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1 Introduction

Algebraic semantics for nonclassical propositional logics provides us a powerful tool
in studying logical properties which are common among many logics. In fact, it has
been producing a lot of interesting general results by the help of universal algebraic
methods. On the other hand, it seems that there have been little progress in the study
of algebraic semantics for nonclassical predicate logics. For some special logics like the
intuitionistic logic, we can show the completeness with respect to algebraic semantics.
But, at present there seems to be no general way of proving completeness for a broad
class of predicate logics. What is worse, there are uncountably many intermediate
predicate logics which are incomplete with respect to algebraic semantics (see [10]).

Recently, the author proved in [11] the completeness of some of basic substructural
predicate logics with respect to algebraic semantics, by using the $\mathrm{D}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{d}- \mathrm{M}\mathrm{a}\mathrm{C}\mathrm{N}\mathrm{e}\mathrm{i}\mathrm{u}_{\mathrm{e}}$

$(\mathrm{D}\mathrm{M})$ completion. Since existing Kripke-type semantics for these predicate logics are
rather unsatisfactory, it would be proper now to consider seriously the possibility and
the limitation of algebraic semantics once again. In the following, we will show how
the above method can be extended to other logics, where difficulties arise and when
incompleteness occurs.

To explain how the completeness can be proved, we will take the intuitionistic
predicate logic Int for example. Obviously, Heyting algebras will be taken to define
algebraic semantics for Int. But we must consider here how to interpret quantifiers
in our semantics. Usually, we will assume moreover that these Heyting algebras are
complete as lattices and will interpret universal and existential quantifiers by (possibly
infinite) meets and joins in them. Thus, we $\mathrm{w}\mathrm{i}\mathrm{U}$ take any pair $\langle \mathrm{A}, V\rangle$ of a complete
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Heyting algebra A and a non-empty set $V$ , which determines the domain, for an

algebraic structure for Int. Then, our goal is to show that Int is complete with

respect to the class of all algebraic structures for Int.

Now suppose that a formula $\alpha$ is not provable in Int. Let A be the Lindenbaum

algebra of Int and $f$ be the canonical mapping from the set of formulas to A. Clearly,

$f$ can be regarded as a valuation on an algebraic structure determined by A with a

countable set $V$ . Then, it is easy to see that $f(\alpha)$ is not equal to the greatest element

1 of A. But this doesn’t complete our proof, since the Lindembaum algebra A is not

complete. What remains is to embed A into a complete Heyting algebra B. Moreover,

this embedding $h$ from A to $\mathrm{B}$ must preserve every existing infinite meet and join in
$\mathrm{A}$ , in order to make the composite $h\circ f$ a valuation on an algebraic structure $\langle \mathrm{B}, V\rangle$ .

This is the essential point in completeness proofs.

There exist several standard methods for completion, $i.e$ . methods of obtaining

a complete algebra from the original algebra. Any complete algebra thus obtained is

called a completion of the original algebra. For instance, for any Heyting algebra $A$ ,

we can take the complete Heyting algebra consisting of all complete ideals of $A$ (see

e.g. [15] $)$ , or the complete Heyting algebra obtained by the $\mathrm{D}\mathrm{M}$-completion of A. $($

For general information on $\mathrm{D}\mathrm{M}$-completion, see [9]. ) The $\mathrm{D}\mathrm{M}$-completion method

in its extended form works well also for algebras connected with basic substructural

logics. This is what we showed in the paper [11]. We notice that Rasiowa, who proved

the completeness of Int with respect to algebraic semantics for the first time in [13],

employed the $\mathrm{D}\mathrm{M}$-completion. So, our results in [11] may be regarded as an extension

of her result.
On the other hand, the $\mathrm{D}\mathrm{M}$-completion doesn’t work well for logics in which

$\forall x(\alpha(x)\vee\beta)\supset(\forall x\alpha(X)\vee\beta)$ holds, where $x$ doesn’t occur free in $\beta$ . In algebraic terms,

this formula represents the following infinite distributive law; $\bigcap_{i}(a_{i}\cup b)=(\bigcap_{i}a_{i})\cup b$.
In order to get completions of these algebras, it seems that we need a quite different

idea. In fact, to prove the completeness of the classical predicate logic, Rasiowa and

Sikorski introduced a way of completion of Boolean algebras by using the notion of
$Q$ -filters and proving so-called Rasiowa-Sikorski Lemma in [14]. This method is ex-

tended also for the intermediate predicate logic obtained from Int by adding the above

formula as the axiom ([5], [12], [16]) and for $\omega^{+}$-valued predicate logic ([7], [8]).

The purpose of the present paper is two-fold. First, we will show completeness

theorems for some predicate logics with respect to algebraic semantics. In fact, we will

apply the $\mathrm{D}\mathrm{M}$-completion method to some substructural predicate logics with modality

and with distributive law. For the first case, we will generalize the method in [11] with
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certain modifications by Bucalo in [1]. For the second case, we will introduce a way of
dealing with distributive law, as the $\mathrm{D}\mathrm{M}$-completion of a given distributive lattice is
not always distributive. Of course, this is still not enough to prove the completeness
of logics with infinite distributive law mentioned in the above, like the relevant logic
$RQ$ .

