goooboooobgon
924 0 19950 88-101

September 6, 1995

An explicit formula for zeta functions

associated with quadratic forms!

ToMOYOSHI IBUKIYAMA, OSAKA UNIVERSITY

Here we shall consider the following problem taking up the space of quadratic

forms.

Problem. Explicitly write down the zeta functions of prehomogeneous vec-

tor spaces.

81.
1.1. Let

V=Voi={z €My |z="c},

G :=GL,,

plg)z :=gz'ly (9€G, zeV),

Va(R)\ {detz =0} = VUV~ 1U---U VY, where z € V! if and only if =
has 7 positive and n — 7 negative eigenvalues,

L C V4(R) an SLy(Z)-invariant lattice,

LW = LNV},
_ 2l v
Cp = an(ntl 4

u(z) :=‘size’ of p(SLy(Z))z for € L with detz # 0 (see [Sa, (1.5)] and
(1.2) below),

u(z)

G(s, L) = ca ZzeLSf’/SLn(z) Tdetz[

INotes by Akihiko Gyoja.
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1.2. Example. For z € L(", we have

Cnﬂ(x) = 6(.’1:)_1,

where
e(x) == [{y € SLa(Z) | vty = 2}|.

In particular,
1

n(s, L) = T

nls, L) 2 Tdetae()

z€L(™ /SLa(Z

1.3. Remark. If n > 3, there are exactly 2 possibilities of the choice of L (up to

constant multiple), i.e.,

Ly :={(zij) € Vo | 25 € 2}

= the integral lattice,

and

Ly :={(zi;) € Vy | r; €L, z;5 € %Z (¢ #7)}

= the half integral lattice.

Cf. [IS2]. Note that L} is the dual lattice of L, with respect to the bilinear form

tr(zy), and its elements can be identified with the integral quadratic forms.

If n = 2, there are 4 lattices, i.e., besides Ly and L3, we have the lattices



Cf. [IS3]. (Since SL3(Z) is generated by‘(i (1)) and ((1) i), we can see that M and
N are SLy(Z)-invariant simply by noting that they are invariant under these two
matrices.)

' §2. Review of quadratic forms (1).

2.1. Genera and classes. For z1,z2 € V,(Q), we say that

(2.1.1) z1 and z2 belong to the same genus if z; G ~  z9 for all places v < +o0,
where Z, = Z, if v = p and Z, = R, and o

(2.1.2) 27 and z2 belong to the same class if z; SL:(Z) z3.

Then each genus consists of several classes, whose cardinality is known to be finite,
and is called the class number. The class number measures the difference between
the local theory and the global theory. It is important but rarely calculable.

2.1.3. Remark. If z; and z2 belong to the same genus, then det z; = det z. (In
fact, ¢ := det z1/ det z5 € @* belongs to Z2? for all v < +oo. Hence ¢ = 1.)

2.2. Siegel Mass formula. For z € L},

_n(n=1)v

(2.2.1) 27 . p77 7 x (#0(z mod p*))

becomes stable as v — 400, where O(z mod p") is the orthogonal group contained
in GLa(Z/p"Z). We put ap(z) := limy— 4 (2.2.1), and call it the local density. An
explicit formula for a,(z) will be given in (3.3).

Let £ be a genus, and d the common value of det z (:13 € £). Cf. (2.1.3). The

Siegel Mass formula says

21d|" T
(2.2.2) Yoo ue) = 2>

2€L)SLa(Z) 1, (=)
det z=d

90
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§3. Review of quadratic forms (2).
3.1. Equivalence of quadratic forms over fields.
3.1.1. Discriminant. For z € V,(Q,), if = GLA(JQ ) diag(ai, -+ ,am,0, - ,0) with

n v

a; € @, put

Then A,(z) is well-defined as an element of @/Q? and called the discriminant of
z.

3.1.2. Hasse invariant. For 0 # a,b € Z, (v < 4+00), the Hilbert symbol (a,b), =
+1 is defined so that = +1 iff az? 4 by? = 1 has a solution (z,y) in @,.% The Hilbert
symbol defines a symmetric bilinear form on Q/QX? (i.e., (ad',b), = (a,b)y(a’,b)y
and (a,b), = (b,a),). Moreover it is non-degenerate and satisfies (a, —a)y = (a,1 —

a)y = 1. For any = € V,,(@Q,) there exists g € GL,(Q,) such that

gxtg:dia‘g(ah“'7a'm707”'70) (‘%EQ:)

(Cf. [Se, Chapter 4, Theorem 1].) Put

Sv(z) := H (@i, a5)y.

1<i<j<m

Then S,(z) depends only on z, and is independent of the choice of g.> The invariant

Sy(z) is called the Hasse invariant of x.

