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Abstract

It is well-known that every proof net of MNCLL(Multiplicative fragment of
Non-Commutative Linear Logic), can be drawn as a plane Danos-Regnier graph
(drawing) satisfying the switching condition of Danos-Regnier ([3]). In this paper,
we show the reverse direction that every plane Danos-Regnier graph (drawing) with
one terminal edge satisfying the switching condition represents a unique MNCLL
proof net (unique up to the dual mirror images). In the course of proving this, we
also give the characterization of the MNCLL proof nets by means of the notion of
strong planity of a Danos-Regnier graph, as well as the notion of a certain long-
trip condition, called the stack-condition, of a Danos-Regnier graph, the latter of
which is related to Abruci’s balanced long-trip condition ([2]). In our full-paper
version, we shall also apply our results to Intuitionistic Linear Logic, and obtain a
characterization theorem for Multiplicative Intuitionistic Non-Commutative Linear
Logic, in terms of signed Danos-Regnier graphs.
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1 Introduction.

It is well-known that the proof nets of Multiplicative (Commutative) Linear Logic
(MLL) are characterized by a simple and elegant graph-theoretic condition, saying that
any Danos-Regnier graph is a proof net of MLL if and only if it is acyclic and connected un-
der any choice of par-link switching (c¢f. Danos-Regnier [3]). This condition is sometimes
called as the (Danos-Regnier) switching condition. This characterization is a simplified
version of a famous result of Girard ([4]), which is called the long-trip condition. It has
been well-known that any proof net of Multiplicative Non-Commutative Linear Logic can
be drawn as a plane graph. Hence, a proof net of Multiplicative Non-Commutative Linear
Logic is a Danos-Regnier graph which not only satisfies the Danos-Regnier condition but
also is planar. It has been a long-time open question if or not the reverse direction is
true. The purpose of this paper is to answer to this question affirmatively; we show that
any plane Danos-Regnier graph drawing with one terminal edge satisfying the switch-
ing condition represents a unique proof net of Multiplicative Non-Commutative Linear
Logic modulo the mirror images (namely, it is interpretable to exactly two different non-
commutative proof nets, each of which is the mirror image of the other). We also give a
relationship of our purely graph-theoretic characterization of the non-commutative proof
nets and Abruci’s characterization ([2]) which uses the notion of a balanced long-trip
condition.

In the course of our characterization proof, we introduce new notions of strong planity
of a graph, and of the stack condition of a long-trip; roughly speaking, a marked Danos-
Regnier graph is strongly planar if it is not only planar but also has a plane drawing
extension to a par-link closure in which the ports of all links are rotated in a same direc-
tion (either clock-wisely or anti-clock-wisely), where a marked Danos-Regnier graph is a
usual Danos-Regnier graph in which each ports of a link has a port name L (Left) or R
(Right) or C (Conclusion). (See Section 2 for the formal definition). The stack condition
is a modification of Abruci’s balanced long trip condition ([2]); Instead of putting a mark
at each conclusion node during a long-trip in Abruci’s long-trip condition ([2]), our stack
condition uses a stack for recording a certain information of a long-trip. (See Section 3
for the definition.)

In the next Section (Section 2) we show that any non-commutative proof net (i.e., a
proof net of Multiplicative Non-Commutative Linear Logic) is a strongly planar marked
Danos-Regnier graph satisfying the switching condition. In Section 3, we show that any
non-commutative proof net is a strongly planar marked Danos-Regnier graph satisfying
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the switching condition. In Section 4, the equivalence between the stack condition and
Abruci’s long-trip condition is established. In Section 5, we show that if a marked Danos-
Regnier graph satisfies the stack condition it is interpretable as a non-commutative proof
net uniquely. In Section 6, we prove that any strongly planar marked Danos-Regnier
graph satisfying the switching condition also satisfies the stack condition, which estab-
lishes the equivalence between the non-commutative proof nets and the three characteri-
zations above. Since any plane marked Danos-Regnier graph drawing has a unique way to
malke a strongly planar marked Danos-Regnier graph (unique up to the isomorphic mirror
images) as a corollary of the above, we establish the main characterization theorem that
any plane Danos-Regnier graph drawing with one terminal edge, satisfying the switching
condition, represents a unique non-commutative proof net (modulo the isomorphic mirror
images), and vice versa. This characterization theorem gives the relationship between the
notion of non-commutativity in logic and the notion of planity in graph theory.

The structure of the Sections is as follows.
Non—commutative Proof Net

S.5 S. 6 \ S.3
Stack Condition = Strong Planity of marked D-R graphs
S. 4 '} S.6
Long Trip Condition Planity of D—R graph drawings

2 Classical System MNCLL.

We denote a sequence of formulas by a capital Greek letter, such as A, I, ¥, --. We
give the one-sided version of Multiplicative Non-Commutative Linear Logic.

Definition 2.1 We define the nagation of a formula as follows: For each formula A and
B, (A®B)* = BtpAt, (ApB)* = B*@AL, and (A4 = A.

Definition 2.2 We define the system MNCLL (Multiplicative fragment of Non-Commutative
Linear Logic) (Yetter [10]).