Then, we will discuss an inherent weakness of algebraic semantics, from which in-
completeness results come. This weakness will come from essential differences between
instantiations in logic and those in algebra. It will be shown that most of algebraic
incompleteness results obtained so far will be caused by them.

2 $\mathrm{D}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{d}-\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{N}\mathrm{e}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{e}$ completion

Throughout this paper, we will assume the familiarity with the notations and the
terminologies in [11]. First, we will discuss the Dedekind-MacNeille completion of
algebras related to substructural logics.

Definition 1 A structure $\mathrm{A}=\langle A, arrow, \cup, \cap, *, 1,0, \mathrm{T}, \perp\rangle$ is an $FL$ -algebra if
(1) $\langle A, \cup, \cap, \mathrm{T}, \perp\rangle$ is a lattice with the least element $\perp and$ the greatest element $\mathrm{T}$

satisfying $\mathrm{T}=\perparrow\perp$ ,
(2) $\langle A, *, 1\rangle$ is a monoid with the identity 1,
(3) $z*(x\cup y)*w=(z*x*w)\cup(z*y*w)$ , for every $x,$ $y,$ $z,$ $w\in A$ ,
(4) $x*y\leq z$ iff $x\leq yarrow z$ , for every $x,$ $y,$ $z\in A$ ,
(5) $\mathit{0}$ is an element of $A$ .

Obviously, $arrow,$ $\cup,$ $\cap \mathrm{a}\mathrm{n}\mathrm{d}*\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{e}$the interpretation of logical $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}\mathrm{s}\supset,$${ }$ , A
and the fusion (or, the multiplicative conjunction), respectively, in a given FL-algebra.
When an $FL$-algebra A satisfies $x*y=y*x$ for every $x,$ $y\in A$ , it is called an $FL_{e^{-}}$

algebra. It can be easily verified that a Heyting algebra is just an $FL_{e}$-algebra in which
$\cap=*,$ $0=\perp$ and $1=\mathrm{T}$ .

We say that an $FL$-algebra A is complete if $\langle A, \cup, \cap\rangle$ is complete as a lattice, which
moreover satisfies $y*( \bigcup_{i}x_{i})*z=\bigcup_{i}(y*x_{i}*z)$ for every $x_{i},$ $y,$ $z\in A$ . In [11], we
have introduced the Dedekind-MacNeille completion of any $FL$-algebra. For the sake
of simplicity, we will give here a definition of the $\mathrm{D}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{d}_{- \mathrm{M}\mathrm{N}}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{e}$ completion of
$FL_{e}$-algebras. As for the details, see [11].

Suppose that an $FL_{e}$ -algebra A is given. For each subset $U,$ $V$ of $A$ , we will define

$U\cdot V=$ {$x*y;x\in U$ and $y\in V$ },
$U\Rightarrow V=$ { $z\in A$ ; for any $x\in U,$ $z*x\in V$}.
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Next, for each subset $U$ of $A$ , define

$U^{arrow}=$ { $x\in A;u\leq x$ for any $u\in U$ },
$U^{arrow}=$ { $x\in A;x\leq u$ for any $u\in U$ }.

That is, $U^{arrow}$ and $U^{arrow}$ are the set of all upper bounds of $U$ and the set of all lower

bounds of $U$ , respectively. Now define an operation $C$ on the power set $\wp(A)$ of $A$ by

$C(U)=(U^{arrow})^{arrow}$ for any subset $U$ of $A$ . It is easy to see that the operation $C$ is a

closure operation, $i.e.$ , it satisfies the following three conditions; (1) $U\subseteq C(U),$ $(2)$

$C(C(U))\subseteq C(U)$ and (3) $U\subseteq V$ implies $C(U)\subseteq C(V)$ . Moreover, it satisfies also

that (4) $C(U)\cdot C(V)\subseteq C(U\cdot V)$ . We say that $U$ is $DM$-closed, or simply closed if

$C(U)=U$ holds. We define $\tilde{A}$ to be the set of all $\mathrm{D}\mathrm{M}$-closed subsets of $A$ . For any

$a\in A$ , let $I_{a}$ be the principal ideal generated by $a,$ $i.e.,$ $I_{a}=\{x\in A;x\leq a\}$ . Then, $I_{a}$

belongs to $\tilde{A}$ .

It can be easily seen that if both $U$ and $V$ are in $\tilde{A}$ then $U\cap V$ and $U\Rightarrow V$ are

also in $\tilde{A}$ . But this doesn’t hold always $\mathrm{f}\mathrm{o}\mathrm{r}\cup \mathrm{a}\mathrm{n}\mathrm{d}\cdot$ . So, we define $U\star V=C(U\cdot V)$

and $U\mathrm{u}V=C(U\cup V)$ . Then, we can show the following.

