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LINEAR COMPLEMENTARY INEQUALITIES
FOR ORDERS IN ANALYTIC GEOMETRY
(LOJASIEWICZ INEQUALITIES AND STRONG APPROXIMATION THEOREMS)

Shuzo IZUMI GEHBARBT B HE)D
March 12, 1993, revised. May 15, 1995

We propose a unified view of several topics on singularity,
local rings and function theory and point out some relations
among them. They are all expressed by linear complementary
inequalities between some kind of orders.

Introduction

The order v (f)=v :(f) of an analytic function germ f at
£ € C* is defined as the degree of the leading homogeneous term
of the Taylor expansion of f at £ . We can generalize this to
analytic function germs f at a singularity (X, £ ). Some standard
operations yield trivial inequalities for orders. For example,
the order of a product fg is not less than the sum of the orders
of f and g. If (X, £) is integral (=reduced and irreducible),
the inequality has linear complementary inequality (LCI: If an
inequality P=<Q is given, by linear complementary inequality we
mean an inequality of the form Q= aP-+b). The infimums of
coefficients of the LCIs are invariants that measure the badness
of the operation applied.

Through blowings up, such a result about singularities are
related to the geometry around the exceptional sets or Moishezon
subspaces and further the analysis of polynomial functions on
affine varieties. ‘

It is an elementary fact that the absolute value of an
analytic function is locally estimated from above by a multiple

- of a power of the distance from its zero-locus. Its
complementary inequality always holds and is called Zojasiewicz
inequality. 1If we take iogarithm, it is an LCI.

There is its ultrametric analogue by Greenberg, namely, the
coefficient field R can be replaced by an excellent Henselian
discrete valuation ring. Artin has generalized Greenberg's
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theorem to a certain kind of rings. Such a property of a ring is
called the strong approximation property (3AP). Artin's result
is a complementary inequality without linearity. Recently
linearization of SAP is attempted by a few mathematician.

In the last part we introduce a little different kind of
inequalities. It is concerned with the exterior derivation in
the de Rham complex of a contractible analytic algebra.

It has been a convince of the author that, if we are given an
order function, the first thing is to take up a most ovbious
ineguality and seek for its LCI.

1. Order .
Let k denote the field C or R. The order v ;(f) of
f=3 cCo(Xx—£)°€EK{xX—E )} (X=(X;,...,%Xa))
at & =(§ ,,...,& ,) is cdefined by
vV (fY=nin{| a | : c,# 0}
(a=(a ,,....Q.), a=|a . |+...+la.l).

If X,=(X, £) is the germ at & of a Kk-—-analytic subspace (or
a k—analytic subset}) of k", Or. : denotes the k-algebra of germs
at & of analytic functions on X (restrictions of analytic
functions in a neighborhood of &£ in k"). Let ICk{x— £ } denote
the ideal of all f~€ k{x— & } whose restrictions to X vanish in
neighborhoods of £ . Then we have Ok ;=k{x—§& }/I. An algebra
isomorphic to O« : is <called an analytic local algebra. We put
A= O ., m= (X, —£& ,...,%X,— & ,YA (the unique maximal ideal of
A). VWe define the order of f€ A by
v (£)= vy (£)= sup{p: £€ m"}
=supf{y  (f¥): f~e k{x— £ } is a representative of f}
and reduced order by
v ()= 1limy-.e v (£°)/p.

Example 1.1. Let us put X={y?—x*=0}Ck?*, f= (y*), (the suffix
s indicate the germ at 0). Since y’=x*y+ (y? —x*)y, v (f,)=4.
Since v (f,2")=9n and v (£f,?"*')=9n-+4, we have v (f,)=(9/2).

These definitions of v and v are applicable to any local ring
(A, m). Our first LCI is the following.
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Theorem 1.2.] (Rees ([R11]) A local ring A is analytically
unramified (i.e. the completion is reduced), if and only if
(Cl,) Ib=0 (v (=) v (B)S v (£Y+b (f€A).

(Hereafter parenthesized inequality means a trivial one, to

which the word "complementary" refers.)

2. LCI for orders at a point

Following Gabrielov [G], let us define the generic rank of a
germ of analytic map & :Y—> X at n by
grk, ® = inf{topological dimension of
the images of neighborhocds of 7 € Y}/ ¢
(g =1 in the real case, & =2 in the complex case).
We could have defined the generic rank using only algebraic
terms (those of universal finite differential modules).