Azioms:

A, AL, where A is a formula.
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FT.A F AL A FAL A A,
FT.A (cwt) A 4 a (Shift)

FDA FBA ) .4, B.A (oar)
FT, A®B, A (tensor) T 3B A (P97,

We define a non-commutative proof net, as a graph induced from a derivation in MNCLL
as follows. We call an edge a terminal edge, if it is connected to a conclusion node.

Definition 2.3 We define a non-commutative proof net by induction on the derivation
in MNCLL. '

(Axiom.) We draw an aziom-link corresponding to = A, AL as follows, so that we obtain
a non-commutative proof net with the terminal edges of A, A*.

A; ;A'J‘
(Cut.) Assume that sequences ', A and AL, A of formulas are the terminal edges of non-

commutative proof nets Ny and Ny respectively. Now we draw a cut-link as follows, so
that we obtain a new non-commutative proof net with the terminal edges of ', A.

JOIOE r® e

I

(Tensor.) Assume that sequences ', A and B, A of formulas are the terminal edges of non-
commutative proof nets Ny and No respectively. Now we draw a tensor-link as follows, so
that we obtain a new non-commutative proof net with the terminal edges of I', AQ B, A.

c® @a ISR

%
=

(Par.) Assume that sequences ', A, B, A of formulas are the terminal nodes of a non-
commutative proof net N. Now we draw a par-link as follows, so that we obtain a new
non-commutative proof net with the terminal edges of I', ApB, A.
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(Shift.) Assume that sequences Ay,---, A,_1, A, of formulas are the terminal nodes of a
non-commutative proof net N. Now we extend edges Ay, -, A,_1. and cross them with
Ay, s0 that we obtain a new non-commutative proof net with terminal edges Ay, Ay, -+, A,_;.

Al A ®A A
be

Clearly a non-commutative proof net has the same inductive structure as a proof net of
MLL does. Thus we have the proposition:

Proposition 2.4 A non-commutative proof net is a proof net of MLL.

Proof. By induction on the number of nodes. O
Now we introduce a notion of D-R graphs:

Definition 2.5 A directed Danos-Regnier graph (or D-R graph) is a directed graph, which
consists of axiom-links, cut-links, tensor-links, par-links and conclusion nodes: An aziom-
link has two out-edges; a cut-link has two in-edges; each of a tensor-link and a par-link
has two in-edges and one out-edge.

Definition 2.6 An edge in a D-R graph connected to a conclusion node is called a ter-
minal edge.

We will follow Danos and Regnier’s convention to denote a formula by an edge and a
logical connective by a link in a D-R graph. The following characterization theorem for
proof nets of MLL is due to Danos and Regnier.

Theorem 2.7 (Danos and Regnier [3]) A D-R graph is a proof net of MLL, if and only
if it is always acyclic and connected under any choice of par-switchings (see [3] for the
notion of par-switchings).

We call the condition that a D-R graph is always acyclic and connected under any choice
of par-switchings, as the switching condition.

As we noted earlier, a non-commutative proof net is a proof net of MLL, and so it can
be drawn as a D-R graph.
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3 Non-Commutative Proof Net Implies Strong Plan-
ity

In this section, we introduce a notion of marked D-R graphs. Then we give a notion of

strong planity, which is later shown to characterize non-commutative proof nets in terms

of marked D-R graphs. Our main theorem in this section is that any non-commutative

proof net is strong planar. Finally we explain the relationship between the strong planity
of the marked D-R graphs and the planity of the D-R graphs.

Definition 3.1 A marked D-R graph is a D-R graph, where each of a tensor-link and
a par-link has two in-edges labeled L (left) and R (right), respectively, and one out-edge
labeled C (conclusion,).

Now we give a few geometric notions of a marked D-R graph necessary to define the
strong planity.

Definition 3.2 A marked D-R graph drawing is said to be uniformly directed if the L-
edge, R-edge and C-edge for o link is drawn in o fized cyclic order uniformly for all
tensor-links and par-links, or the links of degree 3.

Definition 3.3 Let G be a marked D-R graph. A marked D-R graph G with single ter-
minal edge is a closure of G, if it is obtained from G by removing the conclusion nodes
from G, and connecting free edges by par-links, and by adding a conclusion node to the
single free edge left at the end.

Definition 3.4 A marked D-R graph G is said to be strongly planar, if there exists a
closure G of the graph G, which has a plane and uniformly directed drawing.

By a mirror image of a marked D-R graph drawing, we mean the reflection of the marked
D-R graph drawing in the mirror: Thus any clockwisely directed marked D-R graph
drawing has the mirror image, which is counter-clockwisely directed.

As a matter of simplicity, for a strongly planar graph G we always consider its uni-
formly directed plane graph drawing. Moreover we may assume that the links in the
graph drawing are clockwisely directed, by taking its mirror image if necessary.

Let the in-edges L (left) and R (right) of a tensor-link (or a par-link) be labeled with
formulas A and B, respectively. Then the out-edge C (conclusion) is labeled with the
formula AQB (or ApB, respectively).

Proposition 3.5 Let (ApB)pC be an edge in o strongly planar marked D-R graph. Then
we can obtain a new strongly planar graph with an edge Ap(BpC).
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Proof. By removing the pars from the graph drawing G with edge (ApB)pC, we obtain
3 free edges A, B and C. Then by connecting B and C first, and then A, we obtain a
new plane clockwisely directed marked D-R graph drawing G’ with edge Ap(BpC).