ZNote that (a,b)y = +1 iff az? + by? = 2% has a solution (z,y,z) # (0,0,0) in Q,. In fact,
if it has a solution (zo,yo,20) with zg # 0 (resp. zg = 0), then (z,y) = (%o/20,¥0/%0) (resp.
(z,9) = (Fzo((az2)~! + 1), 1yo((az?)~ — 1) ) is a solution of az? + by? = 1. Then the above

definition is equivalent to the one given in [Se, Chapter 3].
3In fact, the well-definedness of e,(z) := Hi<j(ai’aj)u is proved in [Se, Chapter 4, Theorem 5].

Since

[[(ai 000 = [ [ (@i —ai)u(ai,—1)u = (Au(z), =1,

we have S,(2) = €,(2)(Ay(x), —1)y, and-we get the well-definedness.
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Remark. As we have seen above, our definition of the Hasse invariant is different
from the invariant ¢(z) studied in [Se]. Our convention is the same as [O] and [Kit].

Example. Assume that p # 2, d1,dz € Z; and 01,02 € Z. Then

_1 0102 dl) (1) (dz)a'l
dld , dzd — _ - _“ ,
B7 P )y (p ) (p \p

where(%) is the Legendre symbol. [Se, Chapter 3, Theorém 1].
Local Theory.
3.1.3. (1) A GLn(Qp)-isomorphism class of z € V,(Qp) is determined by

(a) rankz,

(b) Ap(z) € @2 /@2, and

(c) Sp(z) = Hasse invariant.
Cf. [Se, Chapter 4, Theorem 7]. (Note that if det z # 0, Ap(z) = (det z mod Q;,d).)
(2) A GLy(R)-isomorphism class of z € V,(R) is determined by the signature of x.
Global theory.
The determination of the equivalence relation of quadratic forms over @ consists of
the following two steps.

3.1.4. Hasse principle. The diagonal mapping

§:Va(Q)/GLa(®) > [ Va(Qu)/GLa(Q)
v<+oo
is injective. Cf. [Se, Chapter 4, Theorem 9].
3.1.5. Image of §. Assume that (z4)s € [[,<100 Va(Qo) is given. In order that the
equivalence class of (z,), belongs to the image of 6, it is necessary and sufficient that
the following four conditions are satisfied.
(0) For all v < 400, rad(zy) := {a €,Q7 | ax,b =0 for all b € Q}} are defined over

Q, and rad(z,) N Q" are independent of v.
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(1) There exists d € @* such that d € Ay(zy) - @ for all v < -oo;

(2) Sy(zy) =1 for almost all v;

(3) Mycroo Solav) = 1.

Cf. [Se, Chapter 4, Prop. 7).

3.2. Equivalence of quadratic forms over rings. Here and below, we assume
that the Z-structure of V, is given by V,(Z) = L.

3.2.1. Local theory. First assume that p # 2. A complete list of representatives of
{z € Va(Zp) | detx # 0}/GLn(Z,) is given by

(1) dia‘g(pal dla'g(la T 7]~7d1)a T 7pa.s dlag(la tt 717d3))
1 N

with d; € Z;‘/Z;Z (1 <4 < s). The complete set of invariants is given by*

0<o <oy <+ <oy

di . ’
n; € Z>o, (—) =+1, (1<i<5s)
P .

ie.,

(a) two elements z and y are GLy(Zp)-quivalent iff these invariants for  and y are
the same and |

(b) every such {o;,n;,£1} are given by some z. ((b) is trivial.)

3.2.2. Global theory. Let us consider when

(1) a collection (zv)v<too € [ly<cioo Va(Zo)/GLn(Zy) comes from an element of

Va(2),

4See[O] for the detail. It is enough to read pp. 81-89 in order to understand basic concepts. Then
read pp.227-233 and pp.243-247 in order to understand the above result. In the terminology of [O],
~ the decomposition into the direct sum of p”* diag(1,--- ,1,d;) is the Jordan splitting. Each block
gives a p?‘-modular lattice. Concerning the isomorphism class of each block, see [0, 92:1], which,
in fact, can be proved directly. Note that we are assuming p # 2. Glance over pp. 250- 279 and see

how complicated the similar result in the case p = 2.



assuming that d € Q* is given, and that z, € V;,(Z,) and det(z,) = d for all v < +o00.

As we have seen in (3.1.5), it is necessary that (3.1.5, (1)—(3)) are satisfied.
By our assumption, (3.1.5, (1)) is satisfied. Note that d € Z; for almost all p. If

Ty GL’\EZ ) diag(1,---,1,¢), then € € d-Z}? and hence S,(zy) = (,€)» = (d,d)y = 1
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for almost all v < 400 by [Se, Chapter 3, Theorem 3], i.e., (3.1.5, (2)) is satisfied. |

Then only (3.1.5, (3)) is essential. In fact, we can show the following.

