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In this short note, we illustrate the rough idea to conncet the special value of zeta
functions of prehomogeneous vector space to the parabolic contribution to the dimension
of automorphic forms of bounded symmetric domain. The details will appear elsewhere.

1 Formally real Jordan algebras

The zeta $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\dot{\mathrm{s}}$ of cones of formally real Jordan algebras has been studied by Satake
and others in connection with geometric invariants of modular varieties. Their method is
geometric. On the other hand, since the center of the unipotent radical of the maximal
parabolic subgroups of the automorphism group of bounded symmetric domain has a struc-
ture of formally real Jordan algebra, it is natural that the zeta function associated with
cones in formally real Jordan algebras appears in the dimension formula of automorphic
forms given by trace formula. These Jordan algebras are a part of prehomogeneous vector
spaces.

Formally real Jordan algebra is a (finite dimensional) non associative algebra $J$ over the
real number field $R$ such that
(1) $xy=y_{X}$ ,
(2) $x^{2}(xy)=x(x^{2}y)$ for all $x,$ $y\in J$ ,
(3) If $x^{2}+y^{2}=0$ , then $x=y=0$.
On the other hand, let $V$ be a finite dimensional vector space over $R$. Let $C$ be a non
empty subset of $V$ . We say that $C$ is an open convex cone, if $ax+by\in C$ for any $x,$ $y\in V$

and any positive real $a,$
$b$ . We say that $C$ is non-degenerate, if $C$ does not contain any

straight line. Put $G(C)=\{g\in GL(V);\mathit{9}^{C}=C\}$ . If $G(C)$ acts transitively on $C$ , we say
that $C$ is homogeneous. For a fixed positive definite inner product $( , )$ on $V$ , we define
the dual of $C$ by

$C^{*}=$ {$x\in V;(x,$ $y)>0$ for all $y\in\overline{C}-\{0\}$ }.

If $C^{*}=C$ , then we say that $C$ is self-dual. It is known that formally real Jordan algebras
and non-degenerate self-dual homogeneous cones correspond one to one. The classification
has been also known and is described as follows. There are five types.
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(I) $V=\mathcal{H}_{n}(R),$ $C=P_{n}(R)$ .
(II) $V=\mathcal{H}_{n}(C),$ $C=P_{n}(C)$ .
(III) $V=\mathcal{H}_{n}(H),$ $c=\mathrm{p}_{n}(H)$ .
(IV) $V=R^{n},$ $C=\{x\in V;x1>0,x_{1^{-}}^{2}\Sigma_{2}n\}x^{2}>i\mathrm{o}$

(V) exceptional type ($3\cross 3$ matrices of the Cayley algebra),

where we denote by $\mathcal{H}_{n}(K)$ the symmetric matrices, hermitian matrices, or quaternion

hermitian matrices, if $K=R$, or $C$ , or $H$ , respectively. (Here $H$ is the real quaternion

algebra.) We denote also by $P_{n}(K)$ the positive definite symmetric matrices, positive

definite hermitian matrices, or quaternion hermitian matrices, respectively for $K=R,$ $C$ ,

or $H$ . The details such as the definition of multiplication, see Satake. We will treat only

the classical case (I) to (IV) below. For type (IV), we sometimes replace $C$ by a conected

component of $\{x;Q[x]>0\}$ when $Q$ is a symmetric matrix of signature $(1, n-1)$ .
Put $G=GL_{n}(K)$ for (I), (II), (III), where $K=R,$ $C$ , or $H$ , and $G=G_{m}\cross O(Q)$ , where
$Q$ is a quadratic form of signature $(1, n-1)$ . Then $G$ acts on $V$ by $gx=gx^{t}g$ for $g\in G$ ,
$x\in V$ for type (I), (II), (III) and $xarrow agx$ for $(a,g)\in G$ for type (IV). Then, $(G, V)$

is a prehomogeneous vector space. The singular set is given by $S=\{x\in V;P(x)=0\}$ ,

where we denote by $P(x)$ the usual $\det(x)$ for (I) and (II), the root of the reduced norm of
$x$ (which is a polynomial function) for (III), and $Q[x]=t_{XQx}$ for (IV). These are called

