0000000000
9270 19950 171-186 171

A WEAK SET THEORY WITH GLOBALIZATION

sATOKO TITANI (THET)

1. INTRODUCTION

Here we deal with a complete lattice £ with unary operations — and O, which
are called weak complement (Definition 2.1) and globalization (Definition 2.2), re-
spectively. The pseudo-complement on a complete Heyting algebra, and orthogonal
complement on a quantum logic are both examples of weak complement. The oper-

ation [J defined by
' { 1 ifa=1
Ua =

0 ifa#1l

is a model of globalization, and the set {{Ja | a € L} forms a complete Boolean
algebra.

We will formulate a set theory on V4, and call it a lattice valued set theory (LZF).
The set theory LZF has double structure. One is of the set theory on V¥ and the
other is of its external set theory.

2. COMPLETE LATTICE WITH A WEAK COMPLEMENT AND A GLOBALIZATION

For a subset {a,}o of a complete lattice £, the least upper bound of {ay} is
denoted by V, aa, and the greatest lower bound of {a,}, is denoted by A, a,. The
smallest element of £ is denoted by 0, and the largest element is denoted by 1.

Definition 2.1. We say a unary operation — on a complete lattice £ is a weak
copmlement, if the following conditions are satisfied for all elements a,b of L.

N1: ~0=1, -1=0

N2: aA-a=0

N3: ¢ < —a :

N4: =(aVb) =-aA-b

Definition 2.2. Let £ be a complete lattice with a weak complement —. O is called a
globalization on L, if the following conditions are satisfied for all elements a, b, ay, by, ci.
(ke K) of L.

Gl: Oa<a

G2: ~Qa=0-0a

G3: Ay Oax < OAcax
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G4: If Oa < b, then Oa < 0Ob

G5: Oa A Vb = Vi(Da Abr);  a AV, Db = Vi(aADby)
G6: Odav-Oa=1

GT7: If a AOc < b, then =bAQOc < —a

In what follows, £ denotes a complete lattice with a weak complement — and a
globalization .

Definition 2.3. We define the implication — on £ by
(a—b)=V{ceLl|(c=0c) A (a Ac< D)}
Then we have

Lemma 2.1. (1) (e—b) =1iff a<b.
(2) O(a — b) = (a — b).
(3)aN(a—b)<b
(4) (a — b < (-b— -a)

It is easy to see :

Lemma 2.2. Let a,b € £ and {ar}rex,{bk}rex C L. Then
(1) If a < b then Oa < 0Ob
(2) O(Ax ax) = Ax Dax
(3) Oe=00a
(4) Ak Oar = 0OA; Oag
(5) Vi Oar = OV Oag

We denote = 00— by {. Then we have

Lemma 2.3. Let a,b € £ and {ar}rex CL.
(1) a < 0a
(2) If a < Ob then ¢a < O

2)
(3) OViar = Vi Qu
(4) O(OaAb) < Oa A Ob

Complete Boolean algebra (cBa), complete Heyting algebra (cHa), and quantum-
logic are all complete lattice with a weak complement — and a globalization [J, if [J

is defined by
1 ifa=1
D“:{ 0 ifal.



3. L-VALUED UNIVERSE V¥

Let £ be a complete lattice with weak complement — and globalization 1. L-
valued universe V¥ is constructed by induction, in the same way as Boolean valued
universe VB,

VE = {u|3B<aIDucCVy(u:Du— L)}
Ve = U V£

a€On

The least « such that u€ V£ is called the rank of u. For u,v € V¥, [u=v] and [u€v]
are defined by induction on the rank of u,v.

[u=v] = /\ (u(z) — [zev]) A /\ (v(z) — [z eu])

z€Du z€Dv

[uev] = V [u=z]Av(z).

z€Dv

We say an element p of £ is [-closed if p = Op. Since formulas of the form p — ¢ is
O-closed, [u=v] is O-closed. We denote O(a € b) by a e b.

Lemma 3.1. For z,y€VE and {bp}r C L, [x=y] A Vibr = Vi[z=y] A b
Proof. By G5. O »
Lemma 3.2. Forp,q,r€L, if OpAg<r, then Op < (g —r).