Theorem 1 Let A be an $FL_{e}$ -algebra. Define $\tilde{\mathrm{A}}=\langle\tilde{A},$
$\Rightarrow,$ $\mathrm{U},$ $\cap,\star,$ $C(\{1\}),$ $c(\{\mathrm{o}\}),$ $A$ ,

$C(\emptyset)\rangle$ . Then, $\tilde{\mathrm{A}}$ is a complete $FL_{e}$ -algebra. Moreover, the mapping $h$ from $A$ to $\tilde{A}$

defined by $h(a)=I_{a}$ for each $a\in A$ , is an embedding which preserves all existing

infinite meets and joins in A. Moreover, when A is complete $h$ is an isomorphism.

By a slight modification of the definition of $\tilde{\mathrm{A}}$ , we can show the similar result for

any $FL$-algebra. The complete $FL$-algebra $\overline{\mathrm{A}}$ thus obtained is called the Dedekind-

$MacNeille$ completion (abbreviated to the $\mathrm{D}\mathrm{M}$-completion) of A.

As a consequence of the above result, we can derive the completeness theorem of

basic substructural predicate logics with respect to algebraic semantics determined by

some classes of complete $FL$-algebras corresponding to these logics. To show this, it

is enough to take the Lindenbaum algebra of a given logic for A. As for the details,

see [11]. See also the arguments developed in [2], in which completion operators and

completion $algebra\mathit{8}$ are introduced for Heyting algebras.

In [15], the completeness theorem of the intuitionistic predicate logic Int was proved

by using the complete Heyting algebra consisting of all complete ideals of the Lindem-

baum algebra of Int. Here, a nonempty subset $W$ of a given lattice $L$ is a complete

ideal if
(1) if $x\in W$ and $y\leq x$ then $y\in W$ ,

(2) if $x,$ $y\in W$ then $x\cup y\in W$ ,
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(3) if $X\subseteq W$ and $\cap X$ exists $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\cap X\in W$.

It can be shown that (1) for any $FL_{e}$-algebra $\mathrm{A}$ , if a subset $U$ of $A$ is closed then it

is a complete ideal and (2) the converse holds when A is a Heyting algebra. Therefore,

the $\mathrm{D}\mathrm{M}$-completion of a given Heyting algebra is nothing else but the completion

obtained by collecting all of its complete ideals.

On the other hand, it is well-known that the $\mathrm{D}\mathrm{M}$-completion of a given distributive

lattice is not necessarily distributive. So, we need to clarify the reason why the DM-

completion works well for Heyting algebras. To see this, we will check carefully the

proof of the fact that $\tilde{\mathrm{A}}$ is an $FL_{e}$ -algebra when A is an $FL_{e}$ -algebra. The point

is the distributivity of $\star$ over $\lfloor\lrcorner$ in $\overline{\mathrm{A}}$ , which corresponds to the condition (3) of the

Definition 1. When A is a Heyting algebra, $\star=\cap \mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{s}$ in $\tilde{\mathrm{A}}$ and therefore the usual

distributive law follows from this.

In the present case, as it is obvious that $\star$ is commutative, it suffices to show the

following distributive law:

$U\star(V\mathrm{U}W)=(U\star V)\mathrm{u}(U\star W)$ (1)

for every $U,$ $V,$ $W\in\tilde{A}$ . By the monotonicity and the properties of closure operation
$C$ , we have only to show that

$U\star(V\mathrm{U}W)\subseteq(U\star V)\mathrm{u}(U\star W)$ .

Then this can be derived from the property (4) of the closure operation $C,$ $i.e.,$ $C(U)$ .
$C(V)\subseteq C(U\cdot V)$ . Now, let us examine the proof of this inclusion. (As for FL-

algebras, the proof will be more complicated. See the proof of Lemma 4.3 for the

detail. ) Suppose that $a\in C(U)\cdot C(V)$ . Then there exist $u\in C(U)$ and $v\in C(V)$

such that $a=u*v$ . We will show that $a\in C(U\cdot V),$ $i.e.$ ,

for any $w$ , if $z\leq w$ holds for any $z\in U\cdot V$ then $a\leq w$ .

So, suppose that $z\leq w$ for any $z\in U\cdot V$ . Let $y$ be an arbitrary element of $V$ . For

any $x\in U,$ $x*y\in U\cdot V$ and therefore $x*y\leq w$ . Then, $x\leq yarrow w$ . Now, $x\leq yarrow w$

holds for any $x\in U$ . Since $u\in C(U),$ $u\leq yarrow w$ . Hence $y*u=u*y\leq w$ and thus

$y\leq uarrow w$ for any $y\in V$ . Again, since $v\in C(V),$ $v\leq uarrow w$ . Thus, $a=u*v\leq w$ .

The above proof shows that the distributive law (1) holds for $\tilde{\mathrm{A}}$ as long as the

semigroup $\langle A, *\rangle$ , which is a reduct of $\mathrm{A}$ , is $re\mathit{8}iduated,$ $i.e.$ , for every $x,$ $y\in A$ , the

residual $xarrow y$ of $y$ by $x$ with respect $\mathrm{t}\mathrm{o}*\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{S}$ . In particular, in the case of Heyting
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algebras, algebras obtained by the $\mathrm{D}\mathrm{M}$-completion are also distributive because of the

existence $\mathrm{o}\mathrm{f}arrow \mathrm{w}\mathrm{h}\mathrm{i}_{\mathrm{C}}\mathrm{h}$ is the residual operation with respect to the meet $\cap$ .

