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Abstract
In this paper,we study the hypoellipticity problems
for fully nonlinear partial differential equations of
order m. For a solution ue Ci. (), if the linearized 0p-
erator for the nonlinear equation o u satisfies some
subelliptic conditions, we can deduce weC @) by using

the paradifferential operator theory of J-M. Bony.

80 TIntroduction
Let us consider the foLLowa:ng equation :
Frul= F(x, utw, -, 3w, =) e m =0 (0.1)
where xef, Q<R open, F is a real C® function,

If uecf @ {f>m) is a real solution for the equ-
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ation (0.1),we defzne an associate linearized operator:

(x,D) =20 % 0.2 )
Px, D Mnm_{,ad(x) ox (
where @ 00 = %—E;(x,u(x), e, 2Pupn, ) € Coeten). Its sy mbol
P, == a0 (18 (0.3>
|| >2m-pP
Then we obtain the following main theorem,

Theorem 0.1, Suppose that ueCh 0 isa real solution

1 !
of equation (0.1), osm'sm,  0s 5<% and P>m+l+5gnm)

and the symbol defined by 3 satisfies :
Hy) VYKkeen , IR>0, Ci>0, G >0, st.
Co g™ < [ po B < G g™,
Vxe K, 3¢ R*, Bl=R.
Ha) Wkec, ¥oa,geN™, [Bl<P-m, IR>0, Cyp >0 st.
[af 3¢ bt 9l S Copyic | P | 5|~ 10F 3,
VxeK, 5¢R", l§I2R.

Then uweC™W).

§1 Nonhomogeneous symbolic calculus
First we recall that for any constants o<g<g, <1,
R>0, there exists a function Y, 5 €CT(R'*<R"), such
that y=0 if Wi>¢g,15, ¥=1 if li<glsl and 152R, and for

any *,BEN", there exists a constant Cyp>o, such that
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L3 o€ ¥ (1, Bl < Cp (X +ig ™™ (1.1

Definition 11  For constants o0ss<l, meR, r>o(r¢z)

we define the symbol space
defined on R'xR", C* in %, C"im x;
Zys=1P0o% Yo, peN, i<y, FCyp>0, st.
3% 9§ pou Bl Cayp (14]5] )18+ 8140 ¥xer™,
009 = @0 fe 0 P, pdy.
wheve Y (,% s a cut-off function in (L1).

We have +the foLLowlnj Properttes for the Symbo(,
class defined above .

Proposition 1.2 If po, e TR, then Gpe ).

Proposttion 1.3 ( Composition of symbols )

Let peEMs, 2€ TN (r>1), then
(1) p#e= E(H:&_T F P D25 € Z,Z*D',"];bs :
) 6pyqg — O #05 € S’:f;'"-("mm, where
Gp# 6y = T WHGEDH G,
82 The proof of Theorem 0.1
By the para-linearization process, one can find the

following para-linearization theorem in L6, 121,

Theorem 2.1 Let ue Cf (0 aH ), P>m, s>0, be a
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real solution for the equation (0.1), Pa, D eOp(Z,, @)

is the paradifferential operator whose symbol 6(P) =

pou%) is defined by (0.3). Then there exists a functlon
fe ¥ A HYE @ such that Pu=f.

loc

Theorem 2.2 Let ue CL > n HE. () (s>0) satisfy the

assumptions of Theorem 0.1 , then there exists a constart

£ >0 (independent of s), such that ue C5 @ aHw).

The proof of Theorem ol :

From the fact that uwe CL ) and the assumptions
of Theorem 0.1, we can deduce uwe HE'(R). From Theorem
2.2, we know uwe L @NHE ). By tnduction, repeat-
ing the process R times, we can obtatnh uwo € CZC(Q)(\

H”"”"E(m‘ This implies U € Cf uzmn H”"’"k‘m). Finally

by the Sobolev embeoldtng theorem , we know n H”“"’f“£

= C®°W), Thus we have 1>raved wo € C*W).

§3 An example
Let us consider
Ftul= (Logu) (ax4- 334) (9)(’-"'33:) zu(coau) +2u-—=o’
where (6, Y€ N R*, (0,0) €.

Conclusion : Suppose wtuyp) € Cf(v, ux4r >0, $>9 is
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a real solutlon for the equation above, then uw,

€ C”wW).

xt+3

In fact, Uy = e is a solution for the equa-

tion, but at (0,00, the Linearized operator is degener-

ately eLLLPttc.
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