HYPOELLIPTICITY OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Zhou Xiaofang (周 小方)
Department of Mathematical Sciences
University of Tokyo

Abstract

In this paper, we study the hypoellipticity problems for fully nonlinear partial differential equations of order m. For a solution $u \in C^p_{loc}(\Omega)$, if the linearized operator for the nonlinear equation on u satisfies some subelliptic conditions, we can deduce $u \in C^\infty(\Omega)$ by using the paradifferential operator theory of J.-M. Bony.

§0 Introduction

Let us consider the following equation:

 $F[u] = F(x, u(x), \dots, \beta u(x), \dots)_{|\beta| \le m} = 0$ (0.1)

where $x \in \Omega$, $\Omega \subset \mathbb{R}^n$ open, F is a real C^{∞} function.

If $u \in C^{s}_{loc}(\Omega)$ (s) is a real solution for the equ-

ation (0.1), we define an associate linearized operator:

$$P(x, p) = \sum_{|\alpha| > 2m - \rho} a_{\alpha}(x) \, \partial_{x}^{\alpha} \qquad (0.2)$$

where $a_{\alpha}(x) = \frac{\partial F}{\partial u_{\alpha}}(x, u(x), \dots, \partial^{\beta}u(x), \dots) \in C^{\beta-m}_{loc}(\Omega)$. Its symbol

$$p(x,\xi) = \sum_{|\alpha| > 2m - \rho} a_{\alpha}(x) (i\xi)^{\alpha}. \qquad (0.3)$$

Then we obtain the following main theorem.

Theorem 0.1. Suppose that $u \in C^{\rho}_{loc}(\Omega)$ is a real solution of equation (0.1), $0 \le m' \le m$, $0 \le \delta < \frac{1}{2}$ and $\rho > m+1+\frac{1}{1-2\delta}(m-m')$, and the symbol defined by (0.3) satisfies:

H₁) ∀K=∈Ω, ∃R>0, C₁>0, C₂>0, s.t.

 $C_1 |\xi|^{m'} \leq |p(x, \xi)| \leq C_2 |\xi|^m$

 $\forall x \in K, \ \xi \in \mathbb{R}^n, \ |\xi| \geqslant R.$

 H_2) $\forall K \subset \Omega$, $\forall \alpha, \beta \in \mathbb{N}^n$, $|\beta| < \beta - m$, $\exists R > 0$, $C_{\alpha,\beta,K} > 0$ s.t. $|\partial_x^{\beta}\partial_x^{\alpha} p(x,\xi)| \leqslant C_{\alpha,\beta,K} |p(x,\xi)| |\xi|^{-|\alpha|+\delta|\beta|}$, $\forall x \in K, \xi \in \mathbb{R}^n$, $|\xi| \geqslant R$.

Then $u \in C^{\infty}(\Omega)$.

§1 Nonhomogeneous symbolic calculus

First we recall that for any constants $0<\xi_1<\xi_2<1$, R>0, there exists a function $\Psi(\gamma,\xi)\in C^\infty(\mathbb{R}^n\times\mathbb{R}^n)$, such that $\Psi=0$ if $|\gamma|\geqslant \xi_2|\xi|$, $\Psi=1$ if $|\gamma|\leqslant \xi_1|\xi|$ and $|\xi|\geqslant R$, and for any $\alpha,\beta\in\mathbb{N}^n$, there exists a constant $C_{\alpha,\beta}>0$, such that

$$\left| \partial_{\eta}^{\alpha} \partial_{\xi}^{\beta} \psi(\eta, \xi) \right| \leqslant C_{\alpha, \beta} \left(1 + |\xi| \right)^{-|\alpha| - |\beta|}. \tag{1.1}$$

<u>Definition 1.1</u> For constants $0 \le 8 < 1$, $m \in \mathbb{R}$, r > 0 ($r \notin \mathbb{Z}$), we define the symbol space

$$\Sigma_{r,s}^{m} = \left\{ p(x,\xi) \middle| \begin{array}{l} \text{defined on } \mathbb{R}^{n} \times \mathbb{R}^{n} , \quad C^{\infty} \text{ in } \xi, \quad C^{r} \text{ in } x; \\ \forall \alpha, \beta \in \mathbb{N}^{n}, \quad |\alpha| < r, \quad \exists C_{\alpha,\beta} > 0, \text{ s.t.} \\ |\partial_{x}^{\alpha} \partial_{\xi}^{\beta} p(x,\xi)| \leqslant C_{\alpha,\beta} \left(1 + |\xi|\right)^{m - |\beta| + |\xi| \alpha l}, \quad \forall \xi \in \mathbb{R}^{n}. \end{array} \right\}$$

$$G_{\beta}(x, \xi) = (2\pi)^{-n} \int e^{i\eta x} \psi(\eta, \xi) \hat{\beta}(\eta, \xi) d\eta.$$

where $\psi(7,3)$ is a cut-off function in (1.1).

We have the following properties for the symbol class defined above.