= .

7
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Definition 3.6 We call a formula (ApB)pC or Ap(BpC) as an associative par instance
of A,B,C.

We naturally extend the notion of the associative par instance for A4, -+, A,.

Definition 3.7 We define a marked D-R graph with a sequence T of edges as follows:
(1) A graph G is a marked D-R graph with A, if and only if it is a marked D-R graph
with terminal edge labeled A.

(2) A G' is a marked D-R graph withT', A, B, A, if and only if it is obtained from a marked
D-R graph G with ', ApB, A. by removing the par-link connecting A and B by the L-edge
and the R-edge, 7‘espéctively.

Proposition 3.8 Assume that a strong planar graph G satisfies the switching condition.
Let G be a closure of G, which is a strongly planar graph with single terminal edge. Then
the following are equivalent:

(1) The graph G is a strongly planar graph with Ay,--- A,,

(2) the graph G is a strongly planar graph with single terminal edge being an associative
par instance of Ay, -+, A,,

(3) for any associative par instance A of Ay,---, A,. there exists a strongly planar graph
with A as the single terminal edge. ‘

Proof. The equivalence between (1) and (2) follows from Definition 3.7. The equivalence
between (2) and (3) follows from Proposition 3.5. O

Theorem 3.9 If a marked D-R graph satisfying the switching condition is a non-commutative
proof net, then it is strongly planar.
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Proof. Let the non-commutative proof net have terminal nodes . We construct by in-
duction on the structure of the non-commutative proof net, a plane clockwisely directed
marked D-R graph drawing G with : Our construction preserves planity even when the
Shift rule is applied.

Aziom. If the non-commutative proof net only consists of an axiom-link, then the claim
trivially holds.

Shift. Assume that the last inference applied to the non-commutative proof net is Shift.
Then the terminal nodes are © = A,, Ay, -+, A4,_1. By induction hypothesis, a non-
commutative proof net with terminal nodes ¥ = A4;,---, A,_1, A, is strongly planar: so
it has a plane clockwisely directed marked D-R graph drawing G with Ay,--- ,A”_i, A,.
Then we bring the edge A, over the drawing without intersecting the drawing itself: This
is possible since the drawing is a finite figure. Thus we obtained a new plane clockwisely
directed marked D-R graph drawing with A,, Ay, -+, A1

Par. Assume that the last inference applied to the non-commutative proof net is a

par-link ApB: Let © = T', ApB,A. By removing the par-link, we obtain a new non-

commutative proof net N with terminal nodes I', A, B, A. By induction hypothesis, the

non-commutative proof net N is strongly planar, and it has a plane clockwisely directed
marked D-R graph drawing with T', 4, B, A. By simply connecting the edges A and B

by a par-link with the L-edge and R-edge, we obtain a new plane clockwisely directed

marked D-R graph drawing with I', 4pB, A.

- & a

A = — -
L R

lc
AT B

Tensor. Assume that the last link added to the proof net is a tensor-link A®B: Let
Y =T, AQB, A. By removing the tensor-link, we obtain new non-commutative proof nets
N; and N, with terminal nodes T', 4 and B, A, respectively. By induction hypothesis, Ny
with T, A and N, with B, A are strongly planar. Let their marked D-R graphs be G4 and
G, respectively, whose drawings are plane clockwisely directed. We draw G4 and Gp
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apart enough so that there is no crossing between them. By conunecting the edges A and
B by a tensor-link with the L-edge and the R-edge respectively, we obtain a new plane
clockwisely directed marked D-R graph drawing for the D-R graph G with ', AQ B, A.

Cut. We can argue similarly to the case of tensor.
& & Q6
- \\\&i@\ SN
A A

7
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4 Equivalence between Stack Condition and Abruci’s
Long Trip Condition.

In this section, we give the notions of the long trip condition and the stack condition,
and show the equivalence between the two. The long trip condition was originally given
by Abruci, in order to characterize a multiplicative non-commutative Linear Logic MNLL
([2]). The system MNLL is not equivalent to MNCLL: because sequent - A, AL is not a
theorem, while sequent + A+, 4 is, in MNLL due to the lack of the Shift rule.

The long trip condition is defined by a special trip, which is a long trip with restrictions.
Because system MNCLL is defined with the Shift rule, the long trip condition for MNCLL
will become much simpler than that for MNLL.

‘The notion of a stack condition is obtained from an attempt to analyze the relationship
between the strong planity and the long trip condition; we show at the end of this section,
the precise correspondence between the long trip condition in MNCLL and the stack
condition.

Let us note that marked D-R graph G satisfying the switching condition is by The-
orem 2.7, a proof net of MLL. Now we show how to adapt the long trip condition to
MNCLL; and we also call the adaptation simply as the long trip condition in what fol-
lows. The following list of definitions and theorems are due to Abruci ([2]), unless noted
otherwise.
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Definition 4.1 (Abruci [2]). For a given marked D-R graph G with an edge A,

(1) T is a point of G, iff T is A ] or AT,

(2) we call a sequence Ty, -+, T, of points of G a one-way special trip from AT (or A'])
in G, iff the sequence is portion of the long trip in G from Ty = AT toT, = A | (or
Ty=A] toT, = AT, respectively), with the following switching:

(2.1) every @-link is switched on "R™ ("right”),

(2.2) every p-link is switched on "L" ("left”).