Proof. Immediate from the definition of —. O

Lemma 3.3. Let u,v € VX, Then
(1) [u=v] = [v=4]
(2) [u=u] =1
(3) If z € Du then u(z) < [z€].

Proof. (1) is obvious. (2) and (3) are proved by induction on the rank of u. Let
r € Du. Since [zr=z] = 1 by induction hypothesis,

u(z) < ,VD [z=2"] Au(z') < [["ch]] Hence [u=u] =1. O

Theorem 3.4. For u,v,w € V¥,

(1) [u=vAv=w] < [u=w]
(2) [u=vAvew] < [uew]
(3) [u=vAwev] < [weu]
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Proof. (1) We proceed by induction. Assume that u,v,w € V. By Lemma 2.1,

[u=0] Au(e) < (u(z) - [e€v]) Aule) < [z€]

for = € Du. Hence, by using Lemma 3.1,

[u=v Av=w] A u(z)

by using induction hypothesis,

Since [u=v A v=w] is O-closed,

<

<

N

N

N

N

[o=w] A yg)vl[:v:y]] Av(y)
g)y(ﬂw:y]] Afo=w] Av(y))
:e\éu([[wy]] A ze\,léwllym]l A w(z))
y¥)u ze\éwllwy Ny=z] Aw(z)

V e=-1Aw(2)

2€DPw
[z € w].

[u=vAv=w] < A (u(z)— [zew]).

Similarly, we have

z€Du

[u=vAv=w] < A (w(z) = [z€2]).

Hence, [u=v Av=w] < [u=w].

z€D

(2) and (3) follows from (1) and Lemma 3.1. O

By lattice valued set theory (LZF) we mean a set theory on V¢ whose atomic
formulas are of the form u = v or u € v ; and logical operations are A, V, -, —, Vz,
Jz and 0. Now we extend the definition of [¢] by the following rules.

[=¢] = -l¢]

le1 A wa] = [p1] A [i02]
[o1 V @a] = [1] V [l
[or — @2 = [p1] — [l
[Vzo(z)] = Auevele(v)]
[Fze(2)] = Vuevele(u)]
[O¢] = O[]
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The equality axioms are valid on V4. That is,
Theorem 3.5. For any formula ¢ (a) and u,v € V¥,

[u=v A e(w)] < [¢(0)].

Proof. If p(a) is an atomic formula, then it is immediate from Theorem 3.3 and 3.4.
Now we assume [u=v A ¢;(u)] < [pi(v)] for i = 1,2. Then [u=v A ;(u) A ps(u)] <
[1(v) A @o(v)] is obvious. Since [u=wv] is O-closed,

[u=vA(pr(w) Ver(u)] = [u=vA@i(u)]V[u=vApy(u)]
[1(v) V @2(v)],
[-¢1(v)] by Lemma 2.1.(4)

Ofe1(v)] by G4.
V[[uzv A @i(u,z)] by G5,

[Bze1(v, 2)]
Alu=v A ¢1(u,2)]
[Vzei(v,2)]. O
Theorem 3.6. For any formula ¢(a) and ue V¥,

(1) [Va(zeu — ¢(z))] = Asepulz € v — ¢()]

[u=v A 1 (u)]
[u=v A Opy(u)]
[[u:v A 32901(11” :L')]

AN/ AN/AN |

/A

[u=vA Vo (u, )]

N

(2) Bz(zeur¢(z))] = Vaepulz € u A p(2)]

Proof. (1): [Vz(z€u — ¢(2))] < Avepulz €Eu — ()] is obvious. By using the fact
that [z€u] < Vyepulz = 2'], and Lemma 3.1 and Theorem 3.4, we have

(A [Fev—p@))Alzeu] = (A [f'eu—p@@)DA[zeu] A V [z=2"]

(I,"EDH I,EDU m/’evu
= V ( /\ [[mleu_)99(55')]]/\[13361;]]/\[[:6::1:"]])
z"€Du z'€Du |

< [e(2)]

Since Agepu(u(z) — [p(2)] is O-closed, we have
/7\) (u(z) = [p(2)]) < [Ve(z € u — o(2))].
z€Du
(2): By using [z €u] < V,epu[z = 2] again,
Fz(eeune@@N] < V V (lz=2TAlzeunp(z)])
z€VE x'€Du
<V ['eune(a)]. O

z'€Du
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Definition 3.1. Restriction ulp of u€ VX by p€ L is defined by

{D(u Ip) =
(ulp)(zlp

If the rank of u is < a (i.e. u € V£), sois u | p, and we have

{z]p | z€Du}
)=V{u(@)Ap|2'€Duy, zlp=2'lp} for x€Du.