These facts will be used in the proof of the completeness theorem for a relevant

predicate logic in Section 3.

3 Completeness theorems for modal and relevant pred-

icate logics

In this section, we will show how the Dedekind-MacNeille completion works in proving

the completeness theorem for some modal and relevant predicate logics. We will show

this only for some particular logics, intending to convey our basic idea, but the method

developed here will be easily extended to many other logics.

In [11], we have shown how the embedding theorems for substructural logics ob-

tained by the $\mathrm{D}\mathrm{M}$-completion can be extended to those for substructural logics with

exponentials. The basic idea is to embed the non-modal reduct of a given algebra A

into a complete algebra $\mathrm{B}$ by a mapping $h$ using the $\mathrm{D}\mathrm{M}$-completion, and then to intro-

duce exponentials on $\mathrm{B}$ in such a way that the mapping $h$ preserves also exponentials.

Bucalo [1] modified the way of constructing exponentials and proved the completeness

theorem for modal subsystems of the intuitionistic linear predicate logic with exponen-
$\backslash \mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{s}$ . (Precisely speaking, she hasn’t mentioned these completeness results explicitly

in her paper. But this is obvious from Lemma 3.7 in [1]. )

This suggests us a certain applicability of our method in this modified form to

many substructural modal predicate logics. To show this, let us consider the modal

logic $K.FL_{e}$ over the logic $FL_{e}$ with the modality $\square$ . The logic $K.FL_{e}$ is obtained

from the sequent calculus $FL_{e}$ by adding the following rule of inference for $\square$ , which is

usually used to introduce the classical modal logic $K$ . Here, $\square \Gamma$ denotes the sequence

of formulas $\square \gamma_{1},$

$\ldots,$
$\square \gamma_{m}$ when $\Gamma$ is $\gamma_{1},$ $\ldots,$

$\gamma_{m}$ :

$\frac{\Gammaarrow\alpha}{\square \Gammaarrow\square \alpha}$

Corresponding to this logic, we will define modal $FL_{e}$-algebras as follows.

Definition 2 A pair $\langle \mathrm{A}, \mu\rangle$ of an $FL_{e}$ -algebra A and an operation $\mu$ on A $i_{\mathit{8}}$ a modal

$FL_{e}$ -algebra if
(1) $x\leq y$ implies $\mu(x)\leq\mu(y)$ for each $x,$ $y\in A$ ,
(2) $\mu(x)*\mu(y)\leq\mu(x*y)$ for each $x\in A$ ,

(3) $1\leq\mu(1)$ .
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As usual, $\square$ in modal formulas can be interpreted by the operation $\mu$ in a modal
$FL_{e}$-algebra $\langle \mathrm{A}, \mu\rangle$ . Let $\tilde{\mathrm{A}}$ be the $\mathrm{D}\mathrm{M}$-completion of A and $h$ be the embedding from
A to $\tilde{\mathrm{A}}$ introduced in Theorem 1. Following [1], define an operation $\tilde{\mu}$ on $\tilde{A}$ by

$\tilde{\mu}(a)=\cup\{h(\mu(X));X\in A, h(x)\leq a\}$ (2)

for each $a\in\tilde{A}$ . Then, we can show easily that $\langle\tilde{\mathrm{A}},\tilde{\mu}\rangle$ is also a modal $FL_{e}$-algebra and
that $h(\mu(X))=\tilde{\mu}(h(x))$ for each $x\in A$ . Thus, by using the argument mentioned in
the previous section, we can show the following.

Theorem 2 The substructural modal predicate logic $K.FL_{e}$ is complete with respect
to the class of complete modal $FL_{e}$ -algebras.

Similar results will hold also for some extensions of $FL_{e}$ with additional modal
axioms, as long as the algebraic counterparts of modal axioms will be transferred from
$\mu$ to $\tilde{\mu}$ . That is, if an algebraic property corresponding to a given modal axiom holds
for $\mu$ then so does for $\tilde{\mu}$ . For example, take axioms $\square A\supset A$ and $\square A\supset\square \square A$ . Then,
it is easily verified that if $\mu(x)\leq x$ holds for any $x\in A$ then $\tilde{\mu}(a)\leq a$ holds for any
$a\in\tilde{A}$ and that if $\mu(x)\leq\mu(\mu(X))$ holds for any $x\in A$ then $\tilde{\mu}(a)\leq\tilde{\mu}(\tilde{\mu}(a))$ holds for
any $a\in\tilde{A}$ . Therefore, we can derive the completeness theorem for modal logics which
are extensions of $K.FL_{e}$ having either or both of these modal axioms, and also some
structural rules. In particular, we can get an alternative proof of the completeness
theorem of classical modal predicate logic $S4$ , by combining this with results in [11] $($

cf. [13] $)$ .
Although the above transferring property will hold only for limited cases, there are

some rooms where the $\mathrm{D}\mathrm{M}$-completion still works. The similar idea will work also for
modal logics with $\mathrm{O}$ as a logical connective. (Note that in weaker systems, $\mathrm{O}$ cannot
be treated as the dual of $\square$ . ) In this case, if $\sigma$ is an algebraic operation corresponding
to $\mathrm{O}$ in the original algebra, the operation $\tilde{\sigma}$ on its $\mathrm{D}\mathrm{M}$-completion will be defined by