For d € Q*, the diagonal mapping

§:{z € Vo(Z) | det(z) = d}/ =

— {(zy)v € H V(Zy) | det(zy) = dZ2X?* for all v,

v<4o00
and J[ So(z.) =1}/ J[ GLa(Z.)
v<+o00 v<+00

is a bijection, where x1 =~ o means that 1 and z belong to the same genus.’

Proof. The injectivity is trivial. Let us prove that § is surjective. By (3.1.5), there
exists y € V,(Q) such that y ooy for all v < 4+o00. Note that y € V,(Z,) and

n v

det(y) € Z; for almost all p < co. Forsuch p # 2,y _ ~ 2y by (321), ie,
there exists ¢ € GL,(Q,4) such that y = g(x,), 'g. Decompose g = v~ g’ according
to the decomposition GLy(Qa) = GLn(Q) X [[,<i0o GLn(Z,).* Put z := yyty.
Then © = ¢'(zy)v 'y’ With ¢' € [[,<i00 GLn(Zo), and hence & = yyty € Va(Q) N
I, Va(Zo) = Va(Z). u

We record a modification of (3.2.2).

5By the same argument as above, we can see that, if det(z,) € dZX? for all v, then Sy(zy) = 1 for

almost all v, and hence Hv Sy(zy) is a finite product.
6In fact, |GLn(Q)\GLn(Q4)/ Hv<+oo GLy(Zy)| =(class number of Q)= 1.



3.2.3. In the same notation as (3.2.2), for 0 < d € 27"Z, the diagonal mapping

§:{z € L\™ | det(z) = d}/ ~

— {(zp)p € H Va(Zy) | det(z,) € dz;fz,qfor all p < 400, and
p<oo 4

H Sp(zp) =1}/ H GLn(Zp).

p<-oco p<oo

is a bijection.

3.3. Local density a,(z) for z as (3.2.1, (1)) is given by
ap(z) =2°71.p¥. P. E, where

wi= i 205 oy 4 7 minjay,

P =TI P ([%]) with P(m) = TT%, (1 3),
B =L, cvn (14 52 (G287

See [Ko] and [Kit].

§4. Calculation in some simple cases.

4.1. Now we calculate

(4.1.1) Gals, L) = Y ()

| det z|=”
zeLi™ |SLa(Z)
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(For the sake of simplicity, we restrict ourselves to (;(s,L) with ¢ = n and L = L.

For general ¢ with L = L, or L = L}, see [IS1]. For L = M or L = N, see [IS3].)

By (3.2.3), we have

(4.1.2) s, L) =ca >, d°¢ ) > ()

de2="Z 5o (zp)p :cEL;(")/SLn(Z)

T ~ zp forallp
GLn(Zp)

v
-




where in the second summation on the right hand side, (zp)p runs over the right hand

side of (3.2.3, (1)). By Siegel’s Mass formula (2.2.2), the inside of { } of (4.1.2) is

equal to
n+l 1
2d 2
(%,, [, e(e)
detz,,EdZ;,<2
HPSp(x,,)=1
(4.1.3)

ntl 1 1
= d 2 —_
Z Hp cp(p) Z Hp ap(p) Sp(zp)
(zp)p (zp)p
det z,€dZ}? det z,€dZ)?

By (4.1.2) and (4.1.3), we get

C;ICn(S’ L;)

o ntl -
= Z d=5t™2 H Z ap(zp) !
de2—"Z5o p 2,€V(Zp)/GLn(Zp)
(414) \ det:::pedlr),(2

[
+ Z d_s+n-2HH Z (ap(xp)sp(xp))_l
P

d€2 "L 5o zp€V(Zp)/GLn (L)
\ " det noedz?

4.2. We proceed to the remaining calculation taking up as an example the case n = 3.
Then the complete list of representatives z as in (3.2.1, (1)) with det(z) = d € 27"Z ¢
(d = p'do, (do,p) = 1) is given by

(1,1,1) : = = diag(p” d1,p”?da, p?*d3), t = 01 + 02 + 03, do = d1d2d3,
(1,2) : z = diag(p™*dy,p”2,p"2d3), t = 01 + 202, dy = dydy,

(2,1) : = = diag(p”,p”tdy,p”2d2), t = 201 + 02, dy = d1d3,

(3) : = = diag(p°*, p”*,p”*d1), t = 301, do = di,

where (1,1,1) etc. indicates (ny,ng,---) in (3.2.1, (1)).