Theorem 3.7. Ifu,z € V¥, p,q € £, and p is O-closed(i.e, p = Op), then
(1) p<[u=ulp]
(2) [zeulp)=[zeu] Ap
() [ulp)leg=ul(pAg]=1.

Proof. We proceed by induction on the rank of u,
(1) : For z € Du,
pAu(z) < (ulp)(zlp) Alz=21p] < [z€ulp]

(u [p)(m fp) = Vz"EDu,z[pzx’[p U(.’E,) /\p A {[33:33,21' [pll < HIL’ [pEuﬂ
Therefore, p < [u=up].

(2) : II.’IE'LL rp]l = Vx'E'DuII:I:::E, [le A v$”€1’u,x”[p=a:'[pu(x”) Ap
< [z€u] A p,
since " [p = 2’ [p implies p < [2"=2'] .
[zeu] Ap < Voepuz=2]Au(z’)Ap
< Vaepulo=2' 1] A (u [p)(' Ip)
< [z€ulp].
(3) follows from (2).
mp :

Now we state axioms of set theory which are valid on the universe V<.

Axiom of extensionality: Vz(z€u « z€v) - u=v.
We have [Vz(z € u & z € v)] = [u = v] by the definition of [u = v]. Hence,
Ve(z€u & 2€v) > u=v] = 1.

Axiom of pair: Yu,v3z Ve(z €z > z=uV r=v).
For u,v € V£ define z by

{DZ = {u,v}

2(t)=1 for teDz

Then [z €2] = Viep [z =t] A 2(t) = [z=1u] V [z =1].
Therefore, [Vz(z€z & z=uVz=v)] =1.



Axiom of union: YuFwVz(z€v « Jy(yEu A z€y)).
For u € V¥ defined v by

Dv = Uyeﬂu Dy
v(z) =[F(yeuAzey)]
Then, by Theorem 3.6,

[Bylyeunzey)] = e\{)[[yett]!/\I‘Iwa]]
= Zg:ﬂyeu]l Alzey] A xl!}y[[x =2']
= V, [r=2"1A [z €y Ayen]
- ed

Definition 3.2. For each set x we define € V¥ by

Di = {f | tex}
i(f)=1

i is called the check set associated with x. For check sets #, 7, we have

o 1 if z=y o 1 if z€y
l#=9] = 0 if z#y ’ lzed] = 0 if z¢y.
Definition 3.3. Let
ck(z) €& Vy(yez — y ez A ck(y)).
Then [ck(£)] =1 for all z.

Axiom of infinity: Ju[dz(z e u) A Vz(z Eu - Jy e u(z e y))]. @ associated with

the set w of all natural numbers satisfies
[[Ela:(a:gd)) AVz(z ew — Hygw(xgy))]] =1.

def.

Axiom of power set: YudvVz(zr €Ev & zCu), where z Cu & Vi(tex — teu).

Let u € V£, For every x € V-, define z* by

Dz* = V£
*(t) = [zrCuAtea].
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Then
[rcuntea] < [teu] < V [t=¢]
t’EVQL

Hence,

[ccuntesz] < V [t=t'AzCuntexq]
t'eVE

< [tezr].

It follows that for every z € V* there exists z* € V.5 such that [z Cu] < [z=2"].
Now we define v by

{Dv = VL,
v(z) = [z Cul.
Then

[Vz(z€v & zCu)] = 1.

Axiom of separation: Yudv[Vz(z€v & z€u A ¢(z)))].
For a given u€ V< define v by

Dv = Du
{v(w) ~ [reu A ()]
Then
Vz(zev & zeu A p(z))] = 1.