$\tilde{\sigma}(a)=\mathrm{n}\{h(\sigma(X));x\in A, a\leq h(x)\}$ . (3)

Next, we will discuss the completeness theorem for relevant predicate logics. The
main obstacle here lies in the fact that though the distributive law holds between the
disjunction and the (additive) conjunction, the $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\supset \mathrm{i}\mathrm{s}$ the residual not with
respect to the additive conjunction, but to the fusion. Therefore, it may happen that
the $\mathrm{D}\mathrm{M}$-completion of a given relevant algebra is not distributive, as we have remarked
in Section 2.
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To overcome this difficulty, we will add a new logical connective コ to the original

system so that the algebraic $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}arrow \mathrm{C}\mathrm{o}*\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{P}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ to $\text{コ}$ will be the residual with

respect to $\cap$ . In the following, we will show how this idea will work.

Here we will take the relevant predicate logic $DFL_{e}$ as an example. The logic

$DFL_{e}$ is defined as a sequent system obtained from the predicate calculus $FL_{e}$ by

adding the following two kinds of sequents as the intial sequents;

$\alpha$ A $(\beta\vee\gamma)arrow$ ( $\alpha$ A $\beta$ ) $\vee$ ( $\alpha$ A $\gamma$) (4)

$\exists x\alpha(X)\wedge\betaarrow\exists x(\alpha(_{X)}\wedge\beta)$ (5)

An $FL_{e}$-algebra A is a distributive $FL_{e}$ -algebra (or, a $DFL_{e}$-algebra) if it is a

distributive lattice. A $DFL_{e}$-algebra is complete, if it is complete as a lattice and also

satisfies the following infinite distributive law;

$\cup.\cdot a_{i}\cap b=\cup(a_{i^{\cap b}}i)$
(6)

In the rest of this section, we will show the following theorem.

Theorem 3 The relevant predicate logic $DFL_{e}$ is complete with respect to the class

of complete $DFL_{e}$ -algebras.

It is almost trivial to show the soundness. On the other hand, as we have men-

tioned already, the $\mathrm{D}\mathrm{M}$-completion of a given $DFL_{e}$ -algebra may not be distributive.

Therefore, we will introduce $DFL_{e}$-algebras with the new $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-^{*}$ satisfying the

following;

for every $a,$ $b,$ $c,$ $a\cap b\leq c$ if and only if $a\leq barrow^{*}c$ .

Let us call these algebras, $DFL_{e}^{+}$-algebras. It is easy to see that in any $DFL_{e}^{+}$-algebra,

if the join $\bigcup_{i}a_{i}$ exists then $\bigcup_{i}(a_{i}\cap b)$ exists also for any $b$ for which the above equation 6

holds. By using the argument stated in Section 2, the $\mathrm{D}\mathrm{M}$-completion $\tilde{\mathrm{A}}$ of a given
$DFL_{e}^{+}$-algebra A is also distributive. For any subset $U,$ $V$ of $A$ , define

$U\Rightarrow^{*}V=$ { $z\in A$ ; for any $x\in U,$ $z\cap x\in V$ }.

Then it can be shown that if both $U$ and $V$ are closed then $U\Rightarrow^{*}V$ is also closed.

Moreover, for any closed $U$ and $V$ , the following holds;

$U\cap W\subset V$ if and only if $W\subset U\Rightarrow^{*}V$ .
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Thus, the equation 6 holds by using the above argument, and hence $\tilde{\mathrm{A}}$ becomes a
complete $DFL_{e}^{+}$ -algebra.

To show the completeness of $DFL_{e}$ , suppose that a given formula $\alpha$ is not provable
in $DFL_{e}$ , or more precisely, the sequent $arrow\alpha$ is not provable in $DFL_{e}$ . Let A be the
Lindenbaum algebra of $DFL_{e}$ and $f$ be the canonical mapping from the set of formulas
to $A$ . Then, A is a $DFL_{e}$ -algebra in which the inequality $1\leq f(\alpha)$ doesn’t hold. But,
as A is not necessarily a $DFL_{e}^{+}$-algebra, we cannot apply the $\mathrm{D}\mathrm{M}$-completion to it.

