ideal of non-units of \mathcal{O}_K; then there exists an ideal basis (y_1, \cdots, y_n) of \mathfrak{M}_K, elements u, v of $\mathcal{O}_K - \mathfrak{M}_K$, and integers $N_i \geq 0, \nu_i \geq 1$ for $1 \leq i \leq n$ such that
\[f \circ h = u \prod_{i=1}^{n} y_i^{N_i}, \quad h^*(dx) = v \prod_{i=1}^{n} y_i^{\nu_i-1} dy. \]
The existence of such a pair (Y, h) is guaranteed by Hironaka's theorem [5] p.109 -p.326. Then for almost all p, the reduction modulo p is well-defined and we have similar results for K_p, f_p, \cdots etc. Then by just similar argument as in Appendix of Igusa [11], we obtain our result. □

Remark 3.2
Let K be a number field. For $f \in \mathcal{O}_K[x_1, \cdots, x_n]$, we have a similar result as Theorem 3.1 for almost all prime ideals \mathfrak{p} of \mathcal{O}_K.

§4. Functional equations

Lemma 4.1
Let G denote a locally compact totally disconnected group, H a closed subgroup of G, $X = H \backslash G$, and $\omega : G \to \mathbb{C}^\times$ a quasicharacter. Put
\[\xi_X(\omega) = \{ T \in \mathfrak{S}(X); gT = \omega(g)^{-1} T \text{ for all } g \in G \}. \]
Then we have $\dim_{\mathbb{C}} \xi_X(\omega) \leq 1$. Moreover $\dim_{\mathbb{C}} \xi_X(\omega) = 1$ if and only if $\Delta_G \cdot \omega|_H = \Delta_H$ where Δ_G, Δ_H denotes the module of G, H respectively.

[Proof]
Let \((G, \rho, V)\) and its dual \((G, \rho^*, V^*)\) be \(K\)-regular P.V.'s with
\[
\# \rho(G)_K \backslash Y_K = \nu < +\infty
\]
where \(K\) is a local field of characteristic \(p\). Then, by Proposition 1.3, we have
\[
Y_K = Y_1 \cup \cdots \cup Y_\nu \quad \text{and} \quad Y_K^* = Y_1^* \cup \cdots \cup Y_\nu^*.
\]
i.e., \(\# \rho^*(G)_K \backslash Y_K^* = \nu\).
As in §2, we can define the zeta distribution \(Z_i(\omega, \Phi)\) (resp. \(Z_i^*(\omega, \Phi^*)\)) which is convergent when \(\text{Re } \omega^{(j)} > \lambda_j\) (resp. \(\text{Re } \omega^{(j)} > \lambda_j^*\)) \((1 \leq i \leq \nu, 1 \leq j \leq l)\).

We denote by \(Z_i(\omega)\) the distribution defined by \(\Phi \mapsto Z_i(\omega, \Phi)\) etc.

Proposition 4.2

We have

\[
(1) \quad Z_j^*(\omega^* \omega_{\lambda^*}) \in \xi_{\lambda^*}^{(j)}(\omega^* \omega_{\lambda^*})
\]
and

\[
(2) \quad Z_i(\omega) \in \xi_{\lambda_i}^{(j)}(\omega^* \omega_{\lambda^*}).
\]

\[(i, j = 1, \ldots, \nu)\]

[Proof]
By a direct calculation, we obtain our results. \(\square\)

Proposition 4.3

Let \(K\) be a local field of characteristic \(p > 0\) with the module \(q\). For \(\omega = (\omega^{(1)}, \cdots, \omega^{(l)})\) with \(\omega^{(i)} = \omega_s \cdot \phi_i\) (\(\phi_i(\pi) = 1\) for a prime element \(\pi\)), assume that \(Z_i(\omega, \Phi)\) and \(Z_j^*(\omega, \Phi^*)\) are rational functions of \(q^{-s_1}, \cdots, q^{-s_l}\). Then for all \(\Phi^* \in \mathfrak{S}(Y_K^*)\), we have
\[
Z_i(\omega, \hat{\Phi}^*) = \sum_j \Gamma_{ij}(\omega) Z_j^*(\omega^* \omega_{\lambda^*}, \Phi^*)
\]
for \(i, j = 1, \cdots, \nu\).