Axiom of collection: YuIv[Vz(z €u — Jyp(z,y)) — Vz(z€u — Elygv(,o(:v, ¥))]-
Let

= [Va(zeu — Fyp(z,9))] = A ([zeu] - Vf[eo z,y)]
r€Du
It suffices to show that there exists v such that

O
p < [Vz(zeu — Jyevp(z,y)].
Since L is a set, for each ¢ € Du there exists an ordinal a(z) such that
pAfzed <V [elz, )]l
era‘(x)
Hence, by using the axiom of collection externally, there exists an ordinal a such that

pAfzeu] < V [e(z,y)] for all z€Du.
yevy
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Now we defined v by

_{Dv =V~
v(y) =

Then

pAfreu] <V ﬂygv Ao(z,y)] = [[Eygvcp(x,y)] for all z € Du.
y€Dv

Since p = Op, we have
o
< [Ve(z€u — Jy Evep(z,y)].

Axiom of €-induction: Vz[Vy(yez — ¢(y)) — ¢(z)] — Vzp(z).

Let p = [Va(Wy(y €z — ¢(y)) = #(z)]. We prove p < [Vap(2)] = Asevelp(z)] by
induction on the rank of z. Let z € V*. Since p < [i(y)] for all y € Dz C VE, by
induction hypothesis,

pAJyez] < [e(y)] for all y € Dz.
Hence, by using p = Op, we have

p< [Vy(yez — o(y))l-
It follows that p < [Vzo(z)].

Zorn’s Lemma : GL(u) A Vo[Chain(v,u) — Jv€u] — 2 Max(z,u), where

GL(u) &L Ve(z€u — xEu)

Chain(v,u) <L vCuAVa, y(z,y€v —>zCy V yCa),

Max(z,u) &L, z€EuAVz(z€uAzCx — z=2).
For u € V£, let
= [GL(u) A Vo(Chain(v,u) — | Jveu)]
and let U be a maximal subset of V¥ such that

Vz,yeU([xreuATt(tez)AyeuATt(tey)]Ap < [zCyVycCz]).
U is not empty. Define v by

Dv=U
v(z) =pA[reuAIt(ter)].
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Now it suffices to show that p < [Max(Uv,u)]. Since p = Op and p A v(z) < [z €u]
for all € Dv, we have p < [vCu]. Hence, by the definition of v, p < [Chain(v, u)].
Therefore, p < [Uv€u]. Now it suffices to show that

pAfzeunlJvCa] < [zc|v] for z € Du.

Let € Du and r = pAfr €uAUv Cz]. Then r is O-closed, and we have r < [x=z 7]
by Theorem 3.7. Hence z [reU. In fact, for each y € U, we have

l[yeunIttey)A(z[r)eunTt(texr)|Ap

N

[yev]Ar

I[yCUvi]] ANz=z|r]
[ycelr]

[yCzlr VvV z[rcy].

N CIN N

It follows that

rAz(t) < [z=z[rAzeuArtez]Ap
< [z=z[rAzireunIt(tez|r)]Ap
< [e=z[r]Av(z|r)
< [rev] <[zclUv]
Therefore, r < [z C|Jv].

Definition 3.4. ¢ is the logical operation defined by (¢ <<% —~ O Q.

Axiom of ¢: VuIvwVz(z€v « Q(z€u)). For a given ue V¥, defined v by

{Dv = Du
v(z) = [O(z€u)].
By using Lemma 2.3,
[O(zeu)] = ¢ l\{) [z=2") A u()

<V =212 [0 €w)] = [zeu].

z'€Du

Hence
Vz(z€v « O(z€u))] =1.

Now we posturate the above axioms, that is the following GA1-GA1l, as the
nonlogical axioms of our lattice valued set theory LZF.

GA1l. Equality: VuVo[u=v A p(u) — ¢(v)].
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GA2. Extensionality: Vu,v[Vz(z €u & z€v) - u=v].
GA3. Pairing: Vu,v3z[Va(z €2z & (z=u V z=1))].

The set z satisfying Vz(r€z < (z=uV x=v)) is denoted by {u,v}.
GA4. Union: Yu3z[Vz(z €2z « Jycu(z€y))].

The set z satisfying Vz(z€z & Jy€cu(z€y)) is denoted by UJu.
GAS5. Power set: Yu3z[Va(z €2 < = C u)], where

rCu &L Vy(yez — yEu).
The set z satisfying Vz(z €z <> 2Cu) is denoted by P(u).