Let G be a marked D-R graph satisfying the switching condition. By Theorem 2.7, graph
G is a proof net of MLL. We say an edge is a critical node (a critical vertex of Abruci [2])
, if it is a terminal edge or a R-edge of a par-link.

As mentioned above, in system MNLL of Abruci [2], sequent + At A is a theorem,
while sequent + A, AL is not. Due to such an asymmetry, Abruci’s original long trip
condition makes a distinction between traversals A T, At | and A% 1,4 | of an axiom-
link by means of the labels ¢ + a; where C is a critical node of a marked D-R graph
Satisfying the switching condition, and « is an integer. By contrast, in our system MNCLL,
we can start with the following simplified definition.

Definition 4.2 (Modification of Definition 3.0 (iii) of Abruci [2]) S(G) = {z%;C is a
critical node of G}.

Let A be a terminal edge of G. An assignment for G from A is defined by a special trip
Ty,---,T, starting from T3 = A 7.

Definition 4.3 We define an assignment for G from A by induction on i.

(1) L(Ty) = x4,

Assume we defined L(T;) for i < n;

(2) if Ty = B |, and B is a critical node of G (and so T11 = B 1), then L(Tiy1) = zB;
(3) if T; = B | and B is the first premise of a par-link with C' as second premise, then
L(Tiyy) = L(C |), if C |=T; with j <i and L(T;) = 2, or undefined, otherwise;

(4) L(Tiy1) = L(T3), in all the other cases. : '

We say an assignment £ for G is total, iff £ is a total function.

Proposition 4.4 (Proposition 3.2 of Abruci [2]) Let G be a marked D-R graph satisfying
the switching condition. Let L be a total assignment for G. If L' is an assignment for G,
then L' is total, and L = L.
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Definition 4.5 (Definition 3.3 of Abruci [2]) Let G be a marked D-R graph satisfying the
switching condition. (1) G is good, iff every assignment for G is total: By the previous
proposition, if G is good. then all the assignments for G are equal.

(2) If G is good, the labeled special trip in G is obtained from a special trip by replacing
each point A | by AL(A |) and each point A T by L(A 1)A, where L is the unique
assignment for G.

Definition 4.6 (Modification of Definition 3.7 of Abruci [2]) (1) Let £ be the unique
total assignment for G. We define the binary relation < (precedes) on the terminal edges
of G:

A<BiffL(A])=L(T B) =%,

(2) G induces the linear order of the conclusions, iff < is a chain, and every conclusion
occurs exactly once in the chain.

Definition 4.7 (Definition 3.8 of Abruci [2] ') Let G be a marked D-R graph satisfying
the switching condition, and let ¥ be a sequence of the edges in G. Then G with ¥ satisfies
the long trip condition, iff (1) the conclusions of G are exactly the formulas in T, (2) G
is good, and (3) G induces the linear order of the conclusions.

Lemma 4.8 (Lemma 3.9 of Abruci [2]) Let G be a non-commutative proof net with con-
clusions ¥ = Ay,---, A,. Then the labeled special trip in G looks as:

(A)AL - Ap(a™), () Ag, -+, Ag(a®), (242) Ay, -+, Ay (2™2), - - -, and no conclusion
occurs for every 1 < 1 < k in the portion between (x*i)A;, -, Aj(x?di+1),

Proof. By the property of a special trip in a proof net of MLL. O

In the long trip condition, the well-defined special trip gives the labels to edges as it visits,
but the labels do not necessarily order all the terminal edges in the graph. Thus one needs
Definition 4.7 (1) to get a correct notion. In the stack condition, on the other hand, any
well-defined special trip always order all the terminal edges in the graph.

Definition 4.9 (1) We define a stack ¥ = Ay, ---, A, as a sequence of formulas. Pop(S) =
A;. Let A be a formula. Then Push(A,S)=A,S.

(2) Let G be a marked D-R graph satisfying the switching condition, i.e. a proof net of
MLL. LetTy,---,T, be a special trip on G. We define a stack state Sq;(T;) at a point T;

by induction i < n as follows:

'Definition 3.8 in [2] defines Abruci’s non-commutative proof net for MNLL: However we call as a
non-commutative proof net the inductive structure defined in Section 2 in this paper. Instead, we call
Abruci’s non-commutative proof net as a marked D-R graph satisfying the switching condition and the
long trip condition.
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(2.1) So(T1) = 6.

Assume we defined Sq(T;) for i < n:

(2.2) Let Tyyy = BT and T; = B |. Then S¢(Tiy1) = Push(B, Sa(T3)).

(2.3) Let Ty = BpC | and T; = B |. Assume Sq(T;) = Ay,- -+, An. Then Sg(Tij) =
Ay, An, if Pop(Sa(Ty)) = Ap = C, and undefined, otherwise. (2.4) S¢(Tiv1) = Sc(T3)
in all the other cases.

(2.5) If Sq(T;) is undefined, then Sq(Tiy1) is undefined, as well.

