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SINGULARITIES OF THE BERGMAN KERNEL
FOR A TWO-DIMENSIONAL PSEUDOCONVEX
TUBE DOMAIN WITH CORNERS
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INTRODUCTION

The study on the Bergman kernel has a long history and contains enormous works.
Especially, the regularity of the Bergman kernel has investigated by many people. Let
Q = {z; f(2,Z) < 0} € C" be a strictly pseudoconvex bounded domain with C* (resp.
analytic) boundary: that is, f is a C® (resp. analytic) function satisfying that df # 0 at
f =0 and that the matrix (a—fj;—%.;) is positive definite at every point of 92. We denote
the Bergman kernel for 2 by B(z,w). In 1974, C. Fefferman proved the following:

0.1 Theorem. ([F]) Assume that ® : @ — § is a biholomorphic mapping between
bounded pseudoconvex domains with C* boundary. Then, ® can be extended smoothly

up to the boundary. g

In order to prove this theorem, he obtained a new precise result on singularities of
B(z,%) near the boundary. In fact B(z,%) has a form of typical asymptotic expansion
appearing in the theory of pseudodifferential operators. Seeing his result, Boutet de
Monvel and Sjéstrand found out the following Fourier integral representation of the

Bergman kernel in 1976:

0.2 Theorem. ([B-Sj]) Assume that f(z,%) is C*®, then B(z,w) has the following

asymptotic expansion:

B(z,w) E/ e‘/:l_t"’("’ﬁ)b(z,ﬁ,t) dt mod. C*®kernels.
0
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Here g(z,w) is an almost holomorphic extension of the function g(z,%z) = \/——lﬁ—f(z,'z'),
and the amplitude b(z,w,t) is an element of S*(Q x Q% x Ry ) and allows an asymptotic
expansion at t = oo of the form: 3 re,t" *bi(2, W) where Q® denotes the complex

conjugate of §). g

Inspired by their result, Kashiwara obtained a holonomic system satisfied by the

Bergman kernel when 2 has analytic boundary:

0.3 Theorem. ([Kash]) Assume that f(z,%z) is analytic. Then The Bergman ker-
nel B(z,W) satisfies the following microdifferential equations near the hypersurface
{f(z,w) = 0} which is the complexification of the boundary dQ: For any microdif-
ferential operatorsP, @) satisfying

(0.1) P(z,0,)Y (- f(z,@)) = Q(w, 85)Y (- f(2,@)),
it follows that
(0:2) P(2,0,)B(2,) = ‘Q(w, 0) B(2,).

Here ! denotes the formal adjoint of operators, Y denotes the Heaviside function, and

the equalities (0.2) and (0.3) hold as holomorphic microfunctions. g

He also showed that the Bergman kernel can be determined locally modulo functions
holomorphic at the boundary. Precisely he obtained the following theorem by using the

microlocal Bergman kernel (that is, a microlocalization of the Bergman kernel):

0.4 Theorem. (see also [Kash]) Under the same condition and notation, for any z, €
0N} there exist some neighborhood U 3 zy and a(z,®W), b(z,w) € O(U x U*) such that
the Bergman kernel has the following form in U x U®:

+ b(z,w)log(— f(z,w)).
Here O(U x U*®) denotes the set of holomorphic functions on U x U*®. y

(See [Kan2] for proofs of theorems 0.3 and 0.4 and further study, and also note that

if we replace the Bergman kernel and the Heaviside function with the Szego kernel and
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Dirac’s é-function respectively, similar results hold).

Hence, if O is analytic and strictly pseudoconvex on some neighborhood of y' € 99, we
see that the Bergman kernel has the form above at y'. However, when a domain has non-
smooth boundary, it seems that the study of singularities of the Bergman kernel is not so
satisfactory. Therefore in this article, as a simple example in non-smooth boundary cases
we will consider singularities of the Bergman kernel for a two-dimensional pseudoconvex
tube domain Q = R? + /—1W, with W = W; N W;, where each W; is strictly convex
domain as follows:

W; = {y € R% ¢j(y) < 0} with an analytic function ¢; (j = 1,2) such that

(1)0 W, and W, intersect transversally.
(2) If ¢;(yo) =0, then dpj(yo) # 0 and the Hessian matrix

82p; . . . .
(m(yo))15k,lgz is positive definite for j = 1,2.