GAG6. Infinity: Hu[Ew(mEu) A V:z:(:cgu - Hygu(:cgy))].
GAYT. Separation: YuTv[Ve(z€v « z€u A ¢(z))].
The set v satisfying Vz(r€v <> z€u A ¢(z)) is denoted by

{zeu] p(z)}.
GAS8. Collection:

Yudv[Va(z € u — Jyp(z,y)) — Va(z€u — Iy € vp(z, )]
GA9. €-induction: Vz[Vy(y €z — ¢(y)) — ¢(z)] — Vzo(z).
GA10. Zorn: GL(u) A VYv[Chain(v,u) — Uv € u] — 3z Max(z,u), where

GL(u) <& Va:(xEu—»xEu)
Chain(v, u) PN vCuAVz,y(r,y€v —>zCyVyCz),
Max(z,u) &, z€uAVe(z€uNzCo — 2z =z).

GA1l. Axiom of : VudzVi(t€z & Q(t€wu)).
The set z satisfying Vt(t €z & Q(t€u)) is denoted by Qu.

Theorem 3.8. If P(zq, - ,x,) is a bounded formula with n free variables x4, - - , z,,
then

1, if P(ug, -+ ,u,)

[P(dla"' ’an)]] = {O if —!P(U1 ee L u )

Proof. By induction on the complexity of P. [J
If [] = 1 then we say ¢ holds in V*.

Corollary 3.9. If a formula P(z,x1,- - ,2,) s a bounded formula with free variables
T,2y, " T, and defines a unique set u€ U such that P(u,uy,--- ,u,), i.e.

u€U A P(u,uy, -+ ,un) AVz[z €U A P(z,uq,- -+ ,u,) — & = ul,

then, in VE, P(z,2q, - ,z,) defines a unique check setu € U such that P(a,udy,- - ,uy,),
i.€.

@ € UAP(t,u,- - ,u,) AVa(z € U A P(z,4y,- -+ ,y) = £=1)
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holds in V*~.

Definition 3.5. A relation ~ is an equivalence relation on a set G if

(1) a~b—>acGADEG
(2) aeG—a~a
B)a~b—ob~a
(4) a~bAb~c—a~ec
If ~ is an equivalence relation on G, we use the following usual notations.
[a] = {beG|a~b} for a€G,
| G/~ = {lal|a€G}.
Corollary 3.10. Let P(zy, ;) be a bounded formula with free variables xy, x5 which
defines an equivalence relation ~ on G, i.e.
Va,be G(a ~ b «— P(a,b)).
Then the corresponding relation ~ on V- defined by
ur~v S ueGAveG A P(u,v),
satisfies :
(1) [~ s an equivalence relation on G = 1,
(2) [la]=[a]] =1 foraeG,
) [G/~=(G/~)T=1,
where
(@] = (b€ G [b~a} , GJr={la] |a € G}
Proof.
(1) is obvious by Corollary 3.9
(2) [z€(a]] = [r€ G A P(a, :c)]]v
= Vieglz=bA P(a,b)]
= Viegle=b A bE[q]]
_ =[z€laT
(3) [re G/~ ] = [Bue Oz = [u])]
= Viealz=[1=[1]]
=[ze(G/~)T O
Definition 3.6. For elements u,v of a set G, the pair (u,v) of u,v is
defined by

(u,v) £ {{u}, {u,0}},
and the set of all pairs (u,v) with u,v € G is denoted by G x G.
GxG¥ {{u,v) |ueGAvEG].



Since {#y, -+ ,2n} = {21, , 25} holds on V%, we have

[{(@, o) = (u,v)’] =1 and
[Gx G=(G xGY] =

4. NUMBERS

The set w of all natural numbers is constructed from 0 by the successor function
z — z+1, where 0 is the empty set and z+1 = zU{z}. The integers are constructed as
equivalence classes of pairs of natural numbers, the rational numbers are constructed
as equivalence classes of pairs of integers, and finally, the real numbers are constructed
by Dedekind’s cuts of rational numbers. We denote the set of all integers by Z, the
set of all rational numbers by Q, the set of all real numbers by R and the set of all
complex numbers by C.