So, we will introduce an extension of $DFL_{\mathrm{e}}$ with the logical connective $\text{コ}$ , which
corresponds to the algebraic $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}arrow^{*}$ . First, we will introduce a (cut-free)
sequent calculus $D_{0}FL_{e}$ which is equivalent to $DFL_{e}$ . To do this, we will follow Dunn’s
idea developed in [3] and use intensional and extensional sequences. But here we will
borrow the notations from Slaney [19], since our system $D_{0}FL_{e}$ can be defined simply
by eliminating $I$-weakening from his $LL_{DBCK}$ and by adding rules for quantifiers. $($

To keep the consistency of our terminologies, we need some literal translations of
logical symbols in [19], $i.e.$ , symbols :, -*and&in [19] will be replaced $\mathrm{b}\mathrm{y}arrow,$ $\supset$ and
$*$ (for fusion), respectively. Moreover, in usual sequent systems for substructural
logics, the commas in the left side of sequents means the intensional combination, $i.e.$ ,
they can be interpreted as the fusions. By this reason, in our formulation of $D_{0}FL_{e}$

presented below, we will use the commas for intensional combination and the symbol
$|$ for extensional one. Without any difficulty, we can also extend $D_{0}FL_{e}$ to the one
with the constants which the language of the original $FL_{e}$ contains, but we will omit
the details. )

Now, we will give here the definition of $D_{0}FL_{e}$ . (For more information, consult
[3] and [19]. ) First, we will define antecedents inductively as follows;
(1) any formula is an antecedent,
(2) empty expression is an antecedent,
(3) if each of $X_{1},$

$\ldots,$
$X_{n}$ is an antecedent then the expressions of the form $X_{1},$

$\ldots,$
$X_{n}$

and $X_{1}|\ldots|X_{n}$ are also antecedents.

In the above (3), the first expression is called an intensional combination, which
means roughly the combination of $X_{1},$

$\ldots,$
$X_{n}$ by the fusion, and the second expression

an extensional combination, which means the combination by the additive conjunction.
Similarly to [19], we will use expressions like $\Gamma(X)$ to denote an antecedent in which
$X$ occurs as a sub-antecedent. Also, for a given $\Gamma(X)$ , the expression $\Gamma(\mathrm{Y})$ for an
antecedent $Y$ denotes the antecedent obtained from $\Gamma(X)$ by replacing the indicated
occurrence of $X$ by $Y$ .
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Sequents of $D_{0}FL_{e}$ are expressions of the form $\Gammaarrow\alpha$ , where $\Gamma$ is an antecedent

and $\alpha$ is a formula. The initial sequents of $D_{0}FL_{e}$ consist of sequents of the form

$\alphaarrow\alpha$ . The rules of inference of $D_{0}pL_{e}$ are given as follows:

$\frac{Xarrow\alpha\Gamma(\alpha)arrow\delta}{\Gamma(X)arrow\delta}$ (cut)

$\frac{\Gamma(X)arrow\delta}{\Gamma(X|Y)arrow\delta}$
$\frac{\Gamma(X|X)arrow\delta}{\Gamma(X)arrow\delta}$

$\Gamma(X|Y)arrow\delta$ $\Gamma(X,Y)arrow\delta$

$\Gamma(Y|x)arrow\delta$ $\Gamma(Y, X)arrow\delta$

$\frac{\Gamma(\alpha)arrow\delta\Gamma(\beta)arrow\delta}{\Gamma(\alpha\beta)arrow\delta}$

$\frac{\Gammaarrow\alpha}{\Gammaarrow\alpha\vee\beta}$
$\frac{\Gammaarrow\beta}{\Gammaarrow\alpha\vee\beta}$

$\frac{\Gamma(\alpha|\beta)arrow\delta}{\Gamma(\alpha\wedge\beta)arrow\delta}$ $\frac{\Gammaarrow\alpha\Gammaarrow\beta}{\Gamma|\trianglearrow\alpha\wedge\beta}$

$\Gamma(\alpha,\beta)arrow\delta$

$\frac{\Gammaarrow\alpha\Gammaarrow\beta}{\Gamma,\Deltaarrow\alpha*\beta}$

$\Gamma(\alpha*\beta)arrow\delta$

$\frac{\Gammaarrow\alpha\Delta(\beta)arrow\delta}{\Delta(\alpha\supset\beta,\Gamma)arrow\delta}$ $\frac{\Gamma,\alphaarrow\beta}{\Gammaarrow\alpha\supset\beta}$

$\frac{\Gamma(\alpha(x))arrow\delta}{\Gamma(\exists z\alpha(_{Z}))arrow\delta}(\existsarrow)$
$\frac{\Gammaarrow\alpha(y)}{\Gammaarrow\exists z\alpha(Z)}$

$\frac{\Gamma(\alpha(y))arrow\delta}{\Gamma(\forall z\alpha(z))arrow\delta}$
$\frac{\Gammaarrow\alpha(x)}{\Gammaarrow\forall z\alpha(\mathcal{Z})}(arrow\forall)$

As usual, the variable condition must be satisfied when we use $(\existsarrow)$ and $(arrow\forall)$ .

Since any sequent of $DFL_{e}$ is of the form $\alpha_{1},$ $\ldots,$
$\alpha_{k}arrow\beta$ , it can be regarded also

as a sequent of $D_{0}FL_{e}$ by identifying commas appearing in it with commas in the

definition of antecedents. Then, we can show the following, similarly to [19].

97



Theorem 4 For any sequent $S$ of $DFL_{e},$ $S$ is provable in $DFL_{e}$ if and only if it is
provable in $D_{0}FL_{e}$ .