In this article, we interpret the Bergman kernel as a microfunction on some conormal
bundle. We will denote the Bergman kernel for Q by B(z,w). In Section 1, we first
recall the integral representation of the Bergman kernel for the pseudoconvex tube
domain. The Bergman kernel is holomorphic except for the diagonal points {z = w}
at the boundary. (Note that this fact was already known before Fefferman’s work).
Hence, setting z := & + v/—1y, w := u + v/—1v we study the singularity of B(z,®)
at {z =u,y+v =0,y = y'} with y' € 9W; N OW; as a hyperfunction. Precisely,
we set a holomorphic function f(z,@) := B(z + vV—1y',w — v/—1y') and investigate
singularity of f(z,w) at {x = v = 0,y = v = 0}. We can see that hyperfunction
f((a:,u) + v=1I(T x T'%)0) is well-defined, with T := {y;y + y' € W}, I'* := —T. We
define 9]1- ( = 1,2) by the relation

—dp;(y")

i)~ %) U=12

here and hereafter w(6) denotes (cos 8, sin §). Without loss of generality, we may assume
that

0<6 <6l <2r, and 0 < 6; — 6] <.
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Thus we have the following:

SS(f((z,u) + V=1T x T*)0)) N {z = u}
C {(z, u\/—_(w(O) —w(8))) € V-1T*R*;z = u, 6] <6 <63}

= {(zu; VI Z(t 001 1)+<1—t>a“°2(y )(du; — de;)) € V-IT*RY,

r=u,0<t<1}.

where SS(-) denotes the singularity spectrum of a hyperfunction. Moreover we can

define a function g(z,w,#) and also see that

1

03
sp(f((z,u) + V—=1(T x T*)0)) = sp (/01 9((z,u) + V—1(T' x T*)0, 6) d9) .

Here sp: Br«—7,Cre denotes the spectral isomorphism from the sheaf of hyperfunc-
tions to that of microfunctions. In Section 2 we obtain an asymptotic expansion of
f(z, @) above from the microlocal point of view using the result of Section 1. Under

the notations above, our main theorem is the following:

Main Theorem. There exists a sequence {R,-(B)};‘;O such that for any € > 0 the

boundary value of

1
0, —¢

(0.3) f(z, @) — / do R;(6)r3~7 eV—1(z- ww(9))rdr
(27‘(’)2 01+5 Aj; ]2%
is micro-analytic at
0.4 z,u;vV—1(w(8), —w(8))) € V=IT*R*;z =u,0] +e <6 <0} —¢}.
1 2

Here {R(0)};2, satisfies following conditions:
(1) there exists a complex neighborhood U of |6}, 03[ such that each R;() is a holomor-
phic function of U with

tan(fy — 6) tan(f — 6;)

Ro(0) = tan(f, — 0) + tan(f — 6;)’
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(2) for any V € U there exist constants C, M such that
sup |R;(6)| < jICM? (Vi >0).
oeV

Where in (0.3) A; := max{0, (j — 3)A} with A is some positive constant depending on
M. In other words, on the set (0.4) the following equality holds as a microfunction:

(0.14) ‘ F((z,u) + V=1(T x I'*)0) = R(D,)é(z — u).