Theorem 2.1.] (cf. [I2],113]) Suppose that X, is a germ of a
analytic space over €. Then the condition that X: is integral
is equivalent to any one of the following. -
(CI,) Ja,be R, VI,g€A (0, ;):
(v (B)+v (=) v () =al{v (HH+v (8)}+b.

(C1,) For any germ d,: Y,— X, of analytic map with
grk, ® =dim X,, we have

Ja.be R, VEEA: (v (f1=) v (f+d )= av (f)+b.
(CI;) For any subanalytic set ([Hil) SC X with dim S;=¢ +dim X;
we have

Ja,be R, VfEA: (v ()XY p s ()= ayv (f)+D,
where u s (f) denote the order of f|S with respect to the
Euclidean distance.

Here the regular cases of (ClI,) is trivial
(v (fg)=v (f)+v (g)) and that of (CI;) follows from a more
precise result [Sp]l of Spallek. The inequality in (CI,) implies
grk, ® ==dim X, conversely ([I41). Moreover, this inequality is
equivalent +to the condition that the homomorphism ¢ between
local rings induced by ® has a closed image with respect to the
Krull topology (IBZ] cf.[1I5]1). Tougeron [Tol]l obtained an
interesting proof of (C1,), wusing a nice supplement to
Gabrielov's theorem on convergence of formal functions. As for
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(CIl,), Rees has obtained the following generalization.

[Theorem 2.2.] ([R2]) Let A be a local ring. Then the completion A
is integral if and only if (CI,) holds. ‘

Theorem 2.3.] ([I6]1) Suppose that X, is an integral germ of a

complex space. If C is "a non-negligible family” of curves on X
through & . Then ‘
Ea,bE R, \Vl fe OX,-E: (v (f)g) infrecV (f- T )éav (f) +Db.

3. Vanishing order along a subspace

Let (X. 0O:) be a complex space, I a coherent ideal sheaf and f
a section of 0. We put
Vv 1 (B)=supi{p: £.€ I;*}, Vv, (H)=1lim-ov ,, : (£*)/D.

Theorem 3.1.] ([17]1) Let SC X be a complex subspace defined by a

cocherent ideal sheaf IC 0. Suppose that S is a Mcishezon space
and X is integral along S. Then, if f€&€ I (S,0x) vanishes at a
point of S with high order with respect the maximal ideal, so is
f along entire S, i.e.

_ ' V £€8 Ha, be R:

[f€ T (S,0x), v (f:)=ap+b, n €S1= v, ,(f)=p.

The following is the generalization of the trivial fact that,
if 0 is a d-ple root of f€ CI[x], then deg f=d.

Theorem 3.2.] ([17]) Let S be an integral Moishezon space, D a

Cartier divisor and L(D) the space of meromorphic functions on S
whose pole divisor is at most D. Then for any &£ € S and for any
irreducible component Y.C X.,

Jae R: fe L(@D)\ {0}= V (f;|Y;)< ad.

(3.1) and (3.2) are mutually equivalent and they are also
equivalent to (CI,) of (2.1). (3.2) yields the following
characterization of algebraic set germ.

[Theorem 3.3.] ([I8]1) Let S; be an irreducible germ of analytic
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subset at £ € R" (or C"). Then the following conditions are
equivalent.

(i) S is an analytic irreducible component of an algebraic set.
(ii) Jae R: fe€ CIx], deg f=d= v (f|S:)=< ad.

By this we may say that
sup{log v (f|S:)/log deg f: fe CI[x]}

measures the transcendence of the embedded singularity S.C C*".

4. kojasiewicz inequality

Let £ be an analytic function on an open subset U of C" or

R" and KCU a compact subset. Then it is easy to see that
(x) Jda ,b eR, VXxeK: |[f(X)|=Db +dist(x,f ' (0))* .

Lejeune-Jalabert - Tessier [LT] characterized sup a’ using
integral dependence to an ideal sheaf. Bochnak-Risler [BR],
Risler [Ri] and Fekak [F1] treated the real case. These papers
verified rationality of sup a' . This is related to rationality
of the reduced order v (see [LT]), which is asked by Samuel and
settled by Rees and Nagata independently.