4.1. Natural numbers in V~.
Now we define the set of natural numbers in V<. It will be equal to &.
0 is the empty set in V£, i.e.

Va~(ze0)] = 1.

Let Suc(z) be the formula, which means “z is a successor”, defined by

’

Suc(x)&xz(v)vay(a::y—i-l)

where y+1 = yU{y}, and let HSuc(z) be the formula, which means “z is a hereditary
successor”, defined by

HSuc(z) €L Suc(z) A Vy(y €z — Suc(y)).
Lemma 4.1. Vz[HSuc(z) — (ck(z) A Tr(z) A Vy(y €z — HSuc(y))]

Proof. (Grayson) Using €-induction, let p = [HSuc(z)]. Then p = Op
and p < [r=0V Jy(z = y + 1)]. And

p Az =0] [ck(z) A Tr(z) A Vy(y €z — HSuc(z))]
pA[By(z=y+1)] < VpAle=y+1A HSuc(y)]

< [ck(z) A Tr(z) A Vy(y €z — HSuc(z))]

<
<
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¢ is called a natural number if HSuc(z). Since {#} = {2z} and Uy = (2 Uy) hold in
V£ for any sets z,y, we can see, by €induction (GA9), that  is the set of all natural
numbers in V4. That is,

[Vz(z €& « HSuc(z))] = 1.

Moreover, the check sets +, and . associated with the operations +, - on w coincide
with addition 4 and multiplication - on & in V4. That is, let

{D(+) = {{m, 71, (m +n)") | m,n€w}
+(m, 7, (m + n)’) =

{D(-) = {{m, 7, (m - n)") | m,n €w}

We denote (z,y,2) € +, and (z,y,2) € - by +y = 2z, and 2 - y = z, respectively.
Then +, - are operations on @ in V£, and for m,n € w,

[n+n=(m+n) Am-n=(m-n)]=1.

Similarly, the relation associated with the relation < on w is also denoted by < in
V£, < is the relation on . That is, let

{D(S) = {(m,n) | m,n € w, m < n}
< () = 1.

We denote < (z,y) by  <y. Then, m < n iff [ < ] =1 for all m,n € w, and
Vm,n(m,n €0 — (m<ne lewAm+1=n))

holds in V4.
It follows that if ¢(z1, -+ ,,) is a bounded formula constructed in terms of the
relations €, =, < and functions +, + , then for all 2,,--- ,z, € w

‘P(mh' v ,Zvn) — II(,D(:CH,- v 7$Vn)1] =1.

4.2. Integers.

Integers are defined to be equivalence classes of w x w, where the equivalence
relation ~ is defined by

uwvéﬂm,n,p,qu(uz(m,n)/\v:(p,q)/\m-{—q:n-{-p).

That is, Z = w X w/ ~.
On V£, the corresponding equivalence relation ~ on & x @ is defined by Corollary

3.10. i.e.
uND%Em,n,p,ged)(uz(m,n)/\v——-(p,g)/\m+q:n+p),

{
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and
[oxo/~=(wxw/~)=7Z] =1.

Namely, Z is the set of all integers in V4, and operations + and - on Z are defined
so that

[a+b=(a+b)Aa-b=(a-b)]=1,

v 1 if a<d .
v < b — v
la <] {0Ha>@
4.3. Rational numbers.
In order to define the set Q of rational numbers, we define an equivalence relation

~on Z X Z by
UNU"{%SCL,I),CL’,I)IEZ(U: (a,b) A v ={(d,b) A abl = a'd).

Then the set Q is defined to be (ZxZ)/~. On V£, the corresponding equivalence
relation ~ on (Z X Z) is defined, by Corollary 3.10, i.e.

u~ oSS 30, b, 6 €Z(u=(a,b) Av=(a,b) A ab =a'b).
and
[(ZxZ)/~=Q] =1.

Namely, Q is the set of all rational numbers in V £, Moreover, operations +,- and
relations <, < on Q are defined so that

[a+b=(a+bd)Aa-b=(a-D)]=1

1 ifa<yd

G < bl = =la > bl
0 ifas>p, E<d=-la>4

[[a<1311={
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