Haupt norm in Braun and Koecher.
To define zeta functions, we must fix a $Q$ form. We denote by $O$ the ring of integers,

maximal order of imaginary quadratic field, or maximal order of a definite quaternion

algebra over $Q$ , for (I), (II), or (III), respectively. We put $L=M_{n}(\mathcal{O})\cap \mathcal{H}_{n}(K)$ and
$\Gamma=GL_{n}(\mathcal{O})$ for (I), (II), (III). We put $\Gamma=O(Q)\cap SL_{n}(Z)$ and $L=Z^{n}$ for (IV). We
put $L^{+}=L\cap C$ . We fix a Haar measure of $G$ . For each $x\in V-S$ , denote by $G_{x}$ the

stabilizer of $x$ . Then $G/G_{x}$ is regarded as an open subset of $V$ and the Lebegue measure
on $V$ induces a measure on $G/G_{x}$ . Then, we can decompose the measure of $G$ as a product

of the measure on $G/G_{x}$ and $G_{x}$ . For each $x\in L^{+}$ , we put $\mu(x)=vol(Gx/\Gamma_{x})$ , where the

measure on $G_{x}$ is fixed as above. Actually, for $x\in L^{+},$ $G_{x}$ is compact and $\Gamma_{x}$ is a finite
group. The definition of zeta function is given as follows.

$\zeta(s, L)=\in \mathrm{r}\backslash L+\sum_{x}\frac{\mu(x)}{|P(x)|^{s}}$ .

2 New functional equations of zeta integral in the the-
ory of prehomogeneous vector space

Related to the dimension formula and the trace formula, we introduce a new functional

equations of zeta integral. The functional equation of this type was first obtained by Shin-
tani for the case (I) and we shall treat the other cases. We would like to emphasize that

the functional equation of this type is not contained in any standard theory of $\mathrm{p}_{\Gamma}\mathrm{e}\mathrm{h}\mathrm{o}\mathrm{m}(\succ$
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geneous vector space. In the usual theory, the test function in the zeta integral is rapidly
decreasing and with compact support, but in our new equation, the test function is neither
rapidly decreasing, nor with compact support, and actually even non-differentialbe. So,
the argument on aonvergence is complicated and essential.

Let $(G, V)$ be a prehomogeneous vector space. For a lattice $L\in V$ and any reasonable
functions $f(x)$ of $x\in V$ , we define a zeta integral by

$Z(f(_{X}), L, s)= \int_{G/\Gamma}\chi(g)S\sum_{\in xL’}f(\rho(g)x)dg$,

where $L’=\{x\in L;x\not\in S\}$ and $\chi(g)=P(\rho(g)_{X})/P(x)$ . We shall show that there exists a
functional equation between two integrals of this type for two different functions $f_{n}(x, \lambda)$

and $f_{n}^{*}(x, \lambda)$ , one of which is close to the zeta function and the other is to the kernel function
of the trace formula.

We write $d=n$ for $(\mathrm{I}),(\mathrm{I}\mathrm{I}),(\mathrm{I}\mathrm{I}\mathrm{I})$ and $d=2$ for (IV). For each complex number $\lambda\in c_{\mathrm{e}\mathrm{a}\mathrm{C}},\mathrm{h}$

formally Jordan algebra $V$ of type (I), (II), (III), or (IV), and an element $y_{0}\in C$ , we define
two functions $f_{n}(x,\lambda, y0)$ and $f_{n}^{*}(x, \lambda, y\mathrm{o})$ as follows.

$f_{n}(x, \lambda, y\mathrm{o})$ $=$ $\{$

$P(x)\lambda-\dim V/d\pi e^{-2()}x,y0$ ... if $x\in C$,
$0$ ...otherwise.

$f_{n}^{*}(x, \lambda,y\mathrm{o})$ $=$ $P^{*}(y_{0}-ix)^{-\lambda}$ .