The complementary inequality to (x) is needed in the theory of
Schwartz distribution. The statement is the following.

Theorem 4.1.] ([H6], [koj]l) Let f be an analytic function on an

open subset U of C" or R" and KC U a compact subset. Then
(xx) Ja,be R, VxXxeEK: |f(x)|=b'dist(x,f ' (0))°>.

The 1logarithm of (xx) is an LCI of that of (x). It is
confusing that the term <£ojasiewicz exponent of f implies both
sup a2 in (x) and inf a in (xx). (If we consider f and the
distance function on the same level, they are merely mutual
inverse (cf.[F2]).)

The polynomial case of (4.1) was proved by HOrmander and the
general case by Yojasiewicz. It implies that if |[f(x' )| is
small, there exists a solution x of f(x)=0 near x or that

an approximate solution x' is near to an actual one Xx.

There exist many versions of (xx). In his course of study of
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determinacy of function germs, Kuo [K] obtained an effective
result on inf a for plane curves, using Newton diagram.
Schappacher [Sc] obtained LCI for rigid analytic equations with
unknowns sought in the valuation ring of a complete field with
non-archmedean valuation. Bollaerts [B] obtained an effective
local result for almost all algebraic equations with unknowns
sought in R and Q, also using Newton diagram.

In the polynomial case, global kojasiewicz inequality attracts
many experts in transcendence theory, complex analysis and
algebraic geometry. For example, polynomials with coefficients
in Z are treated by Brownawell [Br] and those with coefficients
in C are treated by Ji- Kollar-Shiffman [JKS]. They are seeking
for sharp effective bounds of exponents etc. Similar topics are
effective Nullstellensatz and effective bound for division
problem (cf. [BY] for literature). Tessier has written a
thoughtful survey [T] on these topics.

Bierstone-Milman exhibit a very simple proof of rojasiewicz
inequality for subanalytic functions. Fekak [F2] treated
semialgebraic case and obtained rationality of the exponent for
global - Yojasiewicz inequality and . a nice property of
parametrized families. Tougeron [To21, [To3] treated wider
classes of functions. The classes include the exponential
extension of polynomial rings, which is studied by van den Dries
and Wilkie. Loi [Lol] announced similar results.

A weaker condition than Lojaéiewicz inequality is introduced
by Lengyel [Le] and used to state the condition for
differentiability of power roots of non—negative smooth

functions.

5. Inequality for functional equations

We need not restrict ourselves to the equations with unknowns
sought in number fields.

Theorem 5.1.] (Greenberg [Gr]) Let R be an excellent Henselian

discrete valuation ring (DVR) with the maximal ideal p. 1f
f= (f,,...fu) ERI[X,, ..., X, ]", then 3 a,be R:
X\,...,Xo €R, £(Xi,...,X,)=0 mod p**~°
= 3X.,..., X, €R, £(X;,...,X,)=0, X, =X, mod p*.
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This implies also that an approximate solution is near to an
actual one. (5.1) is the origin of the famous strong
approximation theorem (SAP) of Artin [A] on polynomial equations
with unknowns sought in the Henselization at a point of a
polynomial ring over a field. The following is a generalization
of Artin's SAP. (Artin's SAP is the case when f is a system of
polynomials. )

Theory 5.2.] (Wavrik [W1]) Suppose that kK is a field of
characteristic O complete with respect to a valuation and

f= (f,,... fa)E k{x, y}Hzl", (X= (X1,...,%X,), Y= Yi1,---,¥p), Z=
(z,,...,2,)). Then, for any t€ NN, there exists f (t)&€ N such
that, if Y € k[X]® with Y (0)=0 and Z' € k[X}- satisfy

f(x,Y ,Z' )=0 mod x* ‘"), +there exist Y€ k{x}* with Y(0)=0 and
Ze€ k{x}" which satisfy f£(x,Y,Z)=0 and Y =Y, Z' =Z mod x°.

The least function B8 (t) that satisfies the condition as above
is called the Artin function for analytic equation f(x,Y,Z)=0.
By the work of Pfister-Popescu [PP] it is known that SAP holds
for equations with unknowns sought in complete local rings also
(cf. [DL], [N]). These treat very general equations but lack
"linearity"” except (5.1). Lascar (L] has shown that g (t) in
original Artin's SAP is recursive.