Definition 4.10 Let G be a marked D-R graph satisfying the switching condition, and
Ty, -, T, withT, = C | be a special trip on G and C is a terminal edge in G. We say
that graph G with ¥ satisfies the stack condition, if Sg(T.) = X.

Finally we show the correspondence between the long trip condition and the stack condi-
tion.

Lemma 4.11 Let G be a marked D-R graph being good and satisfying the switching con-
dition. Let T be a point in G. and let Ty,---, T, be a special trip on G with Ty = C |,
where C is a critical node. For any 1 <i <n, if B = Pop(Sg(T;)), then L(T;) = x5.

Proof. We prove it by induction on the length of the special trip in G from C |. Assume
that the claim holds for i < n. Since it suffices to show the claim when the stack changes,
we have 2 crucial cases: (1) Let Tipy = B T and T; = B |. Then £(T;41) = 2B, and the
claim trivially holds. (2) Let T4y = BpC | and T; = B |. Assume Sg(Tiy) = D, T
for some sequence T of critical nodes in marked D-R graph G. Because Sg(Ti41) is well-
defined, S¢;(T;) = C, D,T. Hence there is a C, such that S¢(C |) = D, T and T; = C' |
for some j <i. £(C |) =P and L(B |) = 2. Therefore L(BpC |)=2". O

Lemma 4.12 Let G be a marked D-R graph with ¥ satisfying both the s'witchz'ng condition
and the long trip condition. Let BpC | be a point in G. If L(BpC |) = 14, then the last
visited C' | satisfies L(C |) = a1,

Proof. Since G is a proof net of MLL and £(BpC |) = z#, by removing enough par-links
from G, we obtain a new marked D-R graph G’ with terminal edges I', BpC, A, A. The
argument in Theorem 4.1 (i) in [2] shows that the long trip condition is preserved under
the removal of par-links: Hence the graph G’ with I, BpC, A, A satisfies the long trip
condition. Again by removing the par-link between B and C, we obtain a new marked D-
R graph with I', B, C, A, A satisfies the long trip condition. By Lemma 4.8, £L(C |) = 4.
0
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Lemma 4.13 Let G be a marked D-R graph with ¥ satisfying both the switching condition
and the long trip condition. Let T be a point in G. and let Ty,---,T, be a special trip on
G with Ty = C |, where C is a critical node. For any 1 < i < n, if L(T) = a8, then
Pop(S¢(T)) = B.

We show by induction on the length of the special trip in G. Assume that the claim
holds for ¢ < n. We have the following two crucial cases: (1) Let T;,; = B 1, and B
is a critical node. Then T; = B |, and so Pop(S¢(Ti+1)) = B. (2) Let Tiyy = BpC |,
and L(T;11) = @*. Then T; = B | and L(B |) = C, since £L(BypC |) is defined. By
Lemma 4.12, the last visited C' | satisfies £(C |) = a®. Since induction hypothesis
implies Pop(S¢(C |)) = A, Sq(C |) = A,T for some sequence I' of critical nodes in
marked D-R graph G. Because this C' is visited last, Sq(B |) = C, A,T. Then point
BpC' | follows, hence Pop(Sq(B |)) = C and Pop(S¢(Ti41)) = A. O

Theorem 4.14 Let G be a marked D-R graph with terminal edges ¥ satisfying the switch-
ing condition. The marked D-R graph G with ¥ satisfies the long trip condition, iff G
with ¥ satisfies the stack condition.

Proof. Assume G with ¥ satisfies the stack condition. Clearly G is good, and has terminal
edges exactly equal to formulasin ¥. Let ¥ = Ay,---, A,. Because of the stack condition
of G, A; is a critical node, Sg(A4; |) = 4i41,- -+, Ap and Sg(4; 1) = A;, -+, A,. Therefore
L(A; 1) = 24 and L(4; |) = a%+ follow from Lemma 4.11. The reverse direction is
clear from Lemmas 4.8 and 4.13. O

5 Stack Condition Implies Non-Commutative Proof
Net.

In this section, we show that any marked D-R graph satisfying the stack condition is
a non-commutative proof net.

Definition 5.1 A sequence A;41,- -, An, A1, -, A; (i < n)is called as a shift of Ay, -+ -, A,

Proposition 5.2 Let G be a marked D-R graph satisfying the switching condition, As-
sume for some terminal edge C' in G, the special trip Ty,---, T, with Ty = C | satisfies
Sa(T,) = X. Then for any terminal edge D in G, the special trip T}, -+, T, withT{ = D |
satisfies Sq(T,,) equal to a shift of &, in which D is the rightmost formula.

Proof. By the property of the special trips. O
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Proposition 5.3 Let G be a marked D-R graph with ¥ satisfying both the switching
condition and the stack condition. Then for any shift ¥’ of ¥, G with ¥’ satisfies the
stack condition.

Proof. By Proposition 5.2. O

Definition 5.4 An edge A is said to be connected to an edge B. if there is a path con-
necting the edges A and B.

Theorem 5.5 Let G be a marked D-R graph with ¥ satisfying both the switching condition
and the stack condition. Then it is a non-commutative proof net with terminal edges .