Here, the polynomials $P(x)$ and $P^{*}(x)$ are given by $P(x)=P^{*}(x)=Hm(x)$ for $V$ of type
I, II, III, ( $\mathrm{H}\mathrm{m}(\mathrm{x})$ is the Haupt norm), and $P(x)=Q[X],$ $P*(x)=Q^{-1}[x]$ for $V$ of type IV.
For abuse of notation, we sometimes omit $y_{0}$ and write $f_{n}(x, \lambda)=f_{n}(x, \lambda,y0)$ and so on,
since the argument on convergence or functinal equation does not depend on $y_{0}$ so much.

The generalized Gamma function $\Gamma_{C}(S)$ for each non-degenerate self-dual homogeneous
cone $C$ is defined as follows. (cf Satake)

$\Gamma_{\Omega}(s)$ $=$ $2^{-1}\pi-2_{S}+n/2-1\Gamma(S)\mathrm{r}(S-n/2+1)(\det Q)1/2$ for type IV

$=v(L)^{-}10n(n-1)/4(\pi^{r}2\pi)-Snn-\iota=\square \Gamma(s-r_{0}l/2)01$ for type I, II, III,

where we write $r_{0}=1,2$ , or 4, when $K=R,$ $C$ , or $H$ , respectively.

Theorem 1 We take Jordan algebras of type (II), (III), or (IV). We assume $n\geq 4$ for
type (IV). Notation and assumption being as above, we get
(1) Two functions $Z(fn(X,\lambda,y0), L, S)$ and $Z(f_{n}^{*}(X, \lambda,y0), L^{*}, s)$ of $s$ and $\lambda$ are continued
meromo$7phically$ to the whole $C^{2}$ plane and satisfy the following functional equation.

$Z(f_{n}^{*}(_{X,\lambda},y_{0}),L*,$ $(\dim V)/d-s)=\Gamma_{c}(\lambda)^{-}1Z(fn(_{X}, \lambda, y_{0}), L, S)$ .
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(2) The original integral which defines $Z(f_{n}^{*}(x, \lambda,y_{0}), L*, S)$ is absolutely convergent, if
$Re(s)>(\dim V)/d-1$ and $Re(\lambda)>2(\dim V)/d-1$ .
(3)$For$ any $s$ and $\lambda$ , we have

$Z(f_{n}(X, \lambda,y_{0}),L,S)=\Gamma_{C}(\lambda+s-(\dim V)/d)$ .

Remark 1. As for the Jordan algebra of type (I), the similar theorem as above has been
obtained by Shintani.
Remark 2. The above result (2) is important and essential for our purpose, but the proof
is very subtle.
Remark 3. We omit the proof here, but the rough idea of the proof is as follows. First we
can give rough estimate of the convergence of the zeta integral. Then as in the usual theory
of prehomogeneous vector space, we divide the integral into $\det\geq 1$ part $z_{+^{\mathrm{a}\mathrm{n}}}\mathrm{d}\det\leq 1$

part $Z_{-}$ . Then we apply the Poisson summation formula to $Z_{-}$ . We do this both for $f$ and
$f^{*}$ , and get an analytic continuation to some wider region and then compare them. Then
we get the functional equation. Here we use the following fact. $I(a):= \int_{0^{xd=}}^{1a-}1x1/a$

for $a>0$ , and $I’(a)= \int_{1}^{\infty_{X}a-1}dx=-1/a$ for $a<0$ . The both integral converges only
those $a$ described above. But after analytic continuation, the equality $I(a)=I’(-a)$ has a
meanin$\mathrm{g}$ .