An important kind of analytic equation arises as the condition
constraining curves to an analytic singularity. Then the
unknowns are sought in C{t} or CI[t]. (This is related to
Nash's theory on singularities. He began to study a singularity
through the set H of formal curves constrained to it. H is
considered as the inverse limit of the algebraic varieties which

consists of truncated curves (IGL1).) Wavrik [wW21,
Lejeane-Jalabert (L], Ellias (E], Hickel [H] and
Gonzalez-Sprinberg - Lejeane-Jalabert [GL] obtained 8 (t) for

such analytic equations. Their results are effective and often
best.

As for LCI for the equation with unknowns sought in a higher
dimensional 1locai ring, we know little. The most simple
nontrivial example is (CI,) of (2.2). To see this suppose that
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(A, m) is a local ring with a integral completion and consider
the equation XY=0 over A. Then (2.2) implies that
(s’ ,t')YEAX A, st =0 mod m?***°
=> T (s, t)EAXA: 8 =s, t =1 mod m*, st=0.
Here (s’ ,t' ) is an approximate solution and (s,t) an actual
solution and they are near. We show another example.

Example 5. 3. ([I31, (5.1)) Take a prime number p and suppose
that u€ C{x} (x=(X,,...,X,)) is not a p-th power in C{x}.
Then the equation S® —uT® =0 over C{x} admits an LCI. Indeed,
this equation has a unique solution (0,0) and

Ja,beR: f>—ug’=0 mod m****=> f=0, g=0 mod m*.

As an answer to Popescu's problem, Spivakovsky [Spv] has shown
an example of a Henselian pair for which an analogue of the
strong approximation theorem fails, i.e. even a nonlinear g v
does not exists.

6. LCI for exterior derivation

Let A be a ring, I CA an ideal and

d d d

o =t0 'L e° % o4 p:-% ..
a complex of A-modules. We can define the order of w € ©”
(p= 0) using the filtration {IT*® ® }czo:
v i (w)=sup{k: w € T*0 " }.
Consider the following conditions for a, be R (cf.[F]):

01)°  we® nNa’(
= 396Hp"i, w =déo , Vz(ﬁ))éa\/x(a)—'_b;

(02)* w E®® —> FE€eO*', vi@ow)=av  (w —df)+b.

The latter is in an LCI modulo the space of exact forms. It
follows that exterior derivation is an open mapping onto the
image (=the space of exact forms). The following 1is easy to
see.

For p=0,1,2,..., we have the following.
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(i) (o1 =— W (O ")=0.
(ii) (02)® and (N I*@°=0) =—> H°*(O )=0.
(iii) (OD**' and H? (® ')=0 <> (02)" and H**' (G ') =0.

Let
Q (A= (C— A— Q' (A)— Q2 (A)— -}
be the analytic de Rham complex (the complex of Pfaffian forms
on A) (IGR]1, [Rei])), where C-— A denotes the canonical

injection. The condition N, x XI*Q®=0 is satisfied by this
complex. It is obvious that v ; (w )= v ; (do )+1. Sasakura found
the following.

Theorem 6.2.] ([Sasl, cf. [Ful) If A= C{x} (x=(x,,...,X,)), the

conditions (01)® and (02)* hold for
O*"=Q*A), (da, be R; p=0,1,2,...).

Their results are stronger than stated here in that they treat
Pfaffian forms on a neighborhood. | , '
Anyone who learned the elementary calculus understands that
Vo (F—FO))=inf{v (3 £/9 X,), ...,V ¢(3 £/9 X,) }+1
for fe C{x)}. This can be generalized as follbws. |

Theorem 6.3.] ([I1]) If A is holomorphically contractible into an
analytic local aigebra with embedding dimension n (in the sense
of Reiffen ([Reil), then the conditions (01)° and (02)®, with
"< " replaced by "=", hold for
°*=Q°*(A), p=nn+1,n+2,...,
a=1, b=—1, = (the maximal ideal).

(6.2) and (6.3) are sharper than the Poincaré lemma. The same
assertion as (6.3) holds for AC-contractible formal algebras
(AC: absolutely continuous, cf. [I1]).
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