Here R(D,) denotes a microdifferential operator defined by the symbol Z R;(0)r*=7
j=

where rw(8) denotes the symbol of v,—( o) az =2—) by the polar coordmates Moreover
the second term of (0.3) is calculated as follows:

0l—c
/]

212 Jorpe (2 —W,w(6))*
1 : 3 0;——5 oo . _
+ (27)3 > / dé / R;(6) r¥ eV~ He=mw(r gy
=170+ 0

61—c¢

dé / R:(9)r3~ I eV~ Hz=ww(O)r g,
(27")2 Z/el+e (j-3)A 3(0) '
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§1. PRELIMINARIES

In this article we will use the following notation: for z = (z1, -+ ,2n) = = +
n

V-1y,w = (w1, - ,wp) = u ++/—1v € C*, (z,w) denotes } zjw;. w(f) denotes
=1

(cos@,sinf). If U is an open subset of C", then we denote the Hilbert space of square
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integrable and holomorphic functions on U by O, (U).
Let W C R™ be a bounded domain, and

Q:=R"+V-1W = {zE(C";FIszW}

be a pseudoconvex tube domain. It is well-known that this c‘ondition is equivalent to
the convexity of W. We denote the Bergman kernel for § (that is, the reproducing
kernel function for O, (©2)) by B(z,w). We recall the following well-known formula:

1.1 Proposition. (cf. [Kor]) The Bergman kernel B(z,w) for Q has the following form:

1‘ e\/—_—l(z—m’f) d
(2m)™ Jgrn [ e~ A8 do & ’

B(z,w) =

Hereafter we assume that the dimension n = 2, W = Wy N W,, where each W; is
strictly convex domain as follows:
W; = {y € R%¢;(y) < 0} with an analytic function ¢; (j = 1,2) such that
(1)0W; and 0W, intersect transversally.
(2) If ©;(yo) =0, then dyp;(yo) # 0 and the Hessian matrix

3%p; . o ‘ o
(aykay, (yo))l <ri<z S positive definite for j = 1,2.

As mentioned in Introduction the Bergman kernel B(z,w) is holomorphic except for
the diagonal points {z = w} at the boundary and our main concern is singularities at

corner points. Thus, we investigate singularities on the set
{E+V-1ly,u+V-1lv)jze=u,y+v=0,y =y}

Here yo € OW; N OW,. Set W1 N W, = {y',y?,--- ,4*V} by the assumption on W,
and define 0} by the following relation:

—dp;(y") _
|de;(y")|

(recall that w(f) = (cos@,sinf)). Without loss of generality, we may assume

w(9§-) = (cos 9;-, sin 9;)

0<8] <63 <602<?<.. <OV <02V <o,
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0< 62121 0¥ _ 0 <7 (1=1,2,---,N).

Thus, we can define the continuous surjection y(*) : [0,27] 3 6 — y(0) € OW by

y* (621 < 6 < 621)
y2l . (agl S 0 S 0%1)
y(9) = y satisfying ﬁiﬁ?(ﬁ? = w(6) (922)1—1 <6< 9%1)
y satisfying %—% = w(G) (9%1 <‘ 0 < 9%l+1)
(1=1,2, ... N).

Here we set §2V+! := ¢!, Hence we have

. 1 e\/:(z—ﬁ,w(O))r
BT = (s o T eorommgy ™
1 [ oV Te—T-2yTy(8) w(@)r

rdrdé.

T @R Jpe [,y e 2@ @y

From now on we consider the singularity of B(z,w) at {z =u, y+v =0, y = y'} since

singularities at {y2,--- ,y"V} are similar. For any 6 € [0,2x], s > 0, define
H(s,0) := {v € W; (v — sw(6) — y(6), sw(6)) = 0}

and let dv(s, ) denote the volume element of the line {v € W; (v—sw(8) —y(8), sw(8)) =
0}. Thus by setting

p(s,8) == / do(s,0)

?

we have

/ e-z(v-y(o),w(a))rdv=/c” ds/ =K@ gy (4 9)
w 0 H(s,6)
Co
:/ e 2" p(s,6) ds,
0

where ¢y is a constant depending on 6 such that

co
/ ds / dv(s,8) = w(W),
0 H(s,6)
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and p(W) denotes the Lebesgue measure of W. Note that by the assumption on W we

easily see
{ 0<i%fce<supca<w,
)