3 Relation to the dimension formula

Let $\Gamma$ be a discrete subgroup of automorphism group of a bounded symmetric domain $D$ .
Then the dimension of automorphic forms of a fixed (sufficiently large) weight is given by
an integral of some kernel function which is given as a sum over elements of $\Gamma$ . To calculate
this integral, we usually decompose the kernel function into partial sum on elements of
$\Gamma$ . In this sense, we can define the contribution of elements of $\Gamma$ . Now, we treat the
contribution of”central” unipotent elements. That is, let $G$ be an algebraic group defined
over $Q$ . We call unipotent elements $u\in G$ as central, when $u$ is contained in the center
of the unipotent radical of some maximal $\mathrm{Q}$-parabolic subgroup of $G$ . We consider the
contribution of the central unipotent elements of $\Gamma$ . This is fairly important part of the
dimension formula. If $\Gamma$ is torsion free, one may conjecture that non vanishing term of the
integral come only $\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\pm 1$ and central unipotent elements, and all the other part is zero.
(This seems a forklore conjecture.) In this section, we shall explain that this contribution
is related to the special value of the zeta function described in section 1. We sketch the
case (IV) and omit the details for the other three cases.

Let $Q$ be a half integral symmetric matrix with signature $(1, n-1)$ . Put

$G=\{g\in Mn+2(Q);{}^{t}gg=\}$ .

130



and
$D=\{_{Z\in c^{n}};z=X+iy,y\in c\}$ ,

where $C=\mathrm{a}$ connected component of $\{x\in R^{n};Q[x]>0\}$ . The domain $D$ is the bounded
symmetric domain of type (IV). The action of the group $G$ on $D$ described as follows. Put

$\tilde{z}=$ .

Then, the action $zarrow g<z>\mathrm{a}\mathrm{n}\mathrm{d}$ the factor of automorphy $j(g, z)$ are defined by

$g\cdot\tilde{z}=(_{1}^{*}g<\mathcal{Z}>1^{j(g},$ $z)$ .

We put $\Gamma=SL_{n+2}(z)\cap c(R)^{0}$ . The space $\mathcal{H}^{\infty}(k, \Gamma)$ of holomorphic cusp forms of weight
$k$ is the set of all holomorphic functions $f$ on $D$ such that (1) $f(\gamma z)=f(z)j(\gamma, Z)^{-k}$ , and
(2) $\sup_{\Gamma}\backslash D|f(Z)Q[\mathcal{Z}]^{k}/2|<\infty\}$ .

Theorem 2 Assume that $k>2n-2$ . Put

$K(Z, w)=22k-2n- \pi 1(2k-n)\prod_{=i,- 1}^{n}(2k-2i)|\det(Q)|(-Q[Z--1,\overline{w}])^{-k}$

and

$k_{\Gamma}(_{Z})= \sum K(\gamma z, Z)\gamma\in \mathrm{r}j(\gamma, z)^{-k}$
.

Then we have the following dimension formula.

$\dim \mathcal{H}^{\infty}(k, \mathrm{r})=\int_{\Gamma\backslash D}k_{\mathrm{r}}(z)Q[y]^{k-n}dxdy$ .

Now, there are two conjugacy class of maximal parabolic subgroup of $G$ . We denote each
representative (the standard parabolic) by $P_{0}$ or $P_{1}$ . Denote the center of the unipotent
radical of $P_{0}$ and $P_{1}$ by $U_{0}$ and $U_{1}$ . Centers of the unipotent radical of the standard maximal
parabolic subgroups are linearly ordered by inclusion, so we may assume $U_{1}\subset U_{0}$ . Then $P_{0}$

or $P_{1}$ corresponds to $0$ dimensional or 1 dimensional cusp. We say that a central unipotent
element $u$ corresponds to $0$ dimensional cusp, or to 1 dimensional, if any $G(Q)$-conjugate
of $u$ is not contained in $U_{1}$ , or some contained in $U_{1}$ . Our claim in this section is as follows.

The contribution to the dimension of central unipotent elements which correspond to 1
dimensional cusp is given by $\zeta(2-n)\cross$ elementary factor, and those which correspond to $0$

dimensional cusp is given by $\zeta(Q^{-1}, \mathrm{O})\cross \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{y}$ factor, where we denote by $\zeta(Q^{-1}, s)$

the zeta function corresponging to $P^{*}(x)=Q^{-1}[x]$ .