Proof. Because the marked D-R graph G satisfies the switching condition, by Theo-
rem 2.7, G is a proof net of MLL. Thus we may assume its inductive structure on G.
(Aziom.) Clear. )

Assume the marked D-R graph G with ¥ satisfies the stack condition.

(Par.) Let ¥ be ', ApB,A. Let G' be a marked D-R graph obtained by removing the
par-link between A and B. We show the stack condition on G’ with I', A, B, A follows. Let
C be the rightmost formula in A. By the stack condition of &, a special trip Ty, ---, T, on
G starting T, = C | satisfies S¢(T,) = T, ApB, A. We construct a special trip 77, - -+, T,
" on @, such that Sg(T") =T, A, B,A. We follow the same trip up to A Lilet T; = A .
We define T} = T; (j < i): Because Tiy1 = ApB | and Tiyy = ApB 1, we define the rest
of the trip as T} = Tj2 (1+ 1 < j < m).

Now we show that Sq(T7,) = I', 4, B, A. Because S;(T;) = Sa(T}) for j < i, and
Sc(Tip1) = Sa(ApB |) is well-defined, Sg(T7) = Sg(A |) = B,A. Hence Sg(T},,) =
Sa(A 1) =A,B,A. Since T} = T (1+1 <5 < m), the claim holds. The rest of the
proof follows from the induction hypothesis applied to G'. ’

(Tensor.) We may assume there is no par-link in ¥, whose C-edge is a terminal one. By
Splitting Lemma ([4]), we moreover may assume the tensor-link A®B is added last. By
the stack condition of G, and Proposition 5.3, we assume a special trip 13,---,7, on G
starting 7} = A®B | satisfies Sq(T,) = ¥, where A®B is the rightmost formula. Let
G4 and Gp be marked D-R graphs obtained from marked D-R graph G by removing the
tensor-link between A and B, whose edges are connected to edge A, and are connected
to edge B, respectively: Hence G4 and Gp are only connected at A®B in G. Because of
the property of the special trip, To = A®B T, T5 = A T; and there exist an integer 7 < n,
and formulas D and C, such that each T} (3 < j < i) is a point in the subgraph G4 and
T.=D |, and T, =A ], Tio =B 1,Tiug = C 1,each T (i+3 < j < n—1)is a point in
the subgraph G and T,, = B |. Therefore there exist I' and A such that ¥ = A, T, ARB,
where T' are the terminal edges in G4 and A are the terminal edges in Gp. Moreover,



80

the part of the special trip A |,T5,---,T; gives a special trip on a marked D-R graph
G 4 satisfying Sq,(T;) =T', A, and the part of the special trip B |, Tiya,---,T,_1 gives a
special trip on a marked D-R graph Gp satisfying S¢;,(T,—1) = A, B. Thus both graphs
G 4 and Gp satisty the stack condition. The rest of the proof follows from the induction
hypothesis applied to G4 and Gp.

(Cut.) Similar to the case of tensor. O

6 Strong Planity Implies Stack Condition.

In order to establish the equivalence between the non-commutative proof nets and
the three characterizations, we finally prove that the strong planity implies the stack
condition.

Definition 6.1 An edge A is said to be unilaterally connected to an edge B, if there is a
directed path from the edge A to the edge B.

Lemma 6.2 Assume that a strongly planar D-R graph G with Ay,---, A,, satisfies the
switching condition. If 1 < i < j < n, then in a closure G of G, there exists a par-link
such that the edge A; is unilaterally connected to its L-edge and the edge A; is unilaterally
connected to its R-edge.

Proof. By Proposition 3.8, we may assume that a clockwisely directed plane graph
drawing G with a single terminal edge, being an associative par instance of Aj,---, A,.
We prove the lemma by induction on the number of formulas in the associative par
instance, whose in-edges, the edges A4; and A; are unilaterally connected to. Assume
that the edges A; and A; are unilaterally connected to ApB. By removing the par-link
connecting the edges A and B as the L-edge and the R-edge, we have 2 cases: (I) Assume
that the both edges A; and A4; are unilaterally connected to a single edge A or B. Each
A and B is an associative par instance of a proper subsequence of A4, -- ,A,. By the
induction hypothesis, the claim holds. (II) Otherwise, the par-link we just removed is the
one for the lemma.
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Lemma 6.3 If a D-R graph with a sequence ¥ = Ay, ---, A, is strongly planar, so is a
D-R graph with a shift of ©.

Proof. 1t suffices to construct a clockwisely directed graph drawing with

App(Arp--- pA,_1) as a single terminal edge. By Proposition 3.8, there exists a clock-
wisely directed plane graph with (A41p--- pA,—1). A,. Now we connect by a par-link the
edges Ajp- - pA,_; and A,, with R-edge and L-edge, respectively. Since the graph draw-
ing is a finite figure, we obtain a clockwisely directed plane graph drawing with the single
terminal edge A, (A9 - pA,_1).

L L

iy &
Arora, S A & AP PAL

© ©

In the lemma below,a splitting formula in a D-R graph G satisfying the switching condition

is a formula A®B found in Splitting Lemma ([4]); such that the removal of the tensor-
link between A and B splits D-R graph G into two separate D-R graphs G4 and Gp,
whose edges are connected to edges A and B respectively, both satisfying the switching
condition.

