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§1 INTRODUCTION

1.1. In this article, we shall study deformation of a maximally degenerate stable
marked curve, from the point of view of Galois representation, i.e., with the aim of
comparing Galois actions on the fundamental groups of the original and deformed
curves.

We shall start with a construction involving an ezplicit parametrization of a
universal deformation of such a degenerate curve X° (see §1.2, §2). Then we shall
study a certain l-parameter subfamily of deformation from the Galois theoretic
viewpoint. Our first step for this is to construct a “tangential base point” on
the total space of deformation, outside X° but near each of its singular points.
Our explicit parametrization of deformation is crucial in this construction. Paths
connecting these base points will then be compared with paths around and paths
inside X°. (This, of course, involves comparison of Galois actions.) They are all
“within” the formal neighborhood of X°. Since the family is 1-dimensional so that
X? is a divisor, Grothendieck-Murre theory [GM] can be fully used. This study is
presented in §3 (the main result is quoted in §1.3 below).

This will then be applied to the following prediction by Oda (“between lines” in
§2 of [O]). The moduli stack My » over Q of n-point marked smooth curves of genus g
has a canonical l-adic tower of coverings arising from the monodromy representation

of 71(M,,») on the pro-/ fundamental group of an n-point punctured smooth curve

of genus ¢g. He predicted that the constant field Q_(g},),rf'l) of this tower is independent

of (g,n), as long as (g,n) is “hyperbolic”, i.e., 2 - 29 —n < 0. (The special case

of this prediction, the independence of Q((,I’):lo'l) on n(> 3), had previously been

communicated to Thara by Deligne [De].) We shall prove that ng’,io'” C Qg?;o'l).

Combined with the already established inclusion [NTU]~[N], [Ma], this will confirm

his prediction le?;o-l) = (()P,’;o_l)

and §4 for details).

under the additional assumption n > 1 (see §1.4

1.2. Now let us be more precise on each of the main points. We shall study, in §2,
deformation of any “P},,-diagram” over Q, which is a synonym for “maximally
degenerate stable marked curve over Q with which each irreducible component is
smooth”. By definition, a P}, -diagram over Q is a pair (X°, Mark(X?)) of
(i) ageometrically connected reduced proper curve X° over Q, with only ordinary
double singularities Sing(X?),
and ' _
(i) a finite (possibly empty) set Mark(X°) of smooth Q-rational points of X°
specified (“marked”),
satisfying the condition that each irreducible component X9 of X° can be identified
with the projective line P! over Q in such a way that

(Sing(X°) U Mark(X°)) n X? = {0,1, 00}.

It is well-known that each P}, -diagram over Q has a universal deformation
over the spectrum S of the algebra of formal power series Q[qi,--- , gm], where
m = |Sing(X?)|. But the general belief seems to have been that there is no canon-
ical choice, over S = Spec Q[q1,---,qm], of such a universal family. In other



words, the algebra Q[q1,- - ,qm] is canonical but the generators g;,---,qm are
not. We shall show that just by adding a pair of combinatorial structures (J,1)
on (X% Mark(X?)) one can define a “canonical” universal family (X/S, Mark(X))
(Mark(X ) consists of sections S — X extending Mark(X®)). Thus, once (7,4)
is given, each of ¢;,--+,¢m can be regarded as a distinguished formal holomor-
phic function on the formal neighborhood of the point of the moduli stack M, ;f,‘f“‘
that corresponds to (X° Mark(X?)). Here, g is the arithmetic genus of X® and
n = |Mark(X?)|.
The additional structure consists of
(a) a tangential structure J on X0; giving J is equivalent to choosing, for each
A and P € Sing(X°) N X9, one point from the two-point set

((Sing(X°®) — P) U Mark(X?)) n X3¢,
and
(b) an ordering of Sing(X?); i.e., a bijection ¢ : Sing(X°) = {1,2,--- ,m}.

Our construction of (X/S,Mark(X)) is via its formal completion along X°,
which is obtained by pasting “standard” affine formal deformations in a natural
way (Theorems 1(§2.3), 1(§2.4)).