96
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Let p # 2. Fix an element ¢ € Z; \2;2. For d = p'dy with (do,p) = 1, we

get using (3.3) that

(4.2.1) > ap(zp) 7
zPEV(ZP)/GL"(ZP)
det zpedz,’,‘z

-1 . .
= Z (22 . p3”1+2”2+”3) contribution of (1,1,1)
0<01<o2<03
d],dz,dae{].,f}
o1to2+o3=t
drdads€do 22

1\ 1/—d
+ Z (21 . p3ort3o: (1 - ?)) (1 + ;<_;2>> ‘contribution of (1,2)

0<01 <02
dy ,dze{l,e}

o14+202=t
did2€doZ)?

1\\™* 1/~
n Z (21 . pPoito: (1 — —2)) (1 + - (—‘é>) contribution of (2,1)
p p\pP

0<01<02
dl ,dz E{I,E}

261 +0’2=t
dy dgEdoZ?rz

-1
+ 2 (20 - pb (1 - %)) contribution of (3)

05:71
dle{l,E}
30’1=t
dledoZ;‘2

(4.2.2) = Z (p30'1+202+0'3)—1

0<01<02<03
o1+02+03=1

2 (7 (-5)

<o <oz
0'1+20’2=t

o2 (o)

0_<.0'1 <o
201 +o2=t

2 (= (-5)

30’1=t

What is important concerning the last expression is that it does not contain d any

more. Similar expression can be obtained also for p = 2. (This case is much more



difficult. See [IS2, pp.17-24].) Hence we can express the first summation of (4.1.4)

as a product, for all prime numbers p, of

Z pt(—s+2) Z p—3a'1—20'2—03

>0 0<01<02<03
o1+o2+o3=t
DS
+ (1 _ __2> p——-301—30'2
p 0£G’1<0’2
o14202=t
) ®
+ (1 _ __5) p—501—az
4 0<01<02
201+02=t1
1 -1
t(i-z) Yo
p 050’1
301=t
— Z u01+02+03p—'71+¢73 I
0<01<02<03
2,.3
pu
4.2.3
(423) = - pd) 1 =)
1\ ! 2
+(1- e
)  (1—ud)(l—pu?)
L (1 1 )_1 pu
/) (1—ud)(1-pu)
-1
1 1
1——
i ( p2> 1—ud
1\7! 1
4.2.4 ={1—- _) ,
(4:24) ( p?) (1 —pu)(1l—pu?)

where u = p~*. In the case p = 2, we have in place of (4.2.4)

1 u~? 1\7! 1 2%
(4.2.5) § (1 — 2u)(1 — 2u2) - <1 N F) (1 - PU)(l - Puz) 4

Next we calculate the second summand of (4.1.4). For z of type (1,1,1), (1,2), (2,1)

and (3), the respective Hasse invariants are given as follows.
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Lo (-1 Ei ;003 (dg\T1+02 (g, \T1+03 () 02103
(1,1,1) : Sp(z) = T) < (—p') (7) (72)
(1,2) : Sp(z) = (=)™
(2,1) : Sp(z) = (2=)™*
(3) : Sp(z) =1
Hence replacing ap(a:p)_l in (4.2.1) with ap(zp)™! - Sp(zp), we get in place
of (4.2.2)
Z (p301+2r72+a3)“1
0<01<02<03
oAt
3 2) ¢ % 1)
+ (p30’1+302 (1 _ _2)> + (p30'1+30'2 (1 _ _2_>) Iy
0<o1<02 p 0<o1<0o2 p p
0'1+2D'2=t 0’1+202=t
01=02 o1=02+1
1\\™* 1)\ 1
LA )
0<01 <02 p 0<01<02 p p
20’1-{-_0'2=t 20’1+U2=t
01=02 . o1=02+1
-1
60’1 1
2 (7))
OSO’;[ p
30’1=t
where the congruence relation is considered modulo 2. Therefore we get in place of
g g
(4.2.3)
p4u6
(1 —u®)(1 = p2ut)(1 — p?u?)
e 1\7! p2ut + u?
/) (1-u¥)(1 - put)
+ (1 1\* pPu 4+ u
P/ (1=u?)(1—ph?)
-1
1 1
1— —
+< ﬁ) 1—u
1\ 1
(4.2.6) =|1l1—-— 53
p*) (1 —wu)(l-p*u?)



In the case p = 2, we have in place of (4.2.6)

1 u=2 1\ ! 1 92s
20 () T

Summing up (4.2.4)-(4.2.7), we get”

225

Ga(s, L3) = 57 (C(s = 1)¢(2s = 1) = ((5)¢(25 — 2)).
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