Next, we will introduce an extension $DFL_{e}^{+_{\mathrm{o}\mathrm{f}}}$ DFL , which has the new operation
コ. For this operation, it has the initial sequent $\alpha$ A (a コ $\beta$ ) $arrow\beta$ and the following
rule of inference;

$\alpha\wedge\gammaarrow\beta$

$\gammaarrow\alpha$ コ $\beta$

Corresponding to $DFL_{e}^{+}$ , we will introduce also an extension $D_{1}FL_{e}$ of $D_{0}FL_{e}$ ,
which is obtained from the latter by adding the following rules of inference for コ ;

$\frac{\Gammaarrow\alpha\Delta(\beta)arrow\delta}{\triangle(\alpha \text{コ}\beta|\Gamma)arrow\delta}$ $\frac{\Gamma|\alphaarrow\beta}{\Gammaarrow\alpha \text{コ}\beta}$

Similarly to Theorem 4, we can show the following.

Theorem 5 For any sequent $S$ of $DFL_{e}^{+},$ $S$ is provable in $DFL_{e}^{+}$ if and only if it is
provable in $D_{1}FL_{e}$ .

Moreover, we can show the following.

Theorem 6 The cut elimination theorem holds for $D_{1}FL_{e}$ .

By using Theorems 6, 4 and 5, we have the following.

Theorem 7 $DFL_{e}^{+}$ is a conservative extension of $DFL_{e}$ .

Now, we will give a proof of Theorem 3. Suppose that a formula $\alpha$ is not provable in
$DFL_{e}$ . Then, by Theorem 7, neither is it provable in $DFL_{e}^{+}$ . Let $\mathrm{B}$ be the Lindenbaum
algebra of $DFL_{e}^{+}$ and $f$ be the canonical mapping from the set of formulas to $B$ , for
which $1\leq f(\alpha)$ doesn’t hold. It is easy to see that $\mathrm{B}$ is a $DFL_{e}^{+}$ -algebra. Now let
$\tilde{\mathrm{B}}$ be the $\mathrm{D}\mathrm{M}$-completion of B. Then, $\tilde{\mathrm{B}}$ is a complete $DFL_{\mathrm{e}}^{+}$ -algebra and a fortiori
a complete $DFL_{e}$ -algebra. Let $h$ be the embedding from $\mathrm{B}$ to $\tilde{\mathrm{B}}$ which preserves all
exisiting meets and joins in $B$ . Then, the composite $h\circ f$ is a valuation on $\tilde{\mathrm{B}}$ for which
$1\leq(h\circ f)(\alpha)$ doesn’t hold. This completes the proof of Theorem 3.

This method will work when the extension by adding $\text{コ}$ is conservative over the
original system. On the other hand, it will not work well for relevant logics like $RQ$

in which $\forall x(\alpha(x)\vee\beta)\supset(\forall x\alpha(X)\vee\beta)$ holds. For, the $\mathrm{D}\mathrm{M}$-completion doesn’t work at
all for them, as we mentioned in Section 1.
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4 Algebraic incompleteness

In the previous section, we have shown that the Dedekind-MacNeille completion works

well in proving the completeness theorems for substructural predicate logics. In this

section, we will show an inherent weakness of algebraic semantics, from which many

incompleteness results come. In the following, we will discuss mainly the incomplete-

ness phenomena among intermediate predicate logics, $i.e.$ , logics between the classical

logic and the intuitionistic.

In the following, we will say an intermediate predicate logic $L$ is algebraically in-

complete if there is no class of algebraic structures (in the sense of Section 1) with

complete Heyting algebras such that $L$ is complete with respect to it. The algebraic

incompleteness was first pointed out by the present author in [10] (see also [12]). In

fact, the following result was shown in it (Theorem 2.4).

Theorem 8 There are uncountably many intermediate predicate logics which are al-

gebraically incomplete.

After that, several results on algebraic incompleteness have been shown ( $e.g$ . [6],

[17] and [20] $)$ . In the following, we will try to make it clear that there exists an

essential difference between instantiations in logic and in algebra, from which most of

algebraic incompleteness results obtained up to now follow.

To show this, as an example let us take the logic $LF$ obtained from the intuitionistic
predicate logic Int by adding the following axiom $F$ : $\exists x\forall y(P(x)\supset P(y))$ . It is

easy to see that the propositional fragment of this logic is equal to the intuitionistic
propositional logic. (As for the propositional fragment of a given logic, see Section

5 of [10], for instance. ) On the other hand, the above axiom can be expressed in

algebraic terms as: $\bigcup_{i}\bigcap_{j}(a_{i}\supset a_{j})$ . As a special case, if these indeces $i$ and $j$ run over

the finite set {1, 2}, this becomes

$((a_{1}\supset a_{1})\cap(a1\supset a_{2}))\cup((a_{2}\supset a_{1})\cup(a2\supset a_{2}))$

which is equivalent to $(a_{1}\supset a_{2})\cup(a_{2}\supset a_{1})$ . On the other hand, this term is not

always equal to 1 in any Heyting algebra. Here, we can see a certain descrepancies.

Now let us state the above argument in a more formal way. Define formulas $N_{1}$

and $Lin$ as follows;

$N_{1}\equiv(\exists xP(x)\supset\forall xP(x))$

$Lin\equiv(p\supset q)$ A $(q\supset p)$
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Then, by using the above argument we can show first that

for any algebraic strucuture $\langle \mathrm{A}, V\rangle$ with a complete Heyting algebra $\mathrm{A}$ , if
the formula $F$ is valid in $\langle \mathrm{A}, V\rangle$ then the formula $Lin\vee N_{1}$ is also valid in
it.