131



We explain the outline of our argument for $0$ dimensional case. The corresponding
parablic $P_{0}$ and the center $U_{0}$ is given by

$P_{0}=\{ ; {}^{t}AQA=Q\}$ ,

and

$U_{0}=\{\}$ .

We take $R\in GL_{n}(Q)$ such that

${}^{t}RQR=$ .

Put

$z_{0}=R$ .

Then the dimension formula is rewritten as follows.

$\int_{\Gamma\backslash (R)}cg^{-}\sum K(1\gamma\gamma\in \mathrm{r}dgz_{0}, Z\mathrm{o})j(g-1\gamma g, Z0)^{-}kg$ .

Now, denote by $\Pi$ the set of central unipotent elements of $\Gamma$ which correspond to $0$ dimen-
sional cusp. Then for any reasonable function $f$ , we get

$\sum_{\gamma\in\Pi}f(\gamma)=\sum_{x\gamma\in\Gamma/\Gamma\cap P0\in}\sum f(\gamma x\gamma^{-1}zn-S)$
,

where $S=\{x\in R^{n};Q[x]=0\}$ . Denote by $K$ the maximal compact subgroup of $G(R)$ and
by $dp$ the left invariant measure of $P_{0}$ given by $dp^{=a^{-(n}}da+1$) $dAd_{X}$ , where $a,$ $A$ and $x$ are
as in the definition of $P_{0}$ . Then we get

$\int_{\mathrm{r}\backslash c}(R)\in\sum_{\Pi\gamma}K(g-1\gamma gz_{0}, Z0)j(g-1\gamma g, z_{0})-kdg$.

$=$ $\int_{\Gamma\cap P\backslash c(R)}0\in zns0\gamma\sum_{-}K(g-1j(g^{-}\gamma g, Z)-kdg\gamma gz_{0}, z_{0})1$ .

$=$
$\int_{\mathrm{r}\cap P0}\backslash P0)\sum_{\in}K(p-1\gamma pz0z0j\gamma\Pi’ d(p^{-}\gamma p, z\mathrm{o})^{-k}p1\cross \mathrm{v}\mathrm{o}\mathrm{l}(P\cap K)-1$ .

hence the above integral reduces to the following integral

$\int_{\mathrm{r}\cap R\mathrm{l}}\backslash RZ^{n_{-}}sa\sum(-Q[iy0^{-}-a-1A-1_{X])a}-k-n-1dx\in dAd_{X}$,
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and this is equal to

$\int_{P_{0}/\mathrm{r}\mathrm{n}}P\mathrm{o}Z-s)x\in\sum_{n}(-Q[\dot{i}y\mathrm{o}-aA_{X}])-ka^{n}(a-1dadAdx$ ,

$=$
$\mathrm{v}\mathrm{o}\mathrm{l}(U_{0}(R)/(U0(R)\mathrm{n}\mathrm{r})\int_{M/M\cap\Gamma}x\in Z^{n}-\sum_{s}fn*(x, k)amn_{d}$

$=$ volume $\cross Z(f_{n}^{*}(x, k),$ $n/2)$ ,

where $M$ is the Levi part of $P_{0}$ (as in the definition) and $dm$ is the Haar measure of $M$ .
Hence the final integral is given by easy constant times $\zeta(s, Q^{-1})$ . So, we get the desired
result.

Each tube domain of type (I), (II), or (III) corresponds to the Jordan algebra of type
(II), (III), or (I) respectively. We can show that the contribution of central unipotent
elements is again given by $\zeta(r_{0}(r-n), L^{*})\cross$ elementary factor, where $r$ describes ”rank”
(i.e. matrix size of the corresponding center) of corresponding cusps and $r_{0}=1,2,$ $or4$ for
Jordan algebra type (I), (II), or (III), respectively. We omit the details here.

Remark. All the special values which appear above can be calculated explicitly. This
is one of the main part of our new theory. Hence the above results mean that we can get
large part (conjecturally ”all” if torsion free) of the dimension formula explicitly.
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