[Proof]
Since \(Z_i(\omega, \Phi)\) and \(Z_j(\omega, \Phi^*)\) are rational functions, it is defined for all \(\omega\) except poles and hence by Lemma 4.1 and Proposition 4.2, we have our result. \(\square\)

Theorem 4.4

Let \((G, \rho, V)\) be a \(K\)-regular P.V. satisfying the following conditions:

\((C1)\) its dual \((G, \rho^*, V^*)\) is a \(K\)-regular P.V. such that
\[
\# \rho^*(G)_K \backslash V_K^* < +\infty,
\]
\((C2)\) for \(x \in S_K^*\), there exists \(\chi \in X_1(G)_K\) satisfying \(\chi(G, K) \not\subset R^x\) where \(R^x\) is the units of the maximal compact subring \(R\) of \(K\) and
\((C3)\) \(Z_j(\omega, \Phi)\) is a rational function of \(q^{-s_1}, \cdots, q^{-s_l}\) where
\[
\omega = (\omega^{(1)}, \cdots, \omega^{(l)}) \quad \text{with} \quad \omega^{(i)} = \omega_s \quad (1 \leq i \leq l).
\]
Then we have the functional equation...
\[Z_i(\omega, \hat{\Phi}^*) = \sum_j \Gamma_{ij}(\omega)Z_j^*(\omega^*\omega_{\lambda^*}, \Phi^*) \]

for all \(\Phi^* \in \mathcal{S}(V_K^*) \) for \(i, j = 1, \ldots, \nu \) where \(\nu = \# \rho^*(G)K \backslash \mathrm{Y}_K \).

Proof

The condition \((G2)\) corresponds to Lemma 2.2 in F.Sato [15] p.474 for the case of \(ch(K) = 0 \). Then the proof is just similar as the case of \(ch(K) = 0 \) (using Proposition 4.3) (See Igusa [9] and F.Sato [15] p.477).

Now let \((G, \rho, V)\) be a reductive \(\mathbb{Q}\)-regular P.V. Then for almost all \(p \), we have a reduction modulo \(p \) and we obtain \(K_p \)-regular P.V. \((G_p, \rho_p, V_p)\) where \(K_p \) is a local field with the constant field \(\mathbb{F}_p \).

Assumption A

Assume that \(\# \rho_p(G)K \backslash S_{K_p} = +\infty \) and for \(x \in S_{K_p} \), there exists \(\chi \in X_1(G_p)_{K_p} \), satisfying \(\chi(G_{p,x,K}) \neq \mathbb{R}_p^\times \) for almost all \(p \).

Let \((G, \rho, V)\) be a reductive \(\mathbb{Q}\)-regular P.V. with \(\text{Assumption A} \). Let \(f_1, \ldots, f_l \) be basic \(\mathbb{Q}\)-relative invariants with \(\mathbb{Z}\)-coefficients. Denote \(|f_1 \mod p|_{K_p}^s, \ldots, |f_l \mod p|_{K_p}^s \) by \(|f^{(p)}(x)|_{K_p}^s \), \(Z_i^p(s, \Phi_p) = \int_{(Y_{K_p} \cap \mathrm{Y}_1)} \int_{(Y_{K_p} \cap \mathrm{Y}_1)} |f^{(p)}(x)|_{K_p}^s \Phi_p(x) dY_p(x) \)

for \(\Phi_p \in \mathcal{S}(V_{K_p}) \).

Theorem 4.5

Let \((G, \rho, V)\) be a reductive \(\mathbb{Q}\)-regular P.V. with \(\text{Assumption A} \). Then for almost all rational prime \(p \), the integral \(Z_i^p(s, \Phi_p) \) \((i = 1, \ldots, \nu_p, Y_{K_p} = Y_1 \cup \cdots \cup Y_{\nu_p} \) is a rational function and satisfies the functional equation:

\[Z_i^p(s, \hat{\Phi}_p) = \sum_{j=1}^{\nu_p} \Gamma_{ij}(s)Z_j^p(s^*, \Phi_p) \]

\((i = 1, \ldots, \nu_p \).

When \(l = 1 \), we have \(s^* = \frac{d}{2} - s \) with \(n = \dim V \) and \(d = \deg f \). In general, for \(\omega = \omega_s = \omega_{s_1} \cdots \omega_{s_l} \), we have \(\omega_{s^*} = \omega^*\omega_{\lambda^*} \).

Proof

By Theorem 4.4 and using the results of §1 and §3, we obtain our result.
REFERENCES

1. A.Borel, Collected papers.
3. Z.Chen, Fonction zeta associée à un espace préhomogène et sommes de Gauss,.