Proposition 1.2 If $p(x, \xi) \in \Sigma_{r, \delta}^m$, then $\delta_p(x, \xi) \in S_{1, 1}^m$.

<u>Proposition 1.3</u> (Composition of symbols)

Let $p \in \Sigma_{r,s}^m$, $q \in \Sigma_{r,s}^{m'}(r>1)$, then

(1)
$$p \# q = \sum_{|\alpha| < \gamma-1} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} p(x,\xi) \mathcal{D}_{\chi}^{\alpha} q(x,\xi) \in \sum_{\gamma-[\gamma]+1, \delta}^{m+m'} .$$

(2)
$$6p \# 9 = 6p \# 6q \in S_{1,1}^{m+m'-(1-2\delta)[r]}, \text{ where}$$

$$6p \# 6q = \sum_{|\alpha| < r-1} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} \delta_{p}(x,\xi) D_{x}^{\alpha} \delta_{q}(x,\xi).$$

§2 The proof of Theorem 0.1

By the para-linearization process, one can find the following para-linearization theorem in [6,12].

Theorem 2.1 Let $u \in C^{\beta}_{loc}(\Omega) \cap H^{s}_{loc}(\Omega)$, $\beta > m$, s > 0, be a

real solution for the equation (0.1), $P(x,D) \in Op(\Sigma_{p-m}^{m}(\Omega))$ is the paradifferential operator whose symbol $\delta(P) = p(x,\xi)$ is defined by (0.3). Then there exists a function $f \in C_{loc}^{2p-2m}(\Omega) \cap H_{loc}^{s+p-2m}(\Omega)$ such that Pu = f.

Theorem 2.2 Let $u \in C^{\rho}_{loc}(\Omega) \cap H^{s}_{loc}(\Omega)$ (s>0) satisfy the assumptions of Theorem 0.1, then there exists a constant E > 0 (independent of s), such that $u \in C^{\rho}_{loc}(\Omega) \cap H^{s+E}_{loc}(\Omega)$. The proof of Theorem 0.1:

From the fact that $u(x) \in C^p_{loc}(\Omega)$ and the assumptions of Theorem 0.1, we can deduce $u(x) \in H^{m+1}_{loc}(\Omega)$. From Theorem 2.2, we know $u(x) \in C^p_{loc}(\Omega) \cap H^{m+1+\epsilon}_{loc}(\Omega)$. By induction, repeating the process k times, we can obtain $u(x) \in C^p_{loc}(\Omega) \cap H^{m+1+k\epsilon}_{loc}(\Omega)$. This implies $u(x) \in C^p_{loc}(\Omega) \cap H^{m+1+k\epsilon}_{loc}(\Omega)$. Finally by the Sobolev embedding theorem, we know $H^{m+1+k\epsilon}_{loc}(\Omega) \cap H^{m+1+k\epsilon}_{loc}(\Omega)$.

§3 An example

Let us consider

 $F[u] = (\log u)^{16} \left(\frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial y^4} \right) - \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - 2u(\log u)^{16} + 2u = 0,$ where $(x, y) \in \Omega \subset \mathbb{R}^2$, $(0, 0) \in \Omega$.

Conclusion: Suppose $u(x,y) \in C_{bc}^{g}(\Omega)$, u(x,y) > 0, g > q is

a real solution for the equation above, then $u(x,y) \in C^{\infty}(\Omega)$.

In fact, $u(x,y) = e^{x+y}$ is a solution for the equation, but at (0,0), the linearized operator is degenerately elliptic.

References

- [1] Boutet de Monvel, L., Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math., 27 (1974), 585-639.
- [2] 陈恕行, 仇庆久, 李成章, 仿微分算子引论, 科学出版社, 1990.
- [3] Chin-Hung Ching, Pseudodifferential operators with nonregular symbols, J. Diff. Eqs., 11, 436-447, 1972.
- [4] Friedrichs, K.O., On the differentiability of solutions of linear elliptic differential equations,

 Comm. Pure Appl. Math., Vol. 6 (1953), 299-326.
- [5] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
- [6] J.-M. Bony, Calcul symbolique et propagation les

- des singularités pour les équations aux dérivées partielles non linéares, Ann. Sci. Ec. Norm. Sup., 14 (1981), 209-246.
- [7] J. Marschall, Pseudo-differential operators with nonregular symbols of the class $S_{r,s}^{m}$, Comm. in P.D. E., 12 (8), 921-965 (1987).
- [8] 齐民友,线性偏微分算子引论(上册),科学出版社,1986.
- [9] 齐民友, 徐超江, 线性偏微分算子引论 (下册), 科学出版社, 1992.
- [10] Treves, F., A new method of proof of the subelliptic estimates, Comm. Pure Appl. Math., 24 (1971),
- [11] Treves, F., Hypoelliptic partial differential equations of principal type. Sufficient conditions and necessary conditions, Comm. Pure Appl. Math., 24 (1971), 631-670.
- [12] Xu Chao-Jiang, Hypoellipticity of nonlinear second order partial differential equations, Journal of P.D.E., (1) 1988.