Lemma 6.4 Assume a strongly planar D-R graph G with Ay,---, A,, AQB satisfies the
switching condition, and that AQB is a splitting formula, and that D-R graphs G4 and
Gp are defined as above. Let A; be the edge which belongs to graph Gg; and assume that
any edge A;(1 < j) belongs to G4. Then any edge A;(j < t) belongs Gp.

We note that Splitting Lemma only guarantees the switching condition of D-R graphs G 4
and Gg: Their strong planity will be shown in Lemma 6.5.
Proof. By Proposition 3.8, there exists a clockwisely directed plane graph drawing G,
with single terminal node labeled an associative par instance of A4,---,4,, AQB.

By Lemma 6.2, in the graph drawing G, there exists a par-link P such that the edge
A; is unilaterally connected to its L-edge and edge A®B is unilaterally connected to its
R-edge. On the other hand, by the assumption, edge A4; and edge B are connected in G.
Hence there must be a cycle C connecting B, A®B and A; in the graph G. Then again
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by Lemma 6.2, for any edge A;(i < j), there exists a par-link P’ such that edge A; is
unilaterally connected to its L-edge and edge A; is unilaterally connected to its R-edge.

Hence edge A; and edge A are not located on the same side of the cycle C: If A is
inside of the cycle, then the C-edge of P is not, and vice versa. Therefore edges A ; and
A are only connected via a tensor-link between 4 and B in plane graph drawing G. Thus
edge A; belongs to the graph Gp.

>

T T —— s

//
e

Case 1. Case 2.

How edges are located in Lemma 6.4.

O

Let us make two remarks on the figures above. The figure in Case 1 represents the case
when the single conclusion of a closure of the graph G is located outside of the cycle C;
and the one in Case 2 represents the case otherwise.

We draw the figures in hoth cases that edge A4; is connected Dy the link P first, and
then by the link P'. However the order of the connection is inessential by Proposition 3.8.
Thus the same argument above holds in a picture where the edge A; is connected by the
link P’ first, and then by the link P.

In what follows, when we can uniformly argue in a proof independently of the location
of the conclusion nodes of a graph, we simply use a canonical figure where the conclusion
nodes are spread outside of the graph.

Lemma 6.5 Assume that a strongly planar D-R graph G with S satisfies the switching
condition, and that A®B is a splitting formula. Let G4 and G be D-R graphs obtained
from G by removing the tensor-link between A and B, whose edges are connected to edge A,
and are connected to edge B, respectively. Then there are sequences T and A of terminal
edges in G, such that (1) the edges in T' belongs to G4 and the edges in A belongs to G,
(2) D-R graphs G4 with T', A and G with B,A are strongly planar. (3) T, AQB,A is a
shift of ©.

Proof. We apply Lemma 6.4 to &, A®B, and obtain A and . A plane drawing of the
~graph G contains a subdivision of a plane drawing of each graph G4 and Gp. An example
of the splitting can be shown in the following figure.
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If the splitting formula is a cut one, then we have the following.

Lemma 6.6 Assume a strongly planar D-R graph G with D, Ay, -, A, satisfies the
switching condition, and that L in G is a splitting formula, and that G4 and G4 be
a graph obtained from G by removing the cut-link between A and A‘, whose edges are
connected to edge A and are connected to edge A, respectively. Let A; be the edge which
belongs to graph G 4; and assume that any edge A;(i < j) belongs to G 4. Then any edge
'Aj(j < 2) belongs G 4.

Proof. Again, we consider a clockwisely directed plane graph drawing G, with a single
terminal edge labeled by an associative par instance of D, Ay,---, A,. Let a formula Ajl
be the edge connected to edge A* such that any edge A;(j < j1) belongs to G4. By
Lemma 6.2, for any edge A;(j < 7), in the graph drawing G, there exists a par-link P
such that the edge D is unilaterally connected to its L-edge and the edge Aj; is unilaterally
connected to its R-edge. Again by Lemma 6.2, there exists a par-link P’ such that the edge
Aj is unilaterally connected to its L-edge and the edge A; is unilaterally connected to its
R-edge. Finally there exists a par-link P” such that the edge A4; is unilaterally connected
to its L-edge and the edge A;, is unilaterally connected to its R—edge by Lemma 6.2.
Hence there must be a cycle ' connecting D, A and A;. Clearly the edges A; and A+
are not located on the same side of the cycle C'. The rest of the proof goes similarly to
Lemma 6.4.

Fig. 6. How edges are located in Lemma 6.6.
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Lemma 6.7 Assume that a strongly planar D-R graph G with Ay,---, A, satisfies the
switching condition, and that L in G be a splitting formula. Let G4 and G4 be D-
R graphs obtained from G by removing the cut-link between A and AL, whose edges are
connected to edge A, and are connected to edge AL, respectively. Then there are sequences
I' and A of terminal edges in G, such that (1) the edges in T belong to G4 and the edges
in A belong to Gy, (2) D-R graphs G4 with T, A and G with A* A are strongly planar-
(3) T, A is a shift of Ay,---, A,.