In proving this, we use the fact that when the cardinality of the set $V$ is greater than
1, $f(N_{1})=0$ for some valuation $f$ , where $0$ is the least element of a given Heyting
algebra. On the other hand, we can show that

the formula $Lin\vee N_{1}$ is not provable in the logic $LF$ .

From these two facts, we can easily derive the incompleteness of $LF$ . So, it remains
to give a proof of the second statement. For this purpose, we will use Kripke-sheaf
semantics introduced in [17]. (Here, we will not give the definition of Kripke-sheaf
semantics. As for the details, consult [17]. ) We will take the following Kripke sheaf
$\mathrm{S}=\langle\langle D, \rho\rangle, \langle W, \leq\rangle, \pi\rangle$ such that

1. $D=\{u_{0}, u_{1}, v, w\}$ with the binary relation $\rho$ such that $x\rho y$ if and only if (1)

$x=y$ or (2) $x=u_{i}$ (for $i=0,1$ ) and either $y=v$ or $y=w$ ,

2. $W=\{a, b, c\}$ with the binary relation $\leq$ such that $x\leq y$ if and only if (1) $x=y$

or (2) $x=a$ ,

3. $\pi(u_{0})=\pi(u_{1})=a,$ $\pi(v)=b$ and $\pi(w)=c$ .

Roughly speaking, $u_{0}$ and $u_{1}$ are elements in the world $a$ , which is smaller than both
$b$ and $c$ , and both of them become $v$ (and $w$ ) in the world $b$ (and $c$ , respectively).

Then, it can be shown that the formula $F$ is valid in this Kripke-sheaf $\mathrm{S}$ but the

formula $Lin\vee N_{1}$ is not. Similarly, we can show the following. (See also [6] and [17]. )

Theorem 9 Let $L$ be any intermediate predicate logic which is obtained from Int
by adding one of the following axioms; $\exists x\forall y(P(x)\supset P(y))$ , $\exists x\forall y(P(y)\supset P(x))$ ,
$\exists x(P(x)\supset\forall yP(y))$ , $\exists x(\exists yP(y)\supset P(x))$ , $\neg\urcorner\exists xP(x)\supset\exists x\neg\neg P(X)$ . Then, $L$ is
algebraically incomplete.

Our present method can cover also other incompleteness results mentioned in [6].
In these examples discussed above, the incompleteness is caused by the fact that an
instantiation of the algebraic expression for a given axiom produces a stronger principle,
when we take a finite set for the index set. To the contrary, sometimes it happens that
an instantiation gives a weaker principle, and this also causes the incompleteness.
To explain this, let $D$ be the formula $\forall x(\alpha(x)\beta)\supset(\forall x\alpha(X)\vee\beta)$ , in which the
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variable $x$ doesn’t occur free in $\beta$ . Then, its algebraic form will be (equivalent to)
$\bigcap_{i}(a_{i}\cup b)=(\bigcap_{i}a_{i})\cup b$. If the indeces $i$ and $j$ run over a finite set, this equality

expresses the finite distributivity and therefore is deduced from the usual distributive
law. Now for each positive integer $m$ define the formula $R_{m}(x)$ and $N_{m}$ as follows,

where each $P_{j}(x)$ is a predicate symbol;

$R_{1}(x)\equiv P1(X)$ ,
$R_{m+1}(X)\equiv$ ( ( $\bigwedge_{i1}^{m}=\neg P_{i())}x$ A $P_{m+1}(X)$ ),
$N_{m} \equiv(\bigwedge_{i=1}^{m}\exists xRi(x)\supset\forall x(\mathrm{v}^{m}i=1R_{i}(X)))$ .

It can be easily checked that the formula $N_{m}$ is valid in an algebraic structure
$\langle \mathrm{A}, V\rangle$ if and only if the cardinality of the set $V$ is not greater than $m$ . Now, by the
above argument and the fact that any Heyting algebra is distributive, we have that

for any algebraic strucuture $\langle \mathrm{A}, V\rangle$ with a complete Heyting algebra $\mathrm{A}$ , if
the formula $DN_{m}$ is valid in $\langle \mathrm{A}, V\rangle$ then the formula $D$ is also valid in
it.

On the other hand, we can show that $D$ is not provable in the logic obtained from Int

by adding $D\vee N_{m}$ as the axiom. Thus this logic is algebraically incomplete. In fact,
this is the essence of the proof of Theorem 8.

As we have discussed in the above, there seems to be a big difference between
instantiations in logic and in algebra. In other words, though usually we interpret
quantitiers as infinite joins and meets in algebraic semantics, $i.e.$ , we deal with quan-
tifiers like infinite disjunctions and conjunctions, this will be not always appropriate.
So, one of the most important questions in the study of algebraic semantics for predi-
cate logics would be how to give an appropriate interpretation of quantifiers, in other
words, how to extend algebraic semantics.
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