This 1s a generalization of Tate elliptic curves, and. corresponds to a special case
of Mumford curves (see §2.4.2). From the point of view of Mumford uniformization
theory [Mu], we are only choosing a special Schottky group. But our construction is
at least what malkes it directly applicable to our main purpose, and also, hopefully,

what makes it clear why this special choice of a deformation is canonical.
We shall actually include curves and deformations over Z.

1.3. Now restrict (X/S,Mark(X)) to the diagonal Spec Q[g] of S defined by
q1 = -+ = ¢m = ¢, and let (C,Mark(C)) be the generic member of the restricted
family. Then C is a proper smooth curve over the quotient field Q((q)) of Q[q],
and Mark(C') consists of finitely many Q((¢))-rational points. For any field K (al-
ways of characteristic 0 in this article), denote by K its algebraic closure, and by
Gk = Gal(K/K) its absolute Galois group. Let C be any class of finite groups
which is almost full, i.e., closed under the formation of taking subgroups, factor
groups and finite direct products. Then the main result of §3 reads as follows.

Theorem 2/(§3.5). Ifo € Gal(Q/Q) acts trivially on the maximal pro-C quotient
of the fundamental groupoid of P! ® Q — {0,1,00} w.r.t. the set of Deligne’s
tangential base points, then o has an extension & € Gal(Q((¢))/Q((q))) that acts
trivially on the maximal pro-C quotient of the fundamental groupoid of CQQ((¢)) —
Mark(C) w.r.t. the set of “tangential base points” i (u € Sing(X?)) defined in
§3.3. In particular, the outer action of & on the maximal pro-C quotient of the
fundamental group of C ® Q((q)) — Mark(C) is trivial.

Remark. (i) and the choice of & are related to each other (see §3 for details).
Actually what we obtain is not just the comparison of the kernels of Galois
actions, but the comparison of the actions themselves. An n explicit description
" of the Galois action on the fundamental groupoid of C ® Q((q)) — Mark(C), in
terms of a graph of groups associated with X° and the fundamental groupoid of
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P! ®Q—{0,1,c0}, together with applications, will be ngen in a subsequent article
(in preparation).

1.4. Now we come back to Oda’s prediction. Let (g,n) be a pair of non-negative
integers satisfying 2 — 29 — n < 0, and M, , be the moduli stack over Q of proper
smooth curves of genus g with n (ordered) marked points. Then the fibering
My nt1 — M, n defined by “forgetting the (n 4 1)-th marked point” gives a uni-
versal family of n-point punctured smooth curves of genus g over My . If £ is
any geometric point of M, , and C¢ is the fiber above £, there is a canonical exact
sequence of profinite groups (algebraic fundamental groups)

(1) 1= m(Ce, &) = m (Mg n41,€) = m1(Mg,n, €) = 1

where £ is any geometric point of C¢. This defines an outer action of m1(My a,£)
on wl(CE,f ) (by conjugation), and hence also that on the maximal pro—C quotient
(Cf,f) for any almost full class C of finite groups:

(2) ¢ : 11 (Myn, &) — Out 7.9 (Ce, &).

Now the projection on Gal(Q/Q) of Ker ¢ is of the form Gal(Q/Qg?,),), with a
Galois extension Q(g,), over Q which is independent of the choice of £&. The basic
prediction by Oda is that Q ) would not depend on (g,n). But since Q(c) Qgcr)ﬂ_l
and since, for each g > 0, there exists a Pj;,-diagram of type (g,n) over Q for
sufficiently large n (§2.1), Theorem 2’ cited above (applied to £ corresponding to
(C ® Q((¢), Mark(C))) gives immediately the following

Theorem 3A(§4.2). Q(g(,:r)t (C)(+)

Here, Q(C)(+) is the kernel of the Gal(Q/Q) action on the maximal pro-C quo-

tient of the fundamental crroupoxd of PL®Q — {0,1,00} w.r.t. the set of Deligne’s
tangential base points. ‘

When C consists of all finite l-groups, where [ is a fixed prime, then ng)t =

e and QP> = Q% (4) (even if I = 2). We thus obtain

*

Theorem 3B. Q(Projl) - Q(pro-l)

This inclusion has previously been proved in the special case where 2g = 0 (mod
[ — 1), using appropriate l-covers of P! — {0,1, 00} ([Ma]).

A comparison “at each level” of the weight ﬁltratlons of Q) and Q(pm D will
be discussed in §4.3.
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