Proof. We apply Lemma 6.6 to A4;,---,4,. Let A4, be the edge belonging to G 4, such
that any edge A;(i < j) belongs to G41. Let A;; be the edge belonging to G4, such
that any edge A;(j < j1) belongs to G 4. Because of the strongly planity of the graph G,
the terminal edge and the cut-link must be on the same side of the cycle through edges A
and A;. Hence the edge A and the terminal edge can be connected without crossing the
graph G itself. Let I be A;, -+, A, Ay, -+, Aj 1, and A be Aj _q,--+, A;q.

—

0O

Theorem 6.8 Assume that a D-R graph G satisfies the switching condition. If G is
strongly planar with ¥, then G with ¥ satisfies the stack condition.

Proof. We prove by induction on the inductive structure of the proof net.

(Aziom.) Clear.

Assume the graph G is a non-commutative proof net with terminal edges ©. (Par.)
Let ¥ be I', ApB,A. Then graph G is strongly planar with I', ApB, A, iff a graph G',
obtained by removing the par-link between A and B, is strongly planar with T', A, B, A
by the definition of strong planity. By induction hypothesis, the graph G’ with I", A, B, A
satisfies the stack condition. Now we show the stack condition on G follows. Let C be
the rightmost formula in A. By the stack condition of G, a special trip 77,---,T", on
G' with T] = C | satisfies S¢(T),) = T', A, B, A. We construct a special trip Ty, - - -, T,
on G such that Sq(T,) = I', ApB, A. We follow the same trip up to A [; let T/ = A |.
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We define T; = T} (j < 4): Then ApB | follows; Tiy, = ApB |: Then ApB T follows;
Tiyo = ApB 1: Finally the trip is continued with A T and the rest of the trip is the same as
on G'; Thus we define T; =T}, (i+3 < j < n). Now we show that Sq(T,,) =T, ApB, A.
Because S¢(T;) = Sa(Tj) for j < i, Sa(Ti) = Sq(Ij) = B,A. Since Tipy = ApB |,
Sc(Tip1) = A. And then Sg(Tiy2) = ApB, A, because Ty = ApB 1. Since T =
Tj_, (i+3 < j < n), the claim holds.

(Tensor.) We may assume there is no par-link in ¥, whose C-edge is a terminal one.
By Splitting Lemma ([4]), we moreover may assume the tensor-link A®B is added last.
By removing the tensor-link, Lemmas 6.3 and 6.5 imply that we obtain strongly planar
graphs G4 with I', A and G with B, A, respectively, where A®B, A, T is a shift of ¥.
By induction hypothesis, both graphs G4 with T', 4 and Gp with B, A satisty the stack
condition. Let T{,---, T/ be a special trip on G, starting from T =A|, Ty =A1
and Sg,(T) = I',A. Similarly let TP,.--, T,7 be a special trip on Gp starting from

» L ng

TE =B |, Tf = B 1 and Sg,(TB) = B, A. We define a special trip T3,---,T, on G as:

na

A®B 1, followed by T3, -, T2, A |, TF,--- T}, B |, A®B |. We can easily show that

ny°?

Sa(T,) = A®B,A,T. Proposition 5.3 implies the stack condition on G with X.

(Cut.) Similar to the case of tensor, but use Lemmas 6.3 and 6.7. O

Theorem 6.9 (Characterization theorem with respect to the marked D-R graph for MN-
CLL) A marked D-R graph is a non-commutative proof net iff it satisfies the switching
condition and (1) it is strongly planar, or (2) it satisfies the long trip condition, or (8) it
satisfies the stack condition.

Proof. By Theorems 3.9, 4.14, 5.5 and 6.8. O

Let us explain the relationship between the strong planity of the marked D-R graphs
and the planity of the D-R graphs: Clearly from the definition, a strongly planar marked
D-R graph is a planar D-R graph by simply forgetting the labels L and R in the graph.
As for the reverse direction, a planar D-R graph in general has more than one plane graph
drawings; and distinct plane D-R graph drawings correspond to distinct non-commutative



86

proof nets, respectively. Thus the next characterization theorem on D-R graph drawing
cannot be improved to a theorem on planar D-R graphs. Note that we can define a closure
of a D-R graph G by means of (unmarked) par-links as in Definition 3.3.

Theorem 6.10 (Characterization theorem with respect to the D-R graph drawing for
MNCLL) A plane D-R graph drawing with one terminal edge, satisfying the switching
condition, represents a unique non-commutative proof net modulo the mirror 1mages.

Proof. We can uniformly label any plane D-R graph drawing by L, R and C clockwisely
or label it counter-clockwisely: Or we can label the plane graph drawing clockwisely or
label its mirror image clockwisely also: Both ways yield the same two non-commutative
proof nets from the plane graph drawing. O

Theorem 6.11 (Characterization theorem with respect to the D-R graph drawing for
Abruci’s MNLL) A plane D-R graph drawing with one terminal edge, satisfying the switch-
ing condition, represents a unique proof net for MNLL of Abruci [2].

Proof. By uniformly labeling any plane D-R graph drawing as in the previous theorem,
we can make it a non-commutative proof net. Now we consider its canonical drawing
such as in Fig. 1, where we can talk about left and right: On each axiom-link in the
non-commutative proof net, we put formulas 4 on the left edge and A+ on the right edge.
This make the plane graph drawing into a proof net for MNLL. O
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