0 < pu(W) < oo.
Set

co
K(r,6) :=/ e"2°"p(s,6) ds.
0

Define a holomorphic function f(z,®) by

f(z,®) =B(z + V-1y',w — vV-1y")
1 eV—Hz—w+2v=1(y' ~y(0)),w(8))r
~ (2m)? /Rz K(r,0)
Then, f(z,w) is holomorphic when Im 2z, Im w € ' := {y € R?; y + y! € W}, and the

rdrd®.

singularity of B(z,W) at {z = u,y+v = 0,y = y'} is equivalent to that of f(z,®)
at {x = u,y = v = 0}. Hence, a hyperfunction f((z,u) + +/—=1(T' x I'*)0) is well-
defined, where I'* := —T' (see [Kanl], [K-K-K], and [S-K-K] for hyperfunctions and

microfunctions theory). Define a continuous function ¢(z,w, 6) by

rdr.

1 00 V=1(z=T+2vV=1(y" —y(6)),w(8))r
9(z,w,0) := /

(2n)? K(r,6)
Thus we can define a hyperfunction g((z,u) + v/—1(I" x I'*)0, §) similarly to
f((z,u) + vV/—1(T x I'*)0). Clearly we have
27
£0) = [ o(aw,6)ds
0
or equivalently,

f((z,u) + V=1 x T*)0) = /2" 9((z,u) + vV—=1(T' x I'*)0, 6) d.

By using the estimate of the singularity spectrum (= the analytic wave front set) for a

hyperfunction we have the following:

SS(f((z,u) + vV—=1(T x T%)0)) N {z = u} ‘
C {(z,u; vV=1(w(8), —w(8))) € V=IT*R%;z = u, 6} < 8 < 61}

= {(zu;v I Z(ta“’l( )+ (1— )am(y )(du; — de;)) € VIT'RY;

r=u,0<t<1}.
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where SS(-) denotes the singularity spectrum of a hyperfunction. On the other hand,
by the definition of g(z,w, ) we can also see that

6
sp(f((z,u) + vV=1(T x T'*)0)) = sp (/01 g((z,u) + v=1(T x I'*)0, 6) dﬂ) .

1
Here sp: Bgr:——m,Crs denotes the spectral isomorphism from the sheaf of hyperfunc-

tions to that of microfunctions.

§2. ASYMPTOTIC EXPANSION

In this section, we will obtain an asymptotic expansion of g(z,w, ) from the microlo-
cal point of view. For w(f) = (cosb,sin8), we set ‘w(f) := (—sinf,cos ). Hence we
have (w(),'w(#)) = 0. For any v € H(s, ), there exists a unique real number ¢ such
that

v=y(0)+s-wd)+1t-'w®),
that is, H(s, §) is parametrized by t. For s > 0, we have H(s,8) N W = {w{,w;}. By
the assumption on W and definition of y(8), we can find the function w? = w;(s, 6) and

J
we have

p(s,0) = |wy(s,8) — wa(s, ).

On the other hand, we will consider equations
QOj(y(o) +s- w(e) +t- tw(e)) =0 6 6]91170;[7 s20, (.7 = 172)’

Thus, we can apply analytic version of the implicit function theorem by the assumption
that 0 < 62 — 6] < 7; that is, we can find a strictly positive constant § and analytic

functions t; = t;(s,0) (j = 1,2, 6 €]611,63[, 0 < s < §) such that
iyt +5-w(8) +15(s,6) - ‘w(6)) =0,
tj(O, 6) =0.

We note that there exist complex neighborhoods L and U of {s; 0 < s < §} and ]61%, 63|
respectively such that ¢;’s are holomorphic on L x U (j = 1,2). The lemma below is
proved by direct calculation:
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2.1 Lemma. If0< s < § and 6 €]61',61[, then
p(s’ 9) = tl(S,a) - t2(579)7
wj(s,8) = yl+s- w(f) +t;(s,0) - tw(O). 1

By replacing § small enough, we can obtain for |s| < §, 8§ € U the Taylor expansion

a;(0) .
(t; — t5)(s,0) = Z JJT('—)SJ.
=1
We can see by the implicit function theorem that
3(t1 tz) 1 1
a(6) = 0.0) = Gn@ =0y T tan(6, = 0)"
Hence by shrinking L and U , we may assume that
o { a1(8) # 0 (V8 € U),
' [tj(s,0)|’s are boundedon s € L, 0 €V (YW €U (j =1,2)).
Thus there exist constants C' and M such that
{ sup |a;(6)| < jICM? (V) = 1),
(13

Mé<1.
Thus we can prove the following lemma:

(2.2)

2.2 Lemma. K(r,6) has the following asymptotic expansion :

K(r,0) ~ ; (ga;)(fll (r — o0).

Precisely, for any V' € U, there exist positive numbers ry and Cy such that for every

r>rg, 8 € VAR and N > 1 the following inequality holds:

a;(0 Ch+ (N +1)!
K(r,0) — 2(2 )(]-21 v r1(\7+2 )

On the other hand, by virtue of (2.1) we easily see that § a;(8)/(2r)’*! has formal
j=1

inverse E R;(0)r?=7: that is, as formal series with O(U) coefficients the following

equahty holds

22) (Z (;ﬂ)ﬁl) = _R;(®)r*.

i=0

Here, Ro(6) := a1(f)~! and R;(6)’s are determined inductively by (2.3). Therefore,
we can see that for any V € U each R;(6) satisfies a similar inequality to (2.2) (j =
0,1,2,...). Thus, we obtain the following theorem (cf. [A], [B1] and [Kat2] for symbolic

calculus):



150

2.3 Theorem. There exists a sequence {Rj(G)};io such that for any € > 0 the bound-
ary value of

03—¢
(24) f(z,@) - (27r)2 /0 e do / Z R;j(8) r*—ieV"T=Tw(®) 1y,

7=0

is micro-analytic at
(2.5) {(z,u;vV=1(w(8),—w(8))) € V-IT*R*z = u,0] +c < 6 < 6} —¢€}.

Here {R(G)};io satisfies following conditions:
(1) there exists a complex neighborhood U of 16}, 03[ such that each R;(8) is a holomor-
phic function of U with

tan(02 - 0) tan(9 - 61)
tan(6, — 6) + tan(6 — 6;)’

Ry(6) =
(2) for any V € U there exist constants C, M such that

sup |R;(6)| < jICM7 (¥} 20).

ocVv

Where in (2.4) A; := max{0, (j — 3)A} with A is some positive constant depending on
M. In other words, on the set (2.5) the following equality holds as a microfunction:

f((z,u) + V=1 x T*)0) = R(D:)é(z — u),

Here R(D,) denotes a microdifferential operator defined by the symbol Z R;(8)r*=7
i=
where rw(6) denotes the symbol of \/'IT—l( 320 6112) by the polar coordmates Moreover

the second term of (2.4) is calculated as follows:

3 (%7 Re(®)

(26) 2m2 6l+e (z—iv‘,w(ﬂ))"da
L[5 [ 35 V(- w(6))
Ly [ / ()i T,
(2’”)2 Z 6l +e 0 ]( )
01—5
(0 r3—je\/:_1_(z—w,w(0))7‘dr‘ I
(27!')2 ZL1+5 (7—3)A ]( )
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2.3 Remark. By (2.6), we can see that
B(z,7) = O (dist(y,y')™") (W>ay—y).

On the other hand, if vy € (W7 N W)\ (W, N W), then we can apply the proof of
Kashiwara’s theorem (0.4) and obtain that

B(z,7) = O (dist(y,v0)™%) (W 3y — vp).

Hence we can hardly expect that similar result to theorem 0.3 holds at
(@, w5 V=1 350, (152 (y") + (1 - ) 522 (y"))(du; — dej)), (z = u